Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-18T04:02:42.798Z Has data issue: false hasContentIssue false

1 - Fluorescent Reporter Proteins

Published online by Cambridge University Press:  07 September 2010

Sanjiv Sam Gambhir
Affiliation:
Stanford University School of Medicine, California
Shahriar S. Yaghoubi
Affiliation:
Stanford University School of Medicine, California
Get access

Summary

INTRODUCTION

For more than a decade the growing class of fluorescent proteins (FPs) defined as homologues of Aequorea victoriagreen FP (avGFP), which are capable of forming an intrinsic chromophore, has almost single-handedly launched and fueled a new era in cell biology. These powerful research tools provide investigators with a means of fusing a genetically encoded optical probe to any one of a practically unlimited variety of protein targets to examine living systems using fluorescence microscopy and related methodology (see Figure 1.1; for recent reviews, see references). The diverse array of practical applications for FPs ranges from targeted markers for organelles and other subcellular structures, to protein fusions designed to monitor mobility and dynamics, to reporters of transcriptional regulation (Figure 1.2). FPs have also opened the door to creating highly specific biosensors for live-cell imaging of numerous intracellular phenomena, including pH and ion concentration fluctuations, protein kinase activity, apoptosis, voltage, cyclic nucleotide signaling, and tracing neuronal pathways. In addition, by applying selected promoters and targeting signals, FP biosensors can be introduced into an intact organism and directed to specific tissues, cell types, and subcellular compartments to enable monitoring a variety of physiological processes using fluorescence resonance energy transfer (FRET) techniques.

If FPs are the “fuel” for the live-cell imaging revolution, the “engines” are the technical advances in widefield fluorescence and confocal microscopes. Some notable advances include low light level digital charge coupled device (CCD) cameras as well as spinning-disk and swept-field instruments.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Chudakov, D. M., Lukyanov, S., Lukyanov, K. A. (2005). Fluorescent proteins as a toolkit for in vivo imaging. Trends Biotechnol 23: 605–613.CrossRefGoogle ScholarPubMed
Miyawaki, A., Nagai, T., Mizuno, H. (2005). Engineering fluorescent proteins. Adv Biochem Eng Biotechnol 95: 1–15.Google ScholarPubMed
Shaner, N. C., Steinbach, P. A., Tsien, R. Y. (2005). A guide to choosing fluorescent proteins. Nat Methods 2: 905–909.CrossRefGoogle ScholarPubMed
Shaner, N. C., Patterson, G. H., Davidson, M. W. (2007). Advances in fluorescent protein technology. J Cell Sci 120: 4247–4260.CrossRefGoogle ScholarPubMed
Zhang, J., Campbell, R. E., Ting, A. Y., Tsien, R. Y. (2002). Creating new fluorescent probes for cell biology. Nat Rev Mol Cell Biol 3: 906–918.CrossRefGoogle ScholarPubMed
Meyer, T., Teruel, M. N. (2003). Fluorescence imaging of signaling networks. Trends Cell Biol 13: 101–106.CrossRefGoogle ScholarPubMed
Miyawaki, A., Mizuno, H., Nagai, T., Sawano, A. (2003). Development of genetically encoded fluorescent indicators for calcium. Methods Enzymo 360: 202–225.CrossRefGoogle ScholarPubMed
Zaccolo, M., Cesetti, T., Di Benedetto, G., Mongillo, M., Lissandron, V., Terrin, A., Zamparo, I. (2005). Imaging the cAMP-dependent signal transduction pathway. Biochem Soc Trans 33: 1323–1326.CrossRefGoogle ScholarPubMed
Livet, J., Weissman, T. A., Kang, H. N., Draft, R. W., Lu, J., Bennis, R. A., Sanes, J. R., Lichtman, J. W. (2007). Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 450: 56–62.CrossRefGoogle Scholar
Day, R. N., Schaufele, F. (2005). Imaging molecular interactions in living cells, Mol Endocrinol 19: 1675–1686.CrossRefGoogle ScholarPubMed
Lippincott-Schwartz, J., Patterson, G. H. (2003). Development and use of fluorescent protein markers in living cells. Science 300: 87–91.CrossRefGoogle ScholarPubMed
Shimomura, O., Johnson, F. H., Saiga, Y. (1962). Extraction, purification and properties of Aequorin, a bioluminescent protein from luminous Hydromedusan, Aequorea. J Cell Comp Physiol 59 (1962): 223–239.CrossRefGoogle ScholarPubMed
Chalfie, M., Tu, Y., Euskirchen, G., Ward, W. W., Prasher, D. C. (1994). Green fluorescent protein as a marker for gene expression. Science 263: 802–805.CrossRefGoogle ScholarPubMed
Davenport, D., Nicol, J. A. C. (1955). Luminescence in Hydromedusae. Proc R Soc Lond, B, Biol Sci 144: 399–411.CrossRefGoogle Scholar
Morin, J. G., Hastings, J. W. (1971). Energy transfer in a bioluminescent system. J Cell Physiol 77: 313–318.CrossRefGoogle Scholar
Prasher, D. C., Eckenrode, V. K., Ward, W. W., Prendergast, F. G., Cormier, M. J. (1992). Primary structure of the Aequorea victoria green-fluorescent protein. Gene 111: 229–233.CrossRefGoogle ScholarPubMed
Heim, R., Cubitt, A. B., Tsien, R. Y. (1995). Improved green fluorescence. Nature 373: 663–664.CrossRefGoogle ScholarPubMed
Heim, R., Prasher, D. C., Tsien, R. Y. (1994). Wavelength mutations and posttranslational autoxidation of green fluorescent protein. Proc Natl Acad Sci U S A 91: 12501–12504.CrossRefGoogle ScholarPubMed
