Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-19T15:29:34.059Z Has data issue: false hasContentIssue false

4 - Noninvasive Imaging of Gene Expression with Magnetic Resonance Imaging and Magnetic Resonance Spectroscopy

Published online by Cambridge University Press:  07 September 2010

Sanjiv Sam Gambhir
Affiliation:
Stanford University School of Medicine, California
Shahriar S. Yaghoubi
Affiliation:
Stanford University School of Medicine, California
Get access

Summary

INTRODUCTION

Magnetic resonance imaging (MRI) has developed from an intriguing research project initially conceived in 1973 to an essential diagnostic method in the armamentarium of clinical radiologists. An estimated 26.6 million MRI procedures were performed in 2006 in the United States that generated approximately $20 billion in service revenue. The demand for clinical MRI diagnoses is expected to increase by 30% by 2020. This projected growth is due in part to the rising prevalence of age-related pathologies of soft tissues that can be conveniently monitored with MRI, such as the anatomy of pathologies in the cardiopulmonary system (e.g., regions of myocardial infarcts), neurological system (e.g., regions of cerebral infarcts, morphological changes during multiple sclerosis), and musculoskeletal system (e.g., tears in ligaments, tendons, and cartilage). MRI offers advantages relative to optical imaging methods limited to making diagnoses only near tissue surfaces, and relative to PET, SPECT, CT, and X-ray imaging methods that use potentially harmful ionizing radiation. Unlike these other imaging modalities, MRI also provides excellent spatial resolution at or smaller than 1 mm3 for clinical diagnostics and approaching 0.1 mm3 for small-animal research studies. MRI can also assess physiological function, such as the function of the cardiopulmonary system (e.g., MR angiography of vasculature), neurological system (e.g., fMRI of brain activity), renal system (e.g., perfusion imaging of kidney function), musculoskeletal system (e.g., MR elastography of connective tissues), and cancer lesions (e.g., dynamic contrast enhancement MRI of angiogenic tumors).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Lauterbur, P. C. (1973). Image formation by induced local interactions: Examples employing nuclear magnetic resonance. Nature 242: 190–191.CrossRefGoogle Scholar
2006 MRI Market Summary Report. (2007). IMV International: Des Plaines, Ill.
Ahrens, E. T., Rothbacher, U., Jacobs, R. E., Fraser, S. E. (1998). A model for MRI contrast enhancement using T1 agents. Proc Nat Acad Sci USA 95(15): 8443–8448.CrossRefGoogle ScholarPubMed
Mills, P. H., Ahrens, E. T. (2007). Theoretical MRI contrast model for exogenous T2 agents. Magn Res Med 57(2): 442–447.CrossRefGoogle ScholarPubMed
Massoud, T. F., Gambhir, S. S. (2003). Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes & Dev 17: 545–580.CrossRefGoogle Scholar
Weissleder, R., Mahmood, U. (2001). Molecular imaging. Radiology 219: 316–333.CrossRefGoogle ScholarPubMed
Bloch, F., Hansen, W. W., Packard, M. (1946). The nuclear induction experiment. Phys Rev 70: 474–485.CrossRefGoogle Scholar
Purcell, E.M., Torrey, H. C., Pound, R. V. (1946). Resonance absorption by nuclear magnetic moments in a solid. Phys Rev 69: 37–38.CrossRefGoogle Scholar
Abragam, A. (1961). Principles of Nuclear Magnetism. Oxford University Press: New York.Google Scholar
Schlicter, C. P. (1978). Principles of Magnetic Resonance. Springer-Verlag: New York.CrossRefGoogle Scholar
Conradi, M. S., Saam, B. T., Yablonsky, D. A., Woods, J. C. (2006). Hyperpolarized 3He and perfluorocarbon gas diffusion MRI of lungs. Prog NMR Spect 48: 63–83.CrossRefGoogle Scholar
Mansson, S., Johansson, E., Magnusson, P., Chai, C.-M., Hansson, G., Petersson, J. S., Stahlberg, F., Golman, K. (2006). 13C imaging – a new diagnostic platform. Eur Radiol 16: 57–67.CrossRefGoogle ScholarPubMed
Wu, X. (2003). Optical pumping and hyperpolarized spin relaxation. Proceedings of SPIE-The International Society for Optical Engineering (Photonics and Imaging in Biology and Medicine) 5254: 97–107.
