Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-sh8wx Total loading time: 0 Render date: 2024-07-21T17:59:56.510Z Has data issue: false hasContentIssue false

11 - The line absorption coefficient

Published online by Cambridge University Press:  05 March 2015

David F. Gray
Affiliation:
University of Western Ontario
Get access

Summary

The strengths and shapes of spectral lines contain a great deal of information about the stars, and the line absorption coefficient plays a fundamental role here. The situation in this regard is similar to the effect the continuous absorption coefficient has on the shape of the continuum. Lines are more interesting, however, because several different physical effects can enter the structuring of the final absorption coefficient. Each of these has its own variation with wavelength across the line, that is, its own absorption coefficient. The main processes we consider in this chapter are: (1) natural atomic absorption, (2) pressure broadening, of which there are several, and (3) thermal Doppler broadening. The final combined absorption coefficient is the multiple convolution of these individual absorption coefficients. One of the remarkable results of these studies is that the natural atomic absorption and all the significant pressure broadenings have the same wavelength dependence in their individual absorption coefficients (with the notable exception of the hydrogen lines), namely the dispersion profile. This leads to a tremendous simplification, as we shall see, since the convolution of dispersion profiles is a dispersion profile with a half-width equal to the sum of the individual half-widths of the contributing processes. The thermal broadening, on the other hand, reflects the Maxwellian velocity distribution of the absorbing atoms and ions via the Doppler effect, so its wavelength shape is a Gaussian. The final absorption coefficient is therefore a convolution of the dispersion profile with the Gaussian profile.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abt, A. 1952. Ap. J. 115, 199.CrossRef
Allen, C.W. 1973. Astrophysical Quantities, 3rd edn. (London: Athlone), pp. 84, 89.Google Scholar
Anstee, S.D. & B. J., O'Mara 1991. Mon. Not. Roy. Ast. Soc. 253, 549.CrossRef
Anstee, S.D. & B. J., O'Mara 1995, Mon. Not. Roy. Ast. Soc. 276, 859.CrossRef
Aoki, W., S.G., Ryan, N., Iwamoto, et al. 2003. Ap. J. 592, 67.CrossRef
Arnesen, A., R., Hallin, C., Nordling, et al. 1982. Ast. Ap. 106, 327.
Ayres, T. R. 1977. Ap.J. 213, 296.CrossRef
Baker, J.G. & D.H., Menzel 1938. Ap.J. 88, 52.CrossRef
Baranger, M. 1958a. Phys. Rev. 111, 481, 494.CrossRef
Baranger, M. 1958b. Phys. Rev. 112, 855.CrossRef
Barklem, P.S. & B.J., O'Mara 1997. Mon. Not. Roy. Ast. Soc. 290, 102.CrossRef
Barklem, P.S. 1998. Mon. Not. Roy. Ast. Soc. 300, 863.CrossRef
Barklem, P.S. 2000. Mon. Not. Roy. Ast. Soc. 311, 535.CrossRef
Barklem, P. S., S.D., Anstee, & B. J., O'Mara 1998a. Pub. Ast. Soc. Australia 15, 336.CrossRef
Barklem, P. S., B. J., O'Mara, & J. E., Ross 1998b. Mon. Not. Roy. Ast. Soc. 296, 1057.CrossRef
Barklem, P. S., N., Piskunov, & B. J., O'Mara 2000a. Ast. Ap. Suppl. 142, 467.
Barklem, P. S., N., Piskunov, & B. J., O'Mara 2000b. Ast. Ap. 363, 1091.
Barnard, A. J., J., Cooper, & E.W., Smith 1974. J. Quant. Spec. Rad. Trans. 14, 1025.CrossRef
Bely, F. 1966. Abundance Determinations in Stellar Spectra, I.A.U. Symp. 26, ed. H., Hubenet. (London: Academic), p. 254.Google Scholar