Yang, T. T., Sinai, P., Green, G., Kitts, P. A., Chen, Y. T., Lybarger, L., Chervenak, R., Patterson, G. H., Piston, D. W., Kain, S. R. (1998). Improved fluorescence and dual color detection with enhanced blue and green variants of the green fluorescent protein. J Biol Chem 273: 8212–8216.CrossRefGoogle ScholarPubMed
Heim, R., Tsien, R. Y. (1996). Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer. Curr Biol 6: 178–182.CrossRefGoogle ScholarPubMed
Wachter, R. M., Elsliger, M. A., Kallio, K., Hanson, G. T., Remington, S. J. (1998). Structural basis of spectral shifts in the yellow-emission variants of green fluorescent protein. Structure 6: 1267–1277.CrossRefGoogle ScholarPubMed
Matz, M. V., Fradkov, A. F., Labas, Y. A., Savitsky, A. P., Zaraisky, A. G., Markelov, M. L., Lukyanov, S. A. (1999). Fluorescent proteins from nonbioluminescent Anthozoa species, Nat Biotechnol 17: 969–973.CrossRefGoogle ScholarPubMed
Labas, Y. A., Gurskaya, N. G., Yanushevich, Y. G., Fradkov, A. F., Lukyanov, K. A., Lukyanov, S. A., Matz, M. V. (2002). Diversity and evolution of the green fluorescent protein family. Proc Natl Acad Sci U S A 99: 4256–4261.CrossRefGoogle ScholarPubMed
Matz, M. V., Lukyanov, K. A., Lukyanov, S. A. (2002). Family of the green fluorescent protein: journey to the end of the rainbow. Bioessays 24: 953–959.CrossRefGoogle ScholarPubMed
Masuda, H., Takenaka, Y., Yamaguchi, A., Nishikawa, S., Mizuno, H. (2006). A novel yellowish-green fluorescent protein from the marine copepod, Chiridius poppei, and its use as a reporter protein in HeLa cells. Gene 372: 18–25.CrossRefGoogle ScholarPubMed
Deheyn, D. D., Kubokawa, K., McCarthy, J. K., Murakami, A., Porrachia, M., Rouse, G. W., Holland, N. D. (2007). Endogenous green fluorescent protein (GFP) in amphioxus. Biol Bull 213: 95–100.CrossRefGoogle Scholar
Hopf, M., Gohring, W., Ries, A., Timpl, R., Hohenester, E. (2001). Crystal structure and mutational analysis of a perlecan-binding fragment of nidogen-1. Nat Struct Biol 8: 634–640.CrossRefGoogle ScholarPubMed
Jaiswal, J. K., Simon, S. M. (2004). Potentials and pitfalls of fluorescent quantum dots for biological imaging. Trends Cell Biol 14: 497–504.CrossRefGoogle ScholarPubMed
Giepmans, B. N. G., Adams, S. R., Ellisman, M. H., Tsien, R. Y. (2006). Review – the fluorescent toolbox for assessing protein location and function. Science 312: 217–224.CrossRefGoogle ScholarPubMed
Sapsford, K. E., Pons, T., Medintz, I. L., Mattoussi, H. (2006). Biosensing with luminescent semiconductor quantum dots. Sensors 6: 925–953.CrossRefGoogle Scholar
Michalet, X., Pinaud, F. F., Bentolila, L. A., Tsay, J. M., Doose, S., Li, J. J., Sundaresan, G., Wu, A. M., Gambhir, S. S., Weiss, S. (2005). Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307: 538–544.CrossRefGoogle ScholarPubMed
McNamara, G., Boswell, C. (2006). PubSpectra; http://home.earthlink.net/∼pubspectra/.
Dabbousi, B. O., Rodriguez-Viejo, J., Mikulec, F. V., Heine, J. R., Mattoussi, H., Ober, R., Jensen, K. F., Bawendi, M. G. (1997). (CdSe)ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites. J Phys Chem B 101: 9463–9475.CrossRefGoogle Scholar
Wang, L., Jackson, W. C., Steinbach, P. A., Tsien, R. Y. (2004). Evolution of new nonantibody proteins via iterative somatic hypermutation. Proc Natl Acad Sci U S A 101: 16745–16749.CrossRefGoogle ScholarPubMed
Nguyen, A. W., Daugherty, P. S. (2005). Evolutionary optimization of fluorescent proteins for intracellular FRET. Nat Biotechnol 23: 355–360.CrossRefGoogle ScholarPubMed
Shaner, N. C., Campbell, R. E., Steinbach, P. A., Giepmans, B. N., Palmer, A. E., Tsien, R. Y. (2004). Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol 22: 1567–1572.CrossRefGoogle ScholarPubMed
Ward, W. W. (2006). Biochemical and physical properties of green fluorescent protein. In: Chalfie, M., & Kain, S. R. (Eds.), Green Fluorescent Protein: Properties, Applications, and Protocols, 2nd ed., Wiley-Interscience: New York, pp. 39–65.Google Scholar
Lakowicz, J. R. (2006). Principles of Fluorescence Spectroscopy, 3rd ed., Springer: New York.CrossRefGoogle Scholar
Hazelwood, K. L., Olenych, S. G., Griffin, J. D., Cathcart, J. A., Davidson, M. W. (2007). Entering the portal: Understanding the digital image recorded through a microscope. In: Shorte, S. L., & Frischknecht, F. (Eds.), Imaging Cellular and Molecular Biological Functions. Springer: Berlin, pp. 3–43.CrossRefGoogle Scholar
Henderson, J. N., Ai, H. W., Campbell, R. E., Remington, S. J. (2007). Structural basis for reversible photobleaching of a green fluorescent protein homologue. Proc Natl Acad Sci U S A 104: 6672–6677.CrossRefGoogle ScholarPubMed
Yang, F., Moss, L. G., Phillips, G. N. (1996). The molecular structure of green fluorescent protein. Nat Biotechnol 14: 1246–1251.CrossRefGoogle ScholarPubMed
Ormo, M., Cubitt, A. B., Kallio, K., Gross, L. A., Tsien, R. Y., Remington, S. J. (1996). Crystal structure of the Aequorea victoria green fluorescent protein. Science 273: 1392–1395.CrossRefGoogle ScholarPubMed
Weissleder, R. (2001). A clearer vision for in vivo imaging. Nat Biotechnol 19: 316–317.CrossRefGoogle ScholarPubMed
Zapata-Hommer, O., Griesbeck, O. (2003). Efficiently folding and circularly permuted variants of the Sapphire mutant of GFP. BMC Biotechnol 3: 5.CrossRefGoogle ScholarPubMed