Golman, K., Olsson, L. E., Axelsson, O., Mansson, S., Karlsson, M., Petersson, J. S. (2003). Molecular imaging using hyperpolarized 13C. Brit J Radiol 76(Spec. Iss. 2): S118–S127.CrossRefGoogle ScholarPubMed
Hersman, F. W., Ruset, I. C., Ketel, S., Muradian, I., Covrig Silviu, D., Distelbrink, J., Porter, W., Watt, D., Ketel, J., Brackett, J., Hope, A., Patz, S. (2008). Large production system for hyperpolarized 129Xe for human lung imaging studies. Acad Radiol 15(6): 683–692.CrossRefGoogle ScholarPubMed
Mansson, S., Johansson, E., Magnusson, P., Chai, C.-M., Hansson, G., Petersson, J. S., Stahlberg, F., Golman, K. (2006). 13C imaging – a new diagnostic platform. European Radiol 16(1): 57–67.CrossRefGoogle ScholarPubMed
Dugas, J. P., Garbow, J. R., Kobayashi, D. K., Conradi, M. S. (2004). Hyperpolarized 3He MRI of mouse lung. Magn Reson Med 52(6): 1310–1317.CrossRefGoogle Scholar
Beek, E. J. R., Wild, J. M., Kauczor, H.-U., Schreiber, W., Mugler, J. P., Lange, E. E. (2004). Functional MRI of the lung using hyperpolarized 3-helium gas. J Magn Reson Imaging 20(4): 540–554.CrossRefGoogle ScholarPubMed
Driehuyst, B., Cofer, G. P., Pollaro, J., Mackel, J. B., Hedlund, L. W., Johnson, G. A. (2006). Imaging alveolar-capillary gas transfer using hyperpolarized 129Xe MRI. Proc Nat Acad Sci USA 103(48): 18278–18283.CrossRefGoogle Scholar
Johansson, E., Mansson, S., Wirestam, R., Svensson, J., Petersson, J. S., Golman, K., Stahlberg, F. (2004). Cerebral perfusion assessment by bolus tracking using hyperpolarized 13C. Magn Reson Med 51(3): 464–472.CrossRefGoogle ScholarPubMed
Olsson, L. E., Chai, C.-M., Axelsson, O., Karlsson, M., Golman, K., Petersson, J. S. (2006). MR coronary angiography in pigs with intraarterial injections of a hyperpolarized 13C substance. Magn Reson Med 55(4): 731–737.CrossRefGoogle ScholarPubMed
Ishii, M., Emami, K., Kadlecek, S., Petersson, J. S., Golman, K., Vahdat, V., Yu, J., Cadman, R. V., MacDuffie-Woodburn, J., Stephen, M., Lipson, D. A., Rizi, R. R. (2007). Hyperpolarized 13C MRI of the pulmonary vasculature and parenchyma. Magn Reson Med 57(3): 459–463.CrossRefGoogle ScholarPubMed
Golman, K., Petersson, J. S., Magnusson, P., Johansson, E., Aakeson, P., Chai, C.-M., Hansson, G., Maansson, S. (2008). Cardiac metabolism measured noninvasively by hyperpolarized 13C MRI. Magn Reson Med 59(5): 1005–1013.CrossRefGoogle ScholarPubMed
Schroeder, M. A., Cochlin, L. E., Heather, L. C., Clarke, K., Radda, G. K., Tyler, D. J. (2008). In vivo assessment of pyruvate dehydrogenase flux in the heart using hyperpolarized carbon-13 magnetic resonance. Proc Nat Acad Sci USA 105(33): 12051–12056.CrossRefGoogle ScholarPubMed
Golman, K., in't Zandt, R., Lerche, M., Pehrson, R., Ardenkjaer-Larsen, J. H. (2006). Metabolic imaging by hyperpolarized 13C magnetic resonance imaging for in vivo tumor diagnosis. Cancer Res 66(22): 10855–10860.CrossRefGoogle ScholarPubMed
Chen, A. P., Albers, M. J., Cunningham, C. H., Kohler, S. J., Yen, Y-F., Hurd, R. E., Tropp, J., Bok, R., Pauly, J. M., Nelson, S. J., Kurhanewicz, J., Vigneron, D. B. (2007). Hyperpolarized C-13 spectroscopic imaging of the TRAMP mouse at 3T-initial experience. Magn Reson Med 58(6): 1099–1106.CrossRefGoogle ScholarPubMed
