Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-jwnkl Total loading time: 0 Render date: 2024-07-10T04:20:10.342Z Has data issue: false hasContentIssue false

23 - The cerebellum and proprioceptive control of movement

from Part III - Control of central nervous system output

Published online by Cambridge University Press:  04 August 2010

A. Prochazka
Affiliation:
Division of Neuroscience, University of Alberta, Edmonton, Alberta, Canada.
M. Gorassini
Affiliation:
Division of Neuroscience, University of Alberta, Edmonton, Alberta, Canada.
J. Taylor
Affiliation:
Division of Neuroscience, University of Alberta, Edmonton, Alberta, Canada.
Hugh Bostock
Affiliation:
Institute of Neurology, London
P. A. Kirkwood
Affiliation:
Institute of Neurology, London
A. H. Pullen
Affiliation:
Institute of Neurology, London
Get access

Summary

Introduction

Sherrington (1906) called the cerebellum the ‘head ganglion of the proprioceptive system’. When it is damaged, movement deficits result. In humans, certain characteristic abnormalities arise, including locomotor ataxia, intention tremor and hypermetria. Hypotonia, or generalized weakness, may also result. Holmes (1922, 1939) provided a detailed and definitive description of these symptoms in his studies of soldiers wounded in World War I. He concluded that cerebellar lesions led to abnormalities in the rate, regularity and force of voluntary movement. But there were reasons to doubt that the cerebellum is the primary generator of motor commands: several months after a cerebellar lesion, the accuracy of movement in humans can sometimes return to near-normal. Shortly after complete cerebellar ablation, animals can still initiate voluntary movements and perform goal-directed activities, albeit inaccurately (Mackay & Murphy, 1979). It has therefore been posited that the cerebellum provides adjustment and co-ordination of CNS centres and pathways which are the primary generators of motor commands (Luciani, 1915; Holmes, 1917; Lorento de Nó, 1924; Rosenblueth, Wiener & Bigelow, 1943). MacKay & Murphy (1979) coined the term ‘accessory gain adjustment’ to describe this role.

Gain control of proprioception

Gamma efferent nerve fibres control muscle spindle sensitivity by activating the small intrafusal muscle fibres within spindles (review: Matthews, 1972). By the early 1950s it was clear that spindle responses to stretch could be greatly modulated by γ action.

Type
Chapter
Information
The Neurobiology of Disease
Contributions from Neuroscience to Clinical Neurology
, pp. 247 - 256
Publisher: Cambridge University Press
Print publication year: 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×