Kogure, T., Karasawa, S., Araki, T., Saito, K., Kinjo, M., Miyawaki, A. (2006). A fluorescent variant of a protein from the stony coral Montipora facilitates dual-color single-laser fluorescence cross-correlation spectroscopy. Nat Biotechnol 24: 577–581.CrossRefGoogle ScholarPubMed
Xia, J., Kim, S. H., Macmillan, S., Truant, R. (2006). Practical three color live cell imaging by widefield microscopy. Biol Proced Online 8: 63–68.CrossRefGoogle ScholarPubMed
Chen, I., Ting, A. Y. (2005). Site-specific labeling of proteins with small molecules in live cells. Curr Opin Biotechnol 16: 35–40.CrossRefGoogle ScholarPubMed
Miller, L. W., Cornish, V. W. (2005). Selective chemical labeling of proteins in living cells. Curr Opin Chem Biol 9: 56–61.CrossRefGoogle ScholarPubMed
Gronemeyer, T., Godin, G., Johnsson, K. (2005). Adding value to fusion proteins through covalent labeling. Curr Opin Biotechnol 16: 453–458.CrossRefGoogle Scholar
Howarth, M., Takao, K., Hayashi, Y., Ting, A. Y. (2005). Targeting quantum dots to surface proteins in living cells with biotin ligase. Proc Natl Acad Sci U S A 102: 7583–7588.CrossRefGoogle ScholarPubMed
Griffin, B. A., Adams, S. R.Tsien, R. Y. (1998). Specific covalent labeling of recombinant protein molecules inside live cells. Science 281: 269–272.CrossRefGoogle ScholarPubMed
Keppler, A., Gendreizig, S., Gronemeyer, T., Pick, H., Vogel, H., Johnsson, K. (2003). A general method for the covalent labeling of fusion proteins with small molecules in vivo. Nat Biotechnol 21: 86–89.CrossRefGoogle ScholarPubMed
Martin, B. R., Giepmans, B. N., Adams, S. R., Tsien, R. Y. (2005). Mammalian cell-based optimization of the biarsenical-binding tetracysteine motif for improved fluorescence and affinity. Nat Biotechnol 23: 1308–1314.CrossRefGoogle ScholarPubMed
Salih, A., Larkum, A., Cox, G., Kuhl, M., Hoegh-Guldberg, O. (2000). Fluorescent pigments in corals are photoprotective. Nature 408: 850–853.CrossRefGoogle ScholarPubMed
Pedelacq, J. D., Cabantous, S., Tran, T., Terwilliger, T. C., Waldo, G. S. (2006). Engineering and characterization of a superfolder green fluorescent protein. Nat Biotechnol 24: 79–88.CrossRefGoogle ScholarPubMed
Nagai, T., Ibata, K., Park, E. S., Kubota, M., Mikoshiba, K., Miyawaki, A. (2002). A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications, Nat Biotechnol 20: 87–90.CrossRefGoogle ScholarPubMed
Ai, H.-w., Shaner, N. C., Cheng, Z., Tsien, R. Y., Campbell, R. E. (2007). Exploration of new chromophore structures leads to the identification of improved blue fluorescent proteins. Biochemistry 46: 5904–5910.CrossRefGoogle ScholarPubMed
Kremers, G. J., Goedhart, J., Munster, E. B., Gadella, T. W. J. (2006). Cyan and yellow super fluorescent proteins with improved brightness, protein folding, and FRET Forster radius. Biochemistry 45: 6570–6580.CrossRefGoogle ScholarPubMed
Kremers, G. J., Goedhart, J., vandenHeuvel, D. J., Gerritsen, H. C., Gadella, T. W. J. (2007). Improved green and blue fluorescent proteins for expression in bacteria and mammalian cells. Biochemistry 46: 3775–3783.CrossRefGoogle ScholarPubMed
Tsien, R. Y. (1998). The green fluorescent protein. Annu Rev Biochem 67: 509–544.CrossRefGoogle ScholarPubMed
Wachter, R. M. (2007). Chromogenic cross-link formation in green fluorescent protein. Acc Chem Res 40: 120–127.CrossRefGoogle ScholarPubMed
Gross, L. A., Baird, G. S., Hoffman, R. C., Baldridge, K. K., Tsien, R. Y. (2000). The structure of the chromophore within DsRed, a red fluorescent protein from coral. Proc Natl Acad Sci U S A 97: 11990–11995.CrossRefGoogle ScholarPubMed
Zimmer, M. (2002). Green fluorescent protein (GFP): applications, structure, and related photophysical behavior. Chem Rev 102: 759–781.CrossRefGoogle ScholarPubMed
Campbell, R. E., Tour, O., Palmer, A. E., Steinbach, P. A., Baird, G. S., Zacharias, D. A., Tsien, R. Y. (2002). A monomeric red fluorescent protein. Proc Natl Acad Sci U S A 99: 7877–7882.CrossRefGoogle ScholarPubMed
Zacharias, D. A., Violin, J. D., Newton, A. C., Tsien, R. Y. (2002). Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells. Science 296: 913–916.CrossRefGoogle ScholarPubMed
Baird, G. S., Zacharias, D. A., Tsien, R. Y. (2000). Biochemistry, mutagenesis, and oligomerization of DsRed, a red fluorescent protein from coral. Proc Natl Acad Sci U S A 97: 11984–11989.CrossRefGoogle ScholarPubMed
Verkhusha, V. V., Lukyanov, K. A. (2004). The molecular properties and applications of Anthozoa fluorescent proteins and chromoproteins. Nat Biotechnol 22: 289–296.CrossRefGoogle ScholarPubMed
Zacharias, D. A., Tsien, R. Y. (2006). Molecular biology and mutation of green fluorescent protein. Methods Biochem Anal 47: 83–120.Google ScholarPubMed
Yarbrough, D., Wachter, R. M., Kallio, K., Matz, M. V., Remington, S. J. (2001). Refined crystal structure of DsRed, a red fluorescent protein from coral, at 2.0-A resolution. Proc Natl Acad Sci U S A 98: 462–467.CrossRefGoogle ScholarPubMed
Wall, M. A., Socolich, M., Ranganathan, R. (2000). The structural basis for red fluorescence in the tetrameric GFP homolog DsRed. Nat Struct Biol 7: 1133–1138.Google ScholarPubMed
Wiedenmann, J., Vallone, B., Renzi, F., Nienhaus, K., Ivanchenko, S., Rocker, C., Nienhaus, G. U. (2005). Red fluorescent protein eqFP611 and its genetically engineered dimeric variants. J Biomed Opt 10: 14003.CrossRefGoogle ScholarPubMed