Day, S. E., Kettunen, M. I., Gallagher, F. A., Hu, D.-E., Lerche, M., Wolber, J., Golman, K., Ardenkjaer-Larsen, J. H., Brindle, K. M. (2007). Detecting tumor response to treatment using hyperpolarized 13C magnetic resonance imaging and spectroscopy. Nature Med 13(11): 1382–1387.CrossRefGoogle ScholarPubMed
Gallagher, F. A., Kettunen, M. I., Day, S. E., Lerche, M., Brindle, K. M. (2008). 13C MR spectroscopy measurements of glutaminase activity in human hepatocellular carcinoma cells using hyperpolarized 13C-labeled glutamine. Magn Reson Med 60(2): 253–257.CrossRefGoogle ScholarPubMed
Wei, Q., Seward, G. K., Hill, P. A., Patton, B., Dimitrov, I. E., Kuzma, N. N., Dmochowski, I. J. (2006). Designing 129Xe NMR biosensors for matrix metalloproteinase detection. J Am Chem Soc 128(40): 13274–13283.CrossRefGoogle ScholarPubMed
Schroder, L., Lowery, T. J., Hilty, C., Wemmer, D. E., Pines, A. (2006). Molecular imaging using a targeted magnetic resonance hyperpolarized biosensor. Science 314: 446–449.CrossRefGoogle ScholarPubMed
Haacke, E. M., Brown, R. W., Thompson, M. R., Venkatesan, R. (1999). Magnetic Resonance Imaging: Physical Principles and Sequence Design. John Wiley & Sons: New York.Google Scholar
Ward, K. M., Aletras, A. H., Balaban, R. S. (2000). A new class of contrast agents for MRI based on proton chemical exchange dependent saturation transfer (CEST). J Magn Reson 143: 79–87.CrossRefGoogle Scholar
Woessner, D. E., Zhang, S., Merritt, M. E., Sherry, A. D. (2005). Numerical solutions of the bloch equations provides insights into the optimum design of PARACEST agents for MRI. Magn Reson Med 53: 790–799.CrossRefGoogle ScholarPubMed
Zijl, P. C. M., Jones, C. K., Ren, J., Malloy, C. R., Sherry, A. D. (2007). MRI detection of glycogen in vivo by using chemical exchange saturation transfer imaging (glycoCEST). Proc Nat Acad Sci USA 104(11): 4359–4364.CrossRefGoogle Scholar
Ward, K. M., Balaban, R. S. (2000). Determination of pH using water protons and chemical exchange dependent saturation transfer. Magn Reson Med 44: 799–802.3.0.CO;2-S>CrossRefGoogle ScholarPubMed
Zijl, P. C. M., Duyn, J. H., Bryant, L. H., Bulte, J. W. M. (2003). The use of starburst dendrimers as pH contrast agents. Proc Int Soc Magn Reson Med 9: 878.Google Scholar
Zhang, S., Winter, P., Wu, K., Sherry, A. D. (2001). A novel europium(III)-based MRI contrast agent. J Am Chem Soc 123: 1517–1518.CrossRefGoogle ScholarPubMed
Zhang, S., Merritt, M., Woessner, D. E., Lenkinski, R. E., Sherry, A. D. (2003). PARACEST agents: modulating MRI contrast via water proton exchange. Acc Chem Res 36: 783–790.CrossRefGoogle ScholarPubMed
Yoo, B., Pagel, M. D. (2006). A PARACEST MRI contrast agent to detect enzyme activity. J Am Chem Soc 128: 14302–14303.CrossRefGoogle ScholarPubMed
Zhang, S., Trokowski, R., Sherry, A. D. (2003). A paramagnetic CEST agent for imaging glucose by MRI. J Am Chem Soc 125(50): 15288–15289.CrossRefGoogle ScholarPubMed
Trokowski, R., Zhang, S., Sherry, A. D. (2004). Cyclen-based phenylborate ligands and their Eu3+ complexes for sensing glucose by MRI. Bioconj Chem 15: 1431–1440.CrossRefGoogle Scholar
Aime, S., Castelli, D. D., Fedeli, F., Terreno, E. (2002). A paramagnetic MRI-CEST agent responsive to lactate concentration. J Am Chem Soc 124: 9364–9365.CrossRefGoogle ScholarPubMed
