Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-rvbq7 Total loading time: 0 Render date: 2024-07-11T13:30:20.008Z Has data issue: false hasContentIssue false

6 - Wavelength/Waveband-Routed Networks

Published online by Cambridge University Press:  05 June 2012

Thomas E. Stern
Affiliation:
Columbia University, New York
Georgios Ellinas
Affiliation:
University of Cyprus
Krishna Bala
Affiliation:
Xtellus, New Jersey
Get access

Summary

In Chapter 5 we discussed shared-channel networks, and the emphasis was on satisfying traffic requirements on a static, multipoint physical topology (a broadcast star or its equivalent). The traffic requirements were expressed in terms of flows on logical connections (LCs), and satisfaction of these requirements involved multiplexing and multiple access to share the available channels efficiently. When combined time and wavelength division techniques were employed, the optical connections supporting the LCs were set up and time shared by rapidly tuning the transceivers over a given set of wavelengths. Because all optical connections shared a common broadcast medium in a static configuration, all optical paths supporting these connections were permanently in place. We now move on to optical connection routing and wavelength/waveband assignment – issues that were absent in the static case. We treat both point-to-point and point-to-multipoint (multicast) logical connections.

Introduction

In this chapter we focus on the optical layer of the architecture shown in Figure 2.1(a); that is, we treat purely optical (transparent) networks with reconfigurable optical paths, in which reconfiguration is achieved by space switching together with wavelength and/or waveband routing. Unless otherwise stated, we assume that there is no wavelength conversion in these networks, so the constraint of wavelength continuity is in force. The earliest proposals for wavelength-routed networks (WRNs) appeared in [Brain+88] and [Hill88].

In much of the subsequent work on these networks, a recurring issue has been to determine the number of wavelengths required to achieve a desired degree of connectivity as a function of network size and functionality of network nodes (e.g., static wavelength routers, static wavelength interchangers, or WSXCs).

Type
Chapter
Information
Multiwavelength Optical Networks
Architectures, Design, and Control
, pp. 432 - 575
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×