Karasawa, S., Araki, T., Yamamoto-Hino, M., Miyawaki, A. (2003). A green-emitting fluorescent protein from Galaxeidae coral and its monomeric version for use in fluorescent labeling. J Biol Chem 278: 34167–34171.CrossRefGoogle ScholarPubMed
Karasawa, S., Araki, T., Nagai, T., Mizuno, H., Miyawaki, A. (2004). Cyan-emitting and orange-emitting fluorescent proteins as a donor/acceptor pair for fluorescence resonance energy transfer. Biochem J 381: 307–312.CrossRefGoogle ScholarPubMed
Wiedenmann, J., Ivanchenko, S., Oswald, F., Schmitt, F., Rocker, C., Salih, A., Spindler, K. D., Nienhaus, G. U. (2004). EosFP, a fluorescent marker protein with UV-inducible green-to-red fluorescence conversion. Proc Natl Acad Sci U S A 101: 15905–15910.CrossRefGoogle ScholarPubMed
Gurskaya, N. G., Verkhusha, V. V., Shcheglov, A. S., Staroverov, D. B., Chepurnykh, T. V., Fradkov, A. F., Lukyanov, S., Lukyanov, K. A. (2006). Engineering of a monomeric green-to-red photoactivatable fluorescent protein induced by blue light. Nat Biotechnol 24: 461–465.CrossRefGoogle ScholarPubMed
Ando, R., Mizuno, H., Miyawaki, A. (2004). Regulated fast nucleocytoplasmic shuttling observed by reversible protein highlighting. Science 306: 1370–1373.CrossRefGoogle ScholarPubMed
Ai, H.-w., Henderson, J. N., Remington, S. J., Campbell, R. E. (2006). Directed evolution of a monomeric, bright and photostable version of Clavularia cyan fluorescent protein: structural characterization and applications in fluorescence imaging. Biochem J 400: 531–540.CrossRefGoogle Scholar
Fradkov, A. F., Verkhusha, V. V., Staroverov, D. B., Bulina, M. E., Yanushevich, Y. G., Martynov, V. I., Lukyanov, S., Lukyanov, K. A. (2002). Far-red fluorescent tag for protein labelling. Biochem J 368: 17–21.CrossRefGoogle ScholarPubMed
Nienhaus, G. U., Nienhaus, K., Holzle, A., Ivanchenko, S., Renzi, F., Oswald, F., Wolff, M., Schmitt, F., Rocker, C., Vallone, B., Weidemann, W., Heilker, R., Nar, H., Wiedenmann, J. (2006). Photoconvertible fluorescent protein EosFP: biophysical properties and cell biology applications. Photochem Photobiol 82: 351–358.CrossRefGoogle ScholarPubMed
Gavin, P., Devenish, R. J., Prescott, M. (2002). An approach for reducing unwanted oligomerisation of DsRed fusion proteins. Biochem Biophys Res Commun 298: 707–713.CrossRefGoogle ScholarPubMed
Bulina, M. E., Verkhusha, V. V., Staroverov, D. B., Chudakov, D. M., Lukyanov, K. A. (2003). Hetero-oligomeric tagging diminishes non-specific aggregation of target proteins fused with anthozoa fluorescent proteins, Biochem J 371: 109–114.CrossRefGoogle ScholarPubMed
Yanushevich, Y. G., Staroverov, D. B., Savitsky, A. P., Fradkov, A. F., Gurskaya, N. G., Bulina, M. E., Lukyanov, K. A., Lukyanov, S. A. (2002). A strategy for the generation of non-aggregating mutants of Anthozoa fluorescent proteins. FEBS Lett 511: 11–14.CrossRefGoogle ScholarPubMed
Vinkenborg, J. L., Evers, T. H., Reulen, S. W., Meijer, E. W., Merkx, M. (2007). Enhanced sensitivity of FRET-based protease sensors by redesign of the GFP dimerization interface. Chembiochem 8: 1119–1121.CrossRefGoogle ScholarPubMed
Ohashi, T., Galiacy, S. D., Briscoe, G., Erickson, H. P. (2007). An experimental study of GFP-based FRET, with application to intrinsically unstructured proteins. Protein Sci 16: 1429–1438.CrossRefGoogle ScholarPubMed
Ghaemmaghami, S., Huh, W. K., Bower, K., Howson, R. W., Belle, A., Dephoure, N., O'Shea, E. K., Weissman, J. S. (2003). Global analysis of protein expression in yeast. Nature 425: 737–741.CrossRefGoogle ScholarPubMed
Wallrabe, H., Periasamy, A. (2005). Imaging protein molecules using FRET and FLIM microscopy. Curr Opin Biotechnol 16: 19–27.CrossRefGoogle ScholarPubMed
Millington, M., Grindlay, G. J., Altenbach, K., Neely, R. K., Kolch, W., Bencina, M., Read, N. D., Jones, A. C., Dryden, D. T., Magennis, S. W. (2007). High-precision FLIM-FRET in fixed and living cells reveals heterogeneity in a simple CFP-YFP fusion protein. Biophys Chem 127: 155–164.CrossRefGoogle Scholar
Rizzo, M. A., Springer, G. H., Granada, B., Piston, D. W. (2004). An improved cyan fluorescent protein variant useful for FRET. Nat. Biotechnol 22: 445–449.CrossRefGoogle ScholarPubMed
Shimomura, O. (1979). Structure of the chromophore of Aequorea green fluorescent protein. FEBS Lett 104: 220–222.CrossRefGoogle Scholar
Cormack, B. P., Valdivia, R. H., Falkow, S. (1996). FACS-optimized mutants of the green fluorescent protein (GFP). Gene 173: 33–38.CrossRefGoogle Scholar
Mena, M. A., Treynor, T. P., Mayo, S. L., Daugherty, P. S. (2006). Blue fluorescent proteins with enhanced brightness and photostability from a structurally targeted library. Nat Biotechnol 24: 1569–1571.CrossRefGoogle ScholarPubMed
Griesbeck, O., Baird, G. S., Campbell, R. E., Zacharias, D. A., Tsien, R. Y. (2001). Reducing the environmental sensitivity of yellow fluorescent protein. Mechanism and applications. J Biol Chem 276: 29188–29194.CrossRefGoogle ScholarPubMed
Shagin, D. A., Barsova, E. V., Yanushevich, Y. G., Fradkov, A. F., Lukyanov, K. A., Labas, Y. A., Semenova, T. N., Ugalde, J. A., Meyers, A., Nunez, J. M., Widder, E. A., Lukyanov, S. A., Matz, M. V. (2004). GFP-like proteins as ubiquitous metazoan superfamily: evolution of functional features and structural complexity. Mol Biol Evol 21: 841–850.CrossRefGoogle ScholarPubMed