Trokowski, R., Ren, J., Kalman, F. K., Sherry, A. D. (2005). Selective sensing of zinc ions with a PARACEST contrast agent. Angew Chem Int Ed 44: 6920–6923.CrossRefGoogle ScholarPubMed
Zhang, S., Malloy, C. R., Sherry, A. D. (2005). MRI thermometry based on PARACEST agents. J Am Chem Soc 127: 17572–17573.CrossRefGoogle ScholarPubMed
Artemov, D. (2003). Molecular magnetic resonance imaging with targeted contrast agents. J Cell Biochem 90: 518–524.CrossRefGoogle ScholarPubMed
Heckl, S., Piplorn, R., Waldeck, W., Spring, H., Jenne, J., der Lieth, C-W., Corban-Wilhelm, H., Debus, J., Braun, K. (2003). Intracellular visualization of prostate cancer using magnetic resonance imaging. Cancer Res 63: 4766–4772.Google ScholarPubMed
Artemov, D., Bhujwalla, Z. M., Bulte, J. W. M. (2004). Magnetic resonance imaging of cell surface receptors using targeted contrast agents. Curr Pharm Biotech 5: 485–494.CrossRefGoogle ScholarPubMed
Flacke, S., Fischer, S., Scott, M. J., Fuhrhop, R. J., Allen, J. S., McLean, M., Winter, P., Sicard, G. A., Gaffney, P. J., Wickline, S. A., Lanza, G. M. (2001). Novel MRI contrast agent for molecular imaging of fibrin. Implications for detecting vulnerable plaques. Circulation 104: 1280–1285.CrossRefGoogle ScholarPubMed
Caruthers, S. D., Winter, P. M., Wickline, S. A., Lanza, G. M. (2006). Targeted magnetic resonance imaging contrast agents. Methods Molec Med 124: 387–400.Google ScholarPubMed
Torchilin, V. P. (2000). Polymeric contrast agents for medical imaging. Curr Pharm Biotech 1(2): 183–215.CrossRefGoogle ScholarPubMed
Raghunand, N., Howison, C., Sherry, A. D., Zhang, S., Gillies, R. J. (2003). Renal and systemic pH imaging by contrast-enhanced MRI. Magn Reson Med 49: 249–257.CrossRefGoogle ScholarPubMed
Garcia-Martin, M. L., Martinez, G. V., Raghunand, N., Sherry, A. D., Zhang, S., Gillies, R. J. (2006). High resolution pHe imaging of rat glioma using pH-dependent relaxivity. Magn Reson Med 55(2): 309–315.CrossRefGoogle Scholar
Aime, S., Barge, A., Castelli, D. D., Fedeli, F., Mortillaro, A., Nielsen, F. U., Terreno, E. (2002). Paramagnetic lanthanide(III) complexes as pH-sensitive chemical exchange saturation transfer (CEST) contrast agents for MRI applications. Magn Reson Med 47: 639–648.CrossRefGoogle ScholarPubMed
Terreno, E., Castelli, D. D., Cravotto, G., Milone, L., Aime, S. (2004). Ln(III)-DOTAMGly complexes: a versatile series to assess the determinants of the efficacy of paramagnetic chemical exchange saturation transfer agents for magnetic resonance imaging applications. Invest Radiol 39(4): 235–243.CrossRefGoogle ScholarPubMed
Yoo, B., Raam, M., Rosenblum, R., Pagel, M. D. (2007). Enzyme-responsive PARACEST MRI contrast agents: A new biomedical imaging approach for studies of the proteasome. Contrast Media Molec Imag 2(4): 189–198.CrossRefGoogle ScholarPubMed
Nori, A., Kopecek, J. (2004). Intracellular targeting of polymer-bound drugs for cancer chemotherapy. Adv Drug Delivery Rev 57: 609–636.CrossRefGoogle ScholarPubMed
Lee, C. C., MacKay, J. A., Frechet, J. M. J., Szoka, F. C. (2005). Designing dendrimers for biological applications. Nature Biotech 23(12): 1517–1526.CrossRefGoogle ScholarPubMed
