Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-vsgnj Total loading time: 0 Render date: 2024-07-21T11:02:06.545Z Has data issue: false hasContentIssue false

12 - The measurement of spectral lines

Published online by Cambridge University Press:  05 March 2015

David F. Gray
Affiliation:
University of Western Ontario
Get access

Summary

In this chapter, we consider the acquisition of spectral line data and the integrity of such data. Several types of measurements can be made on a spectral line: total absorption, characteristic width, detailed shape, asymmetry, wavelength position, and polarization. These measurements are not all independent, but it helps to think of them separately when measurements are to be performed. We shall consider all of these except polarization.

Compared to continuum photometry, studies of spectral lines often require very high spectral resolution. How high depends on the width and structure of the spectral lines to be measured, but λ/Δλ in the range of 100 000 or even higher is what we are talking about. This kind of resolving power is obtained with low-order diffraction gratings, echelle gratings, and interferometers. The emphasis here is on grating spectrographs, an elaboration on the basics discussed in Chapter 3. (For details on interferometers, see Vaughan 1967, Connes 1970, and Ridgway & Brault 1984.) High resolution means a small wavelength interval per detector pixel, perhaps 15 or 20mÅ. Contrast this to ∼1000 Å for a wide-band photometric system, a ratio of ≈60 000 or 12 magnitudes. High-resolution spectroscopy, where we want to get at the physics of spectral lines, is the domain of bright stars. Large-aperture telescopes are just as important for high-resolution spectroscopy as they are for faint galaxy work. In practical terms, one can expect a 30 minute exposure of a sixth magnitude star to yield a signal-to-noise ratio of 100 at a resolving power of 105 using a telescope of 1m aperture.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, C.W. 1973. Astrophysical Quantities, 3rd edn. (London: Athlone), p. 124.Google Scholar
Andersen, J. & D., Dravins 1982. Pub. Ast. Soc. Pacific 94, 390.CrossRef
Bowen, I.S. 1938. Ap. J. 88, 113.CrossRef
Bowen, I.S. 1962. Astronomical Techniques, ed. W. A. Hiltner. (Chicago: University of Chicago) p. 34.Google Scholar
Brault, J.W. & O. R., White 1971. Ast. Ap. 13, 169.
Brown, T.M., R.W., Noyes, P., Nisenson, S.G., Korzennik, & S., Horner 1994. Pub. Ast. Soc. Pacific 106, 1285.CrossRef
Campbell, B. & G.A.H., Walker 1979. Pub. Ast. Soc. Pacific 91, 540.CrossRef
Cayrel de Strobel, G. 1967. Transactions of the International Astronomical Union, Reports on Astronomy, ed. L., Perek. (Dordrecht: Reidel), p. 639.Google Scholar
Champeney, D.C. 1973. Fourier Transforms and Their Physical Applications. (London: Academic), p. 121.Google Scholar
Cochran, W.D. 1988. Ap. J. 334, 349.CrossRef
Cohen, J.G., J.E., Simmons, & S., Maney 1976. Pub. Ast. Soc. Pacific 88, 966.CrossRef
Connes, P. 1970. Ann. Rev. Ast. Ap. 8, 209.CrossRef
Content, R. 1997. Proc. SPIE 2871, 1295.CrossRef
Conway, M.T. 1952. Mon. Not. Roy. Ast. Soc. 112, 55.CrossRef
Desikachary, K. & D.F., Gray 1978. Ap. J. 226, 907.CrossRef
Dunham, T. Jr. 1956. Vistas in Astronomy, Vol. 2, ed. A., Beer. (London: Pergamon), p. 1223.Google Scholar
Edlén, B. 1953. J. Opt. Soc. Amer. 43, 339.CrossRef
Edmonds, F.N. Jr. 1965. Ap. J. 142, 278.CrossRef
Enard, D. 1979. ESO Tech. Rept. No. 10.Google Scholar
Fekel, F.C. 1997. Pub. Ast. Soc. Pacific 109, 514.CrossRef
Goldberg, L., O. C., Mohler, & E. A., Müller 1959. Ap. J. 129, 119.CrossRef
Gray, D.E. 1963. American Institute of Physics Handbook. (New York: McGraw-Hill), p. 7.Google Scholar
Gray, D.F. 1974. Pub. Ast. Soc. Pacific 86, 526.CrossRef
Gray, D.F. 1980. Ap. J. 235, 508.CrossRef
Gray, D.F. 1986. Instrumentation and Research Programmes for Small Telescopes, IAU Symp. 118, ed. J.B., Hearnshaw & P.L., Cottrell. (Dordrecht: Reidel), p. 401.CrossRefGoogle Scholar
Gray, D.F. 1988. Lectures on Spectral-Line Analysis: F, G, and K Stars. (Arva, Ontario: The Publisher).Google Scholar
Gray, D.F. & J.C., Evans 1973. Ap. J. 182, 147.CrossRef
Gray, D.F., M.A., Smith, I., Wynne-Jones, R.C., Wayte, & R. & R., Griffin 1979. Pub. Ast. Soc. Pacific 91, 719.CrossRef
Griffin, R.F. 1968. A Photometric Atlas of the Spectrum of Arcturus. (Cambridge: Cambridge Philosophical Soc.).Google Scholar
Griffin, R.F. 1969a. Mon. Not. Roy. Ast. Soc. 143, 319.CrossRef
Griffin, R.F. 1969b. Mon. Not. Roy. Ast. Soc. 143, 349.CrossRef
Griffin, R.F. 1969c. Mon. Not. Roy. Ast. Soc. 143, 361.CrossRef
Griffin, R.F. 1973. Mon. Not. Roy