Dai, M., Fisher, H. E., Temirov, J., Kiss, C., Phipps, M. E., Pavlik, P., Werner, J. H., Bradbury, A. R. (2007). The creation of a novel fluorescent protein by guided consensus engineering. Protein Eng Des Sel 20: 69–79.CrossRefGoogle ScholarPubMed
Treynor, T. P., Vizcarra, C. L., Nedelcu, D., Mayo, S. L. (2007). Computationally designed libraries of fluorescent proteins evaluated by preservation and diversity of function. Proc Natl Acad Sci U S A 104: 48–53.CrossRefGoogle ScholarPubMed
Remington, S. J. (2006). Fluorescent proteins: maturation, photochemistry and photophysics. Curr Opin Struct Biol 16: 714–721.CrossRefGoogle ScholarPubMed
Cubitt, A. B., Woollenweber, L. A., Heim, R. (1999). Understanding structure-function relationships in the Aequorea victoria green fluorescent protein. Methods Cell Biol 58: 19–30.CrossRefGoogle ScholarPubMed
Stephens, D. J., Allan, V. J. (2003). Light microscopy techniques for live cell imaging. Science 300: 82–86.CrossRefGoogle ScholarPubMed
Khodjakov, A., Rieder, C. L. (2006). Imaging the division process in living tissue culture cells. Methods 38: 2–16.CrossRefGoogle ScholarPubMed
Subach, O. M., Gundorov, I. S., Yoshimura, M., Subach, F. V., Zhang, J. H., Gruenwald, D., Souslova, E. A., Chudakov, D. M., Verkhusha, V. V. (2008). Conversion of red fluorescent protein into a bright blue probe. Chem Biol 59: 1116–1124.CrossRefGoogle Scholar
Miyawaki, A., Llopis, J., Heim, R., McCaffery, J. M., Adams, J. A., Ikura, M., Tsien, R. Y. (1997). Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 388: 882–887.CrossRefGoogle ScholarPubMed
Day, R. N., Booker, C. F., Periasamy, A. (2008). The characterization of an improved donor fluorescent protein for Förster resonance energy transfer microscopy. J Biomed Optics.CrossRefGoogle ScholarPubMed
Rizzo, M. A., Piston, D. W. (2005). High-contrast imaging of fluorescent protein FRET by fluorescence polarization microscopy. Biophys J 88: L14–L16.CrossRefGoogle ScholarPubMed
Kremers, G. J., Goedhart, J., Munster, E. B., Gadella, T. W. (2006). Cyan and yellow super fluorescent proteins with improved brightness, protein folding, and FRET Forster radius. Biochemistry 45: 6570–6580.CrossRefGoogle ScholarPubMed
Richards, B., Zharkikh, L., Hsu, F., Dunn, C., Kamb, A., Teng, D. H. (2002). Stable expression of Anthozoa fluorescent proteins in mammalian cells. Cytometry 48: 106–112.CrossRefGoogle ScholarPubMed
Luo, W. X., Cheng, T., Guan, B. Q., Li, S. W., Miao, J., Zhang, J., Xia, N. S. (2006). Variants of green fluorescent protein GFPxm. Mar Biotechnol 8: 560–566.CrossRefGoogle ScholarPubMed
Ai, H.-w., Olenych, S. G., Wong, P., Davidson, M. W., Campbell, R. E. (2008). Hue-shifted monomeric variants of Clavularia cyan fluorescent protein: identification of the molecular determinants of color and applications in fluorescence imaging. BMC Biol 6: 13.CrossRefGoogle ScholarPubMed
Cormier, M. J., Eckroade, C. B. (1962). Studies on the bioluminescence of Renilla reniformis. III. Some biochemical comparisons of the system to other Renilla species and determinations of the spectral energy distributions. Biochim Biophys Acta 64: 340–344.CrossRefGoogle ScholarPubMed
Miyawaki, A. (2002). Green fluorescent protein-like proteins in reef Anthozoa animals. Cell Struct Funct 27: 343–347.CrossRefGoogle ScholarPubMed
Cornea, A., Conn, P. M. (2002). Measurement of changes in fluorescence resonance energy transfer between gonadotropin-releasing hormone receptors in response to agonists. Methods 27: 333–339.CrossRefGoogle ScholarPubMed
Sturman, D. A., Shakiryanova, D., Hewes, R. S., Deitcher, D. L., Levitan, E. S. (2006). Nearly neutral secretory vesicles in Drosophila nerve terminals. Biophys J 90: L45–47.CrossRefGoogle ScholarPubMed
Tavare, J. M., Fletcher, L. M., Welsh, G. I. (2001). Using green fluorescent protein to study intracellular signalling. J Endocrinol 170: 297–306.CrossRefGoogle ScholarPubMed
Gurskaya, N. G., Savitsky, A. P., Yanushevich, Y. G., Lukyanov, S. A., Lukyanov, K. A. (2001). Color transitions in coral's fluorescent proteins by site-directed mutagenesis. BMC Biochem 2: 6.CrossRefGoogle ScholarPubMed
Sakaue-Sawano, A., Kurokawa, H., Morimura, T., Hanyu, A., Hama, H., Osawa, H., Kashiwagi, S., Fukami, K., Miyata, T., Miyoshi, H., Imamura, T., Ogawa, M., Masai, H., Miyawaki, A. (2008). Visualizing spatiotemporal dynamics of multicellular cell-cycle progression. Cell 132: 487–498.CrossRefGoogle ScholarPubMed
Shaner, N. C., Lin, M. Z., McKeown, M. R., Steinbach, P. A., Hazelwood, K. L., Davidson, M. W., Tsien, R. Y. (2008). Improving the photostability of bright monomeric orange and red fluorescent proteins. Nat Methods 5: 545–551.CrossRefGoogle ScholarPubMed
Ip, D. T., Chan, S. H., Allen, M. D., Bycroft, M., Wan, D. C., Wong, K. B. (2004). Crystallization and preliminary crystallographic analysis of a novel orange fluorescent protein from the Cnidaria tube anemone Cerianthus sp. Acta Crystallogr D Biol Crystallogr 60: 340–341.CrossRefGoogle ScholarPubMed
Rizzo, M. A., Piston, D. W. (2005). Fluorescent protein tracking and detection. In: Goldman, R. D. & Spector, D. L. (Eds.), Live Cell Imaging: A Laboratory Manual. Cold Spring Harbor Laboratory Press: Cold Spring Harbor: 3–23.Google Scholar