Gaucher, G., Dufresne, M.-H., Sant, V. P., Kang, N., Maysinger, D., Leroux, J.-C. (2005). Block copolymer micelles : preparation, characterization and application in drug delivery. J Control Rel 109(1–3): 169–188.CrossRefGoogle ScholarPubMed
Drummond, D. C., Meyer, O., Hong, K., Kirpotin, D. B., Papahadjopoulos, D. (1999). Optimizing liposomes for delivery of chemotherapeutic agents to solid tumors. Pharm Rev 51(4): 691–743.Google ScholarPubMed
Coiffier, B. (2004). Chemotherapy combined with monoclonal antibodies in the treatment of patients with diffuse large B-cell lymphoma. In Progress in Oncology. Jones and Bartlett Publishers: Sudbury, MA, pp. 220–235.Google Scholar
Taylor, J. S., Tofts, P. S., Port, R., Evelhoch, J. L., Knopp, M., Reddick, W. E., Runge, V. M., Mayr, N. (1999). MR imaging of tumor microcirculation: Promise for the new millennium. J Magn Reson Imag 10(6): 903–907.3.0.CO;2-A>CrossRefGoogle ScholarPubMed
Maeda, H., Wua, J., Sawa, T., Matsumura, Y., Hori, K. (2000). Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Rel 65: 271–284.CrossRefGoogle ScholarPubMed
Allen, M. J., MacRenaris, K. W., Venkatasubramanian, P. N., Meade, T. J. (2004). Cellular delivery of MRI contrast agents. Chem & Biol 11: 301–307.CrossRefGoogle ScholarPubMed
Fischer, R., Kohler, K., Fotin-Mlezek, M., Brock, R. (2004). A stepwise dissection of the intracellular fate of cationic cell-penetrating peptides. J Biol Chem 279(13): 12625–12635.CrossRefGoogle ScholarPubMed
Melikov, K., Chernomordik, L. V. (2005). Arginine-rich cell penetrating peptides: from endosomal uptake to nuclear delivery. Cell Mol Life Sci 62: 2739–2749.CrossRefGoogle ScholarPubMed
Perez, J. M., Josephson, L., O'Loughlin, T., Hogemann, D., Weissleder, R. (2002). Magnetic relaxation switches capable of sensing molecular interactions. Nature Biotech 20: 816–820.CrossRefGoogle ScholarPubMed
Perez, J., O'Loughlin, T., Simeone, F. J., Weissleder, R., Josephson, L. (2002). DNA-based magnetic naoparticle assembly acts as a magnetic relaxation nanoswitch allowing screening of DNA-cleaving agents. J Am Chem Soc 124: 2856–2857.CrossRefGoogle Scholar
Su, W., Mishra, R., Pfeuffer, J., Wiesmueller, K.-H., Ugurbil, K., Engelmann, J. (2007). Synthesis and cellular uptake of a MR contrast agent coupled to an antisense peptide nucleic acid – cell-penetrating peptide conjugate. Contrast Media Molec Imag 2(1): 42–49.CrossRefGoogle Scholar
Tian, X., Chakrabarti, A., Amirkhanov, N., Aruva, M. R., Zhang, K., Cardi, C. A., Lai, S., Thakur, M. L.Receptor-mediated internalization of chelator-PNA-peptide hybridization probes for radioimaging or magnetic resonance imaging of oncogene mRNAs in tumours. Biochem Soc Trans 35(1): 72–76.CrossRef
Bremer, C., Weissleder, R. (2001). In vivo imaging of gene expression: MR and optical technologies. Acad Radiol 8: 15–23.CrossRefGoogle Scholar
Hogemann, D., Basilion, J. P. (2002). “Seeing inside the body:”: MR imaging of gene expression. Eur J Nucl Med 29: 400–408.CrossRefGoogle Scholar
Bulte, J. W. M., Verkuyl, J. M., Herynek, V., Katsanis, E., Brocke, S., Holla, M., Frank, J. A. (1998). Magnetoimmunodetection of (transfected) ICAM-1gene expression. Proc Int Soc Magn Reson Med 6: 307.Google Scholar
So, P.W., Hotee, S., Herlihy, A. H., Bell, J. D. (2005). Generic method for imaging transgene expression. Magn Reson Med 54: 218–221.CrossRefGoogle ScholarPubMed