Bergeron, P.F. Wesemael, & G., Fontaine 1991. Ap.J. 367, 253.CrossRef
Blackwell, D. E., G., Calamai, & R.B., Willis 1972a. Mon. Not. Roy. Ast. Soc. 160, 121.CrossRef
Blackwell, D. E., J. H., Kirby, & G., Smith 1972b. Mon. Not. Roy. Ast. Soc. 160, 189.CrossRef
Bohlender, D. A., M.M., Dworetsky, & C.M., Jomaron 1998. Ap.J. 504, 533.CrossRef
Brissaud, A. & U., Frisch 1971. J. Quant. Spec. Rad. Trans. 11, 1767.CrossRef
Brueckner, K.A. 1971. Ap.J. 169, 621.CrossRef
Burgess, D.D. & J. E., Grindlay 1970. Ap.J. 161, 343.CrossRef
Clausset, F., C., Stehlé, & M.-C., Artru 1994. Ast. Ap. 287, 666.
Cowley, C. R., G. H., Elste, & H., Allen 1969. Ap.J. 158, 1177.CrossRef
Dimitrijevic, M.S. & N., Konjevic 1986. Ast. Ap. 163, 297.
Dimitrijevic, M.S., T., Ryabchikova, L.C., Popovic, D., Shulyak, & V., Tsymbal 2003. Ast. Ap. 404, 1099.
Dolk, L., G.M., Wahlgren, & S., Hubrig 2003. Ast. Ap. 402, 299.
Dworetsky, M.M., C.M., Jomaron, & C. A., Smith 1998. Ast. Ap. 333, 665.
Edmonds, F.N. Jr., H., Schlüter, & D.C., Wells III 1967. Mem. Roy. Ast. Soc. 71, 271.
Foley, H.M. 1946. Phys. Rev. 69, 616.CrossRef
Freudenstein, S. A. & J., Cooper 1978. Ap.J. 224, 1079.CrossRef
Fuhr, J. R., W. L., Wiese, & L. J., Roszman 1973. Bibliography on Atomic Line Shapes and Shifts, Nat. Bur. Standards Publ. No. 366. (Washington, DC: National Bureau of Standards).Google Scholar
Fullerton, W. & C. R., Cowley 1971. Ap.J. 165, 643.CrossRef
González, V. R., J. A., Aparicio, J.A., del Val, & S., Mar 2002. J. Phys. B 35, 3557.
Griem, H. R. 1954. Z. Phys. 137, 280.CrossRef
Griem, H. R. 1962. Ap.J. 136, 422.CrossRef
Griem, H. R. 1964. Plasma Spectroscopy. (New York: McGraw-Hill).Google Scholar
Griem, H. R. 1967. Ap.J. 147, 1092.CrossRef
Griem, H. R. 1968. Ap.J. 154, 1111.CrossRef
Griem, H. R. 1974. Spectral Line Broadening by Plasmas. (New York: Academic).Google Scholar
Griem, H. R. 1997. Principles of Plasma Spectroscopy. (Cambridge: Cambridge University Press).CrossRefGoogle Scholar
Harris, D. L. III 1948. Ap.J. 108, 112.CrossRef
Hjerting, F. 1938. Ap.J. 88, 508.CrossRef
Holtsmark, P. J. 1919. Phys. Z. 20, 162.
Holweger, H. 1971. Ast. Ap. 10, 128.
Holweger, H. 1972. Solar Phys. 25, 14.CrossRef
Holweger, H. & K.B., Oertel 1971. Ast. Ap. 10, 434.
Hunger, K. 1960. Z. f. Ap. 49, 129.
Johansson, S., U., Litzén, H., Lundberg, & Z., Zhang 2003. Ap.J. Lett. 584, L107.CrossRef
Jomaron, C. M., M.M., Dworetsky, & C. S., Allen 1999. Mon. Not. Roy. Ast. Soc. 303, 555.CrossRef
Kallmann, H. & F., London 1929. Z. Phys. Chem. B2, 207.
Kusch, H. J. 1958. Z. f. Ap. 45, 1.
Lambert, D. L. & R. E., Luck 1978. Mon. Not. Roy. Ast. Soc. 183, 79.CrossRef
Landolt-Börnstein, 1950. Zahlenwerte und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik, Vol. 1. (Berlin: Springer-Verlag), p. 246.Google Scholar
Lemke, M. 1997. Ast. Ap. Suppl. 122, 285.
Lenz, W. 1924. Z. Phys. 25, 299.CrossRef
Lesage, A., J. L., Lebrun, & J., Richou 1990. Ap.J. 360, 737.CrossRef
Lesage, A., N., Konjevic, & J. R., Fuhr 1999. Spectral Line Shapes 10, AIP Conference Proceedings, Vol. 467, ed. R.M., Herman. (New York: AIP), p. 27.Google Scholar
Lewis, E. L., L.F., McNamara, & H. H., Michels 1971. Phys. Rev. A 3, 1939.CrossRef
Lewis, E. L., L.F., McNamara, & H. H., Michels 1972. Solar Phys. 23, 287.CrossRef
Lindholm, E. 1945. Ark. Mat. Astron. Fys. 32A, No. 17.
London, F. 1930a. Z. Phys. 63, 245.CrossRef
London, F. 1930b. Z. Phys. Chem. B11, 222.
Lorentz, H. A. 1906. Proc. Amst. Acad. 8, 591.