Merzlyak, E. M., Goedhart, J., Shcherbo, D., Bulina, M. E., Shcheglov, A. S., Fradkov, A. F., Gaintzeva, A., Lukyanov, K. A., Lukyanov, S., Gadella, T. W., Chudakov, D. M. (2007). Bright monomeric red fluorescent protein with an extended fluorescence lifetime. Nat Methods 4: 555–557.CrossRefGoogle ScholarPubMed
Patterson, G. H. (2004). A new harvest of fluorescent proteins. Nat Biotechnol 22: 1524–1525.CrossRefGoogle ScholarPubMed
Tsien, R. Y. (2005). Building and breeding molecules to spy on cells and tumors. FEBS Lett 579: 927–932.CrossRefGoogle ScholarPubMed
Wang, C. L., Yang, D. C., Wabl, M. (2004). Directed molecular evolution by somatic hypermutation. Protein Eng Des Sel 17: 659–664.CrossRefGoogle ScholarPubMed
Shkrob, M. A., Yanushevich, Y. G., Chudakov, D. M., Gurskaya, N. G., Labas, Y. A., Poponov, S. Y., Mudrik, N. N., Lukyanov, S., Lukyanov, K. A. (2005). Far-red fluorescent proteins evolved from a blue chromoprotein from Actinia equina. Biochem J 392: 649–654.CrossRefGoogle ScholarPubMed
Gurskaya, N. G., Fradkov, A. F., Terskikh, A., Matz, M. V., Labas, Y. A., Martynov, V. I., Yanushevich, Y. G., Lukyanov, K. A., Lukyanov, S. A. (2001). GFP-like chromoproteins as a source of far-red fluorescent proteins. FEBS Lett 507: 16–20.CrossRefGoogle ScholarPubMed
Wiedenmann, J., Schenk, A., Rocker, C., Girod, A., Spindler, K. D., Nienhaus, G. U. (2002). A far-red fluorescent protein with fast maturation and reduced oligomerization tendency from Entacmaea quadricolor (Anthozoa, Actinaria). Proc Natl Acad Sci U S A 99: 11646–11651.CrossRefGoogle Scholar
Schenk, A., Ivanchenko, S., Rocker, C., Wiedenmann, J., Nienhaus, G. U. (2004). Photodynamics of red fluorescent proteins studied by fluorescence correlation spectroscopy. Biophys J 86: 384–394.CrossRefGoogle ScholarPubMed
Kredel, S., Oswald, F., Nienhaus, K., Deuschle, K., Rocker, C., Wolff, M., Heilker, R., Nienhaus, G. U., Wiedenmann, J. (2009). A monomeric eqFP611 variant for labeling of subcellular structures. PLoS ONE3.Google ScholarPubMed
Lukyanov, K. A., Fradkov, A. F., Gurskaya, N. G., Matz, M. V., Labas, Y. A., Savitsky, A. P., Markelov, M. L., Zaraisky, A. G., Zhao, X., Fang, Y., Tan, W., Lukyanov, S. A. (2000). Natural animal coloration can be determined by a nonfluorescent green fluorescent protein homolog. J Biol Chem 275: 25879–25882.CrossRefGoogle ScholarPubMed
Shcherbo, D., Merzlyak, E. M., Chepurnykh, T. V., Fradkov, A. F., Ermakova, G. V., Solovieva, E. A., Lukyanov, K. A., Bogdanova, E. A., Zaraisky, A. G., Lukyanov, S., Chudakov, D. M. (2007). Bright far-red fluorescent protein for whole-body imaging. Nat Methods 4: 741–746.CrossRefGoogle ScholarPubMed
Lukyanov, K. A., Chudakov, D. M., Lukyanov, S., Verkhusha, V. V. (2005). Innovation: Photoactivatable fluorescent proteins. Nat Rev Mol Cell Biol 6: 885–891.CrossRefGoogle ScholarPubMed
Ando, R., Hama, H., Yamamoto-Hino, M., Mizuno, H., Miyawaki, A. (2002). An optical marker based on the UV-induced green-to-red photoconversion of a fluorescent protein. Proc Natl Acad Sci U S A 99: 12651–12656.CrossRefGoogle ScholarPubMed
Patterson, G. H., Lippincott-Schwartz, J. (2002). A photoactivatable GFP for selective photolabeling of proteins and cells. Science 297: 1873–1877.CrossRefGoogle ScholarPubMed
Chudakov, D. M., Belousov, V. V., Zaraisky, A. G., Novoselov, V. V., Staroverov, D. B., Zorov, D. B., Lukyanov, S., Lukyanov, K. A. (2003). Kindling fluorescent proteins for precise in vivo photolabeling. Nat Biotechnol 21: 191–194.CrossRefGoogle ScholarPubMed
Betzig, E., Patterson, G. H., Sougrat, R., Lindwasser, O. W., Olenych, S., Bonifacino, J. S., Davidson, M. W., Lippincott-Schwartz, J., Hess, H. F. (2006). Imaging intracellular fluorescent proteins at nanometer resolution. Science 313: 1642–1645.CrossRefGoogle ScholarPubMed
Schwentker, M. A., Bock, H., Hofmann, M., Jakobs, S., Bewersdorf, J., Eggeling, C., Hell, S. W. (2007). Wide-field subdiffraction RESOLFT microscopy using fluorescent protein photoswitching. Microsc Res Tech 70: 269–280.CrossRefGoogle ScholarPubMed
Verkhusha, V. V., Sorkin, A. (2005). Conversion of the monomeric red fluorescent protein into a photoactivatable probe. Chem Biol 12: 279–285.CrossRefGoogle ScholarPubMed
Chudakov, D. M., Verkhusha, V. V., Staroverov, D. B., Souslova, E. A., Lukyanov, S., Lukyanov, K. A. (2004). Photoswitchable cyan fluorescent protein for protein tracking. Nat Biotechnol 22: 1435–1439.CrossRefGoogle ScholarPubMed
Tsutsui, H., Karasawa, S., Shimizu, H., Nukina, N., Miyawaki, A. (2005). Semi-rational engineering of a coral fluorescent protein into an efficient highlighter. EMBO Rep 6: 233–238.CrossRefGoogle ScholarPubMed
Ivanchenko, S., Rocker, C., Oswald, F., Wiedenmann, J., Nienhaus, G. U. (2005). Targeted green-red photoconversion of EosFP, a fluorescent marker protein. J Biol Phys 31: 249–259.CrossRefGoogle ScholarPubMed
Habuchi, S., Tsutsui, H., Kochaniak, A. B., Miyawaki, A., Oijen, A. M. (2008). mKikGR, a monomeric photoswitchable fluorescent protein. PLoS ONE 3: e3944.CrossRefGoogle ScholarPubMed
McKinney, S. A., Murphy, C. S., Hazelwood, K. L., Davidson, M. W., Looger, L. L. (2008). A bright and photostable photoconvertible fluorescent protein for fusion tags. Nature Meth6.Google Scholar
Mizuno, H., Mal, T. K., Tong, K. I., Ando, R., Furuta, T., Ikura, M., Miyawaki, A. Photo-induced peptide cleavage in the green-to-red conversion of a fluorescent protein. Mol Cell12: 1051–1058.