Mantyla, T., Hakumaki, J. M., Huhtala, T., Narvanen, A., Yla-Herttuala, S. (2006). Targeted magnetic resonance imaging of Scavidin-receptor in human umbilical vein endothelial cells in vitro. Magn Reson Med 55: 800–804.CrossRefGoogle ScholarPubMed
Gilad, A. A., McMahon, M. T., Walczak, P., Winnard, P. T., Raman, V., Laarhoven, H. W. M., Skoglund, C. M., Bulte, J. W. M., Zijl, P. C. M. (2007). Artificial reporter gene providing MRI contrast based on proton exchange. Nature Biotech 25(2): 217–219.CrossRefGoogle ScholarPubMed
Koretsky, A., Lin, Y.-J., Schorle, H., Jaenisch, R. (1996). Genetic control of MRI contrast by expression of the transferrin receptor. Proc Int Soc Magn Reson Med 4: 69.Google Scholar
Ichikawa, T., Hoegemann, D., Saeki, Y., Tyminski, E., Terada, K., Weissleder, R., Chiocca, E. A., Basilion, J. P. (2002). MRI of transgene expression: correlation to therapeutic gene expression. Neoplasia 4(6): 523–530.CrossRefGoogle ScholarPubMed
Hoegemann, D., Josephson, L., Weissleder, R., Basilion, J. P. (2000). Improvement of MRI probes to allow efficient detection of gene expression. Bioconj Chem 11(6): 941–946.CrossRefGoogle Scholar
Weissleder, R., Moore, A., Mahmood, U., Bhorade, R., Benveniste, H., Chiocca, E. A., Basilion, J. P. (2000). In vivo magnetic resonance imaging of transgene expression. Nature Med 6(3): 351–354.CrossRefGoogle ScholarPubMed
Hogemann-Savellano, D., Bos, E., Blondet, C., Sato, F., Abe, T., Josephson, L., Weissleder, R., Gaudet, J., Sgroi, D., Peters, P. J., Basilion, J. P. (2003). The transferrin receptor: a potential molecular imaging marker for human cancer. Neoplasia 5(6): 495–506.CrossRefGoogle ScholarPubMed
Gilad, A. A., Winnard, P. T., Zijl, P. C. M., Bulte, J. W. M. (2007). Developing MR reporter genes: promises and pitfalls. NMR Biomed 20: 275–290.CrossRefGoogle ScholarPubMed
Bulte, J. M., Vymazal, J., Brooks, R. A., Pierpaoli, C., Frank, J. A. (1993). Frequency dependence of MR relaxation times. II. Iron oxides. J Magn Reson Imag 3: 641–648.CrossRefGoogle ScholarPubMed
Gottesfeld, Z., Neeman, M. (1996). Ferritin effect on the transverse relaxation of water: NMR microscopy at 9.4 T. Magn Reson Med 35: 514–520.CrossRefGoogle ScholarPubMed
Cohen, B., Dafni, H., Meir, G., Harmelin, A., Neeman, M. (2005). Ferritin as an endogenous MRI reporter for noninvasive imaging of gene expression in C6 glioma tumors. Neoplasia 7: 109–117.CrossRefGoogle ScholarPubMed
Cohen, B., Ziv, K., Plaks, V., Israely, T., Kalchenko, V., Harmelin, A., Benjamin, L. E., Neeman, M. (2007). MRI detection of transcriptional regulation of gene expression in transgenic mice. Nature Med 13(4): 498–503.CrossRefGoogle ScholarPubMed
Genove, G., Demarco, U., Xu, H., Goins, W. F., Ahrens, E. T. (2005). A new transgene reporter for in vivo magnetic resonance imaging. Nat Med 11: 450–454.CrossRefGoogle ScholarPubMed
Zurkiya, O., Chan, W. S., Hu, X. (2008). MagA is sufficient for producing magnetic nanoparticles in mammalian cells, making it an MRI reporter. Magn Reson Med 59: 1225–1231.CrossRefGoogle ScholarPubMed
Weissleder, R., Simonova, M., Bogdanova, A., Bredow, S., Enochs, W. S., Bogdanov, A.MR imaging and scintigraphy of gene expression through melanin induction. Radiology 204: 425–429.CrossRef