Lwin, N., D.G., McCartan, & E. L., Lewis 1977. Ap.J. 213, 599.CrossRef
Menzel, D. H. 1961. Mathematical Physics. (New York: Dover).Google Scholar
Mihalas, D., A.J., Barnard, J., Cooper, & E.W., Smith 1974. Ap.J. 190, 315.CrossRef
Milosavljević, V. & S., Djenize 2001. European Phys. J. D 15, 99.
Milosavljević, V. & S., Djenize 2003. Ast. Ap. 405, 397.
Moity, J., P. E., Pieri, & J., Richou 1975. Ast. Ap. 45, 417.
Mugglestone, D. & B.J., O'Mara 1966. Mon. Not. Roy. Ast. Soc. 132, 87.CrossRef
Nielsen, K., H., Karlsson, & G.M., Wahlgren 2000. Ast. Ap. 363, 815.
Peach, G. 1981. Advances Phys. 30, 367.CrossRef
Pérez, C., R., Santamarta, M.I., de la Rosa, & S., Mar 2003. European Phys. J. D 27, 73.
Petit Bois, G. 1961. Tables of Indefinite Integrals. (New York: Dover), p. 148.Google Scholar
Popovic, L.C., M. S., Dimitrijevic, & T., Ryabchikova 1999. Ast. Ap. 350, 719.
Popovic, L.C., S., Simic, N., Milosavljevič;, & M. S., Dimitrijevic 2001. Ap. J. Suppl. 135, 109.CrossRef
Prochaska, J. X. & A., McWilliam 2000. Ap.J. Lett. 537, L57.CrossRef
Roueff, E. & H., Van Regemorter 1969. Ast. Ap. 1, 69.
Roueff, E. & H., Van Regemorter 1971. Ast. Ap. 12, 317.
Ryabchikova, T., N., Piskunov, I., Savanov, F., Kupka, & V., Malanushenko 1999. Ast. Ap. 343, 229.
Ryan, S.G. 1998. Ast. Ap. 331, 1051.
Sneden, C., J. J., Cowan, J. E., Lawler, et al. 2002. Ap.J. Lett. 566, L25.CrossRef
Stehlé, C. 1994. Ast. Ap. Suppl. 104, 509.
Stehlé, C. & R., Hutcheon 1999. Ast. Ap. Suppl. 140, 93.
Stehlé, C., A., Mazure, G., Nollez, & N., Feautrier 1988. Ast. Ap. 205, 368.
Stone, J.M. 1963. Radiation and Optics. (New York: McGraw-Hill), p. 73.Google Scholar
Struve, O. 1929. Ap.J. 69, 173.CrossRef
Underhill, A.B. 1951. Pub. Dom. Ap. Obs. Victoria 8, 385.
Underhill, A.B. & J. H., Waddell 1959. Nat. Bur Standards Circ. 603
Unsöld, A. 1955. Physik der Sternatmosphären, 2nd edn. (Berlin: Springer-Verlag), pp. 326, 331.CrossRefGoogle Scholar
Van Regemorter, H. 1965. Ann. Rev. Ast. Ap. 3, 71.CrossRef
Van Regemorter, H. 1973. Reports on Astronomy, Trans. Intern. Astron. Union 15A, ed. C., De Jager. (Reidel: Dordrecht), p. 155.Google Scholar
Vidal, C. R., J., Cooper, & E.W., Smith 1971. J. Quant. Spectr. Rad. Trans. 11, 263.CrossRef
Vidal, C. R., J., Cooper, & E.W., Smith 1973. Ap.J. Suppl. 25, 37.CrossRef
Wahlgren, G. M., S.G., Sveneric, U., Litzen, et al. 1997. Ap.J. 475, 380.CrossRef
Wahlgren, G. M., T., Brage, J.C., Brandt, et al. 2001. Ap.J. 551, 520.CrossRef
Weisskopf, V. 1932. Z. Phys. 75, 287.CrossRef
Woolf, V.M. & D. L., Lambert 1999. Ap.J. 521, 414.CrossRef

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • The line absorption coefficient
  • David F. Gray, University of Western Ontario
  • Book: The Observation and Analysis of Stellar Photospheres
  • Online publication: 05 March 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781316036570.014
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • The line absorption coefficient
  • David F. Gray, University of Western Ontario
  • Book: The Observation and Analysis of Stellar Photospheres
  • Online publication: 05 March 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781316036570.014
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • The line absorption coefficient
  • David F. Gray, University of Western Ontario
  • Book: The Observation and Analysis of Stellar Photospheres
  • Online publication: 05 March 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781316036570.014
Available formats
×