Nienhaus, K., Nienhaus, G. U., Wiedenmann, J., Nar, H. (2005). Structural basis for photo-induced protein cleavage and green-to-red conversion of fluorescent protein EosFP. Proc Natl Acad Sci U S A 102: 9156–9159.CrossRefGoogle ScholarPubMed
Cinelli, R. A. G., Pellegrini, V., Ferrari, A., Faraci, P., Nifosi, R., Tyagi, M., Giacca, M., Beltram, F. (2001). Green fluorescent proteins as optically controllable elements in bioelectronics. Appl Phys Lett 79: 3353–3355.CrossRefGoogle Scholar
McAnaney, T. B., Zeng, W., Doe, C. F. E., Bhanji, N., Wakelin, S., Pearson, D. S., Abbyad, P., Shi, X. H., Boxer, S. G., Bagshaw, C. R. (2005). Protonation, photobleaching, and photoactivation of yellow fluorescent protein (YFP 10C): A unifying mechanism. Biochemistry 44: 5510–5524.CrossRefGoogle ScholarPubMed
Dickson, R. M., Cubitt, A. B., Tsien, R. Y., Moerner, W. E. (1997). On/off blinking and switching behaviour of single molecules of green fluorescent protein. Nature 388: 355–358.CrossRefGoogle ScholarPubMed
Habuchi, S., Cotlet, M., Gensch, T., Bednarz, T., Haber-Pohlmeier, S., Rozenski, J., Dirix, G., Michiels, J., Vanderleyden, J., Heberle, J., Schryver, F. C., Hofkens, J. (2005). Evidence for the isomerization and decarboxylation in the photoconversion of the red fluorescent protein DsRed. J Am Chem Soc 127: 8977–8984.CrossRefGoogle ScholarPubMed
Chudakov, D. M., Feofanov, A. V., Mudrik, N. N., Lukyanov, S., Lukyanov, K. A. (2003). Chromophore environment provides clue to “kindling fluorescent protein” riddle. J Biol Chem 278: 7215–7219.CrossRefGoogle ScholarPubMed
Andresen, M., Wahl, M. C., Stiel, A. C., Grater, F., Schafer, L. V., Trowitzsch, S., Weber, G., Eggeling, C., Grubmuller, H., Hell, S. W., Jakobs, S. (2005). Structure and mechanism of the reversible photoswitch of a fluorescent protein. Proc Natl Acad Sci U S A 102: 13070–13074.CrossRefGoogle ScholarPubMed
Andresen, M., Stiel, A. C., Trowitzsch, S., Weber, G., Eggeling, C., Wahl, M. C., Hell, S. W., Jakobs, S. (2007). Structural basis for reversible photoswitching in Dronpa. Proc Natl Acad Sci U S A 104: 13005–13009.CrossRefGoogle ScholarPubMed
Henderson, J. N., Remington, S. J. (2006). The kindling fluorescent protein: a transient photoswitchable marker. Physiology (Bethesda) 21: 162–170.Google ScholarPubMed
Stiel, A. C., Trowitzsch, S., Weber, G., Andresen, M., Eggeling, C., Hell, S. W., Jakobs, S., Wahl, M. C. (2007). 1.8 A bright-state structure of the reversibly switchable fluorescent protein Dronpa guides the generation of fast switching variants. Biochem J 402: 35–42.CrossRefGoogle ScholarPubMed
Baird, G. S., Zacharias, D. A., Tsien, R. Y. (1999). Circular permutation and receptor insertion within green fluorescent proteins. Proc Natl Acad Sci U S A 96: 11241–11246.CrossRefGoogle ScholarPubMed
Topell, S., Hennecke, J., Glockshuber, R. (1999). Circularly permuted variants of the green fluorescent protein. FEBS Lett 457: 283–289.CrossRefGoogle ScholarPubMed
Kozak, M. (1987). An analysis of 5'-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res 15: 8125–8148.CrossRefGoogle ScholarPubMed
Fernandez-Suarez, M., Ting, A. Y. (2008). Fluorescent probes for super-resolution imaging in living cells. Nat Rev Mol Cell Biol 9: 929–943.CrossRefGoogle ScholarPubMed
Lippincott-Schwartz, J., Manley, S. (2009). Putting super-resolution fluorescence microscopy to work. Nat Methods 6: 21–23.CrossRefGoogle ScholarPubMed
Seefeldt, B., Kasper, R., Seidel, T., Tinnefeld, P., Dietz, K. J., Heilemann, M., Sauer, M. (2008). Fluorescent proteins for single-molecule fluorescence applications. J Biophoton 1: 74–82.CrossRefGoogle ScholarPubMed
Douglass, A. D., Vale, R. D. (2008). Single-molecule imaging of fluorescent proteins. Methods Cell Biol 85: 113–125.CrossRefGoogle ScholarPubMed
Miyawaki, A. (2005). Innovations in the imaging of brain functions using fluorescent proteins. Neuron 48: 189–199.CrossRefGoogle ScholarPubMed
Querido, E., Chartrand, P. (2008). Using fluorescent proteins to study mRNA trafficking in living cells. Methods Cell Biol 85: 273–292.CrossRefGoogle ScholarPubMed
Dahm, R., Zeitelhofer, M., Gotze, B., Kiebler, M. A., Macchi, P. (2008). Visualizing mRNA localization and local protein translation in neurons. Methods Cell Biol 85: 293–327.CrossRefGoogle ScholarPubMed
Piston, D. W., Kremers, G. J. (2007). Fluorescent protein FRET: the good, the bad and the ugly. Trends Biochem Sci 32: 407–414.CrossRefGoogle ScholarPubMed
Miyawaki, A. (2003). Visualization of the spatial and temporal dynamics of intracellular signaling. Dev Cell 4: 295–305.CrossRefGoogle ScholarPubMed