Moats, R. A., Fraser, S. E., Meade, T. (1997). A “smart” magnetic resonance imaging agent that reports on specific enzyme activity. Angew Chem Intl Edn Engl 36: 726–728.CrossRefGoogle Scholar
Louie, A. Y., Huber, M. M., Ahrens, E. T., Rothbacher, U., Moats, R., Jacobs, R. E., Fraser, S. E., Meade, T. J. (2000). In vivo visualization of gene expression using magnetic resonance imaging. Nat Biotech 18: 321–325.CrossRefGoogle ScholarPubMed
Cui, W., Otten, P., Li, Y., Koeneman, K. S., Yu, J., Mason, R. P. (2004). Novel NMR approach to assessing gene transfection: 4-fluoro-2-nitrophenolbeta-d-galactopyranoside as a prototype reporter molecule for β-galactosidase. Magn Reson Med 51: 616–620.CrossRefGoogle ScholarPubMed
Kodibagkar, V. D., Yu, J., Liu, L., Hetherington, H. P., Mason, R. P. (2006). Imaging beta-galactosidase activity using (19)F chemical shift imaging of LacZ gene-reporter molecule 2-fluoro-4-nitrophenolbeta-d-galactopyranoside. Magn Reson Imaging 24: 959–962.CrossRefGoogle Scholar
Cui, W., Liu, L., Adam, A., Yu, J., Li, X., Mason, R. P. (2005). Detection of beta-galactosidase activity in a human tumor xenograft by 1H MRI in vivo using S-Gal. Proc Int Soc Magn Reson Med 13: 2593.Google Scholar
Lauffer, R., McMurry, T. J., Dunham, S. O., Scott, D. M., Parmelee, D. J., Dumas, S. (1997). Bioactivated diagnostic imaging contrast agents. WIPO Patent Application97/36619.Google Scholar
Nivorozhkin, A., Kolodziej, A. F., Caraban, P., Greenfield, M. T., Lauffer, R. B., McMurry, T. J. (2001). Enzyme activated Gd3+ magnetic resonance imaging contrast agents with a prominent receptor induced magnetization enhancement. Angew Chem Int Ed 40: 2903–2906.3.0.CO;2-N>CrossRefGoogle ScholarPubMed
Bogdanov, A., Matuszewski, L., Bremer, C., Petrovski, A., Weissleder, R. (2002). Oligomerization of paramagnetic substrates result in signal amplification and can be used for MR imaging of molecular targets. Molec Imag 1: 16–23.CrossRefGoogle ScholarPubMed
Chen, J., Pham, W., Weissleder, R., Bogdanov, A.Human myeloperoxidase: a potential target for molecular MR imaging in atherosclerosis. Magn Reson Med 52: 1021–1028.CrossRef
Chen, J., Querol, M., Bogdanov, A., Weissleder, R. (2006). Imaging myeloperoxidase in mice by using novel amplifiable paramagnetic substrates. Radiology 240: 473–481.CrossRefGoogle ScholarPubMed
Querol, M., Chen, J. W., Weissleder, R., Bogdanov, A. (2005). DTPA-bisamide-based MR sensor agents for peroxidase imaging. Org Lett 7: 1719–1722.CrossRefGoogle ScholarPubMed
Querol, M., Chen, J. W., Bogdanov, A. (2006). A paramagnetic contrast agent with myeloperoxidase-sensing properties. Org Biomol Chem 4: 1887–1895.CrossRefGoogle ScholarPubMed
Perez, J., Simeone, F. J., Tsourkas, A., Josephson, L., Weissleder, R.Peroxidase substrate nanosensors for MR imaging. Nanolett 4: 119–122.CrossRef
Aime, S., Cabella, C., Colombatto, S., Crich, S. G., Gianolio, E., Maggioni, F. (2002). Insight into the use of paramagnetic Gd(III) complexes in MR molecular imaging investigations. J Magn Reson Imag 16: 394–406.CrossRefGoogle Scholar
Duimstra, J., Meade, T. J. (2005). Self-immolative magnetic resonance imaging contrast agents sensitive to beta-glucuronidase. WIPO Patent Application 05/115105.
Shiftan, L., Israely, T., Cohen, M., Frydman, V., Dafni, H., Stern, R., Neeman, M. (2005). Magnetic resonance imaging visualization of hyaluronidase in ovarian carcinoma. Cancer Res 65: 10316–10323.CrossRefGoogle ScholarPubMed
Shiftan, L., Neeman, M. (2006). Kinetic analysis of hyaluronidase activity using a bioactive MRI contrast agent. Contrast Media Molec Imag 1: 106–112.CrossRefGoogle ScholarPubMed
Zhao, M., Josephson, L., Tang, Y., Weissleder, R. (2003). Magnetic sensors for protease assays. Angew Chem Int Ed 43: 1375–1378.CrossRefGoogle Scholar
Liu, G., Lu, Y., Pagel, M. D. (2007). Design and characterization of new irreversible responsive PARACEST MRI contrast agent that detects nitric oxide. Magn Reson Med 58: 1249–1256.CrossRefGoogle ScholarPubMed
Rohovec, J., Maschmeyer, T., Aime, S., Peters, J. A. (2003). The structure of the sugar residue in glycated human serum albumin and its molecular recognition by phenylboronate. Chem Eur J 9: 2193–2199.CrossRefGoogle ScholarPubMed
Glogard, C., Stensrud, G., Aime, S. (2003). Novel radical-responsive MRI contrast agent based on paramagnetic liposomes. Magn Reson Chem 41(8): 585–588.CrossRefGoogle Scholar
Koretsky, A. P., Brosnan, M. J., Chen, L. H., Chen, J. D., Dyke, T. (1990). NMR detection of creatine kinase expressed in liver of transgenic mice: determination of free ADP levels. Proc Natl Acad Sci USA 87: 3112–3116.CrossRefGoogle ScholarPubMed
Auricchio, A., Zhou, R., Wilson, J. M., Glickson, J. D. (2001). In vivo detection of gene expression in liver by 31P nuclear magnetic resonance spectroscopy employing creatine kinase as a marker gene. Proc Natl Acad Sci USA 98: 5205–5210.CrossRefGoogle ScholarPubMed
Li, Z., Qiao, H., Lebherz, C., Choi, S. R., Zhou, X., Gao, G., Kung, H. F., Rader, D. J., Wilson, J. M., Glickson, J. D., Zhou, R. (2005). Creatine kinase, a magnetic resonance-detectable marker gene for quantification of liver-directed gene transfer. Hum Gene Ther 16: 1429–1438.CrossRefGoogle ScholarPubMed
Askenasy, N., Koretsky, A. P. (2002). Transgenic livers expressing mitochondrial and cytosolic CK: mitochondrial CK modulates free ADP levels. Am J Physiol Cell Physiol 282: C338–C346.CrossRefGoogle ScholarPubMed
Walter, G., Barton, E. R., Sweeney, H. L. (2000). Noninvasive measurement of gene expression in skeletal muscle. Proc Natl Acad Sci USA 97: 5151–5155.CrossRefGoogle ScholarPubMed
Landis, C. S., Yamanouchi, K., Zhou, H., Mohan, S., Roy-Chowdhury, N., Shafritz, D. A., Koretsky, A., Roy-Chowdhury, J., Hetherington, H. P., Guha, C.Noninvasive evaluation of liver repopulation by transplanted hepatocytes using 31P MRS imaging in mice. Hepatology 44(5): 1250–1258.CrossRef
Ki, S., Sugihara, F., Kasahara, K., Tochio, H., Okada-Marubayashi, A., Tomita, S., Morita, M., Ikeguchi, M., Shirakawa, M., Kokubo, T. (2006). A novel magnetic resonance-based method to measure gene expression in living cells. Nucleic Acids Res 34: e51.CrossRefGoogle ScholarPubMed
Weiss, R. G., Gerstenblith, G., Bottomley, P. A. (2005). ATP flux through creatine kinase in the normal, stressed, and failing human heart. Proc Natl Acad Sci USA 102: 808–813.CrossRefGoogle ScholarPubMed
Stegman, L. D., Rehemtulla, A., Beattie, B., Kievit, E., Lawrence, T. S., Blasberg, R. G., Tjuvajev, J. G., Ross, B. D. (1999). Noninvasive quantitation of cytosine deaminase transgene expression in human tumor xenografts with in vivo magnetic resonance spectroscopy. Proc Natl Acad Sci USA 96: 9821–9826.CrossRefGoogle ScholarPubMed
Kraitchman, D. L., Bulte, J. W. (2008). Imaging of stem cells using MRI. Basic Res Cardiol 103(2): 105–113.CrossRefGoogle ScholarPubMed
Walczak, P., Kedziorek, D. A., Gilad, A. A., Barnett, B. P., Bulte, J. W. M. (2007). Applicability and limitations of MR tracking of neural stem cells with asymmetric cell division and rapid turnover: the case of the shiverer dysmyelinated mouse brain. Magn Reson Med 58: 261–269.CrossRefGoogle ScholarPubMed
Serganova, I., Blasberg, R. (2005). Reporter gene imaging: potential impact on therapy. Nucl Med Bio 32: 763–780.CrossRefGoogle ScholarPubMed
Ahrens, E. T., Flores, R., Xu, H., Morel, P. A. (2005). In vivo imaging platform for tracking immunotherapeutic cells. Nature Biotech 23: 983–987.CrossRefGoogle ScholarPubMed
Harisinghani, M. G., Barentsz, J., Hahn, P. F., Deserno, W. M., Tabatabaei, S., Kaa, C. H., Rosette, J., Weissleder, R. (2003). Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N Engl J Med 348(25): 2491–2499.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×