Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-18T18:43:21.053Z Has data issue: false hasContentIssue false

7 - Logically-Routed Networks

Published online by Cambridge University Press:  05 June 2012

Thomas E. Stern
Affiliation:
Columbia University, New York
Georgios Ellinas
Affiliation:
University of Cyprus
Krishna Bala
Affiliation:
Xtellus, New Jersey
Get access

Summary

In this chapter we explore the structure, design, and performance of purely optical networks with electronically switched overlays. These are the logically-routed networks (LRNs) that were introduced in Section 3.5. Typical examples of LRNs are networks of SONET digital cross-connects (DCSs), networks of IP/MPLS routers, and ATM networks carried on a SONET DCS layer. To provide maximum flexibility, the LRN should be carried on top of a reconfigurable optical network. Although we generally refer to the underlying infrastructure as “purely optical” (that is, transparent), we shall, from time to time, relax that requirement to include optical networks having some degree of opacity on their transmission links.

Introduction: Why Logically-Routed Networks?

The rationale for using logical switching on top of a purely optical infrastructure has been discussed at various points throughout the book. The number of stations in a purely optical network cannot be increased indefinitely without running into a connectivity bottleneck. The sources of the bottleneck are the resource limitations within the network (fibers and optical spectrum) and within the access stations (optical transceivers).

Figure 7.1(a) illustrates the bottleneck in a purely optical network. Network access station (NAS) A has established logical connections (LCs), shown as dashed lines in the figure, that fan out to stations B, C, and D. If this is a wavelength-routed network (WRN), each LC is carried on a separate point-to-point optical connection; that is, three optical transceivers and three distinct wavelengths are required (assuming that the stations have single fiber pair access links).

Type
Chapter
Information
Multiwavelength Optical Networks
Architectures, Design, and Control
, pp. 576 - 646
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×