Lalonde, S., Ehrhardt, D. W., Frommer, W. B. (2005). Shining light on signaling and metabolic networks by genetically encoded biosensors. Curr Opin Plant Biol 8: 574–581.CrossRefGoogle ScholarPubMed
Ciruela, F. (2008). Fluorescence-based methods in the study of protein-protein interactions in living cells. Curr Opin Biotechnol 19: 338–343.CrossRefGoogle Scholar
Pfleger, K. D. G., Eidne, K. A. (2006). Illuminating insights into protein-protein interactions using bioluminescence resonance energy transfer (BRET). Nat Methods 3: 165–174.CrossRefGoogle Scholar
Xu, X. D., Soutto, M., Xie, Q., Servick, S., Subramanian, C., von Arnim, A. G., Johnson, C. H. (2007). Imaging protein interactions with bioluminescence resonance energy transfer (BRET) in plant and mammalian cells and tissues. Proc Natl Acad Sci U S A 104: 10264–10269.CrossRefGoogle ScholarPubMed
Dixit, R., Cyr, R., Gilroy, S. (2006). Using intrinsically fluorescent proteins for plant cell imaging. Plant J 45: 599–615.CrossRefGoogle ScholarPubMed
Mathur, J. (2007). The illuminated plant cell. Trends Plant Sci 12: 506–513.CrossRefGoogle ScholarPubMed
Haseloff, J., Siemering, K. R. (2006). The uses of green fluorescent protein in plants. Methods Biochem Anal 47: 259–284.Google ScholarPubMed
Kerppola, T. K. (2006). Visualization of molecular interactions by fluorescence complementation. Nat Rev Mol Cell Biol 7: 449–456.CrossRefGoogle ScholarPubMed
Kerppola, T. K. (2008). Biomolecular fluorescence complementation (BiFC) analysis as a probe of protein interactions in living cells. Annu Rev Biophys 37: 465–487.CrossRefGoogle Scholar
Langowski, J. (2008). Protein-protein interactions determined by fluorescence correlation spectroscopy. Methods Cell Biol 85: 471–484.CrossRefGoogle ScholarPubMed
Hoffman, R. M., Yang, M. (2006). Whole-body imaging with fluorescent proteins. Nat Protoc 1: 1429–1438.CrossRefGoogle ScholarPubMed
Barth, A. L. (2007). Visualizing circuits and systems using transgenic reporters of neural activity. Curr Opin Neurobiol 17: 567–571.CrossRefGoogle ScholarPubMed
Hadjantonakis, A. K., Dickinson, M. E., Fraser, S. E., Papaioannou, V. E. (2003). Technicolour transgenics: Imaging tools for functional genomics in the mouse. Nat Rev Genet 4: 613–625.CrossRefGoogle ScholarPubMed
Michnick, S. W., Ear, P. H., Manderson, E. N., Remy, I., Stefan, E. (2007). Universal strategies in research and drug discovery based on protein-fragment complementation assays. Nat Rev Drug Discov 6: 569–582.CrossRefGoogle ScholarPubMed
Wolff, M., Wiedenmann, J., Nienhaus, G. U., Valler, M., Heilker, R. (2006). Novel fluorescent proteins for high-content screening. Drug Discov Today 11: 1054–1060.CrossRefGoogle ScholarPubMed
Gaietta, G. M., Giepmans, B. N. G., Deerinck, T. J., Smith, W. B., Ngan, L., Llopis, J., Adams, S. R., Tsien, R. Y., Ellisman, M. H. (2006). Golgi twins in late mitosis revealed by genetically encoded tags for live cell imaging and correlated electron microscopy. Proc Natl Acad Sci U S A 103: 17777–17782.CrossRefGoogle ScholarPubMed
Chapman, S., Faulkner, C., Kaiserli, E., Garcia-Mata, C., Savenkov, E. I., Roberts, A. G., Oparka, K. J., Christie, J. M. (2008). The photoreversible fluorescent protein iLOV outperforms GFP as a reporter of plant virus infection. Proc Natl Acad Sci U S A 105: 20038–20043.CrossRefGoogle ScholarPubMed
Berndt, A., Yizhar, O., Gunaydin, L. A., Hegemann, P., Deisseroth, K. (2008). Bi-stable neural state switches. Nat Neurosci 12(2) 229–234.CrossRefGoogle ScholarPubMed
Sluder, G., Wolf, D. W. (Eds.) (2007). Digital Microscopy, 3rd ed., Elsevier: New York.
Shorte, S. L., Frischknecht, F. (Eds.) (2007). Imaging Cellular and Molecular Biological Functions. Springer-Verlag: Berlin.CrossRef
Tsien, R. Y. (2003). Imagining imaging's future. Nat Rev Mol Cell Biol: Ss16–Ss21.Google ScholarPubMed
Cubitt, A. B., Heim, R., Adams, S. R., Boyd, A. E., Gross, L. A., Tsien, R. Y. (1995). Understanding, improving and using green fluorescent proteins. Trends Biochem Sci 20: 448–455.CrossRefGoogle ScholarPubMed
Miyawaki, A., Griesbeck, O., Heim, R., Tsien, R. Y. (1999). Dynamic and quantitative Ca2+ measurements using improved cameleons. Proc Natl Acad Sci U S A 96: 2135–2140.CrossRefGoogle ScholarPubMed
Ai, H.-w., Hazelwood, K. L., Davidson, M. W., Campbell, R. E. (2008). Fluorescent protein FRET pairs for ratiometric imaging of dual biosensors. Nat Methods 5: 401–403.CrossRefGoogle ScholarPubMed
Bevis, B. J., Glick, B. S. (2002). Rapidly maturing variants of the Discosoma red fluorescent protein (DsRed). Nat Biotechnol 20: 83–87.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×