Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-19T06:15:42.869Z Has data issue: false hasContentIssue false
This chapter is part of a book that is no longer available to purchase from Cambridge Core

11 - The Map-Coloring Game

from II - Number Theory and Graph Theory

Michael Henle
Affiliation:
Oberlin College
Brian Hopkins
Affiliation:
Saint Peter's University
Get access

Summary

Introduction

Suppose that Alice wants to color a planar map using four colors in a proper way, that is, so that any two adjacent regions get different colors. Despite the fact that she knows for certain that it is eventually possible, she may fail in her first attempts. Indeed, there are usually many proper partial colorings not extendable to proper colorings of the whole map. Thus, if she is unlucky, she may accidentally create such a bad partial coloring.

Now suppose that Alice asks Bob to help her in this task. They color the regions of a map alternately, with Alice going first. Bob agrees to cooperate by respecting the rule of a proper coloring. However, for some reason he does not want the job to be completed—his secret aim is to achieve a bad partial coloring. (For instance, he may wish to start the coloring procedure over and over again just to stay longer in Alice's company.) Is it possible for Alice to complete the coloring somehow, in spite of Bob's insidious plan? If not, then how many additional colors are needed to guarantee that the map can be successfully colored, no matter how clever Bob is?

This map-coloring game was invented about twenty-five years ago by Steven J. Brams with the hope of finding a game-theoretic proof of the Four Color Theorem, avoiding perhaps the use of computers.

Type
Chapter
Information
Publisher: Mathematical Association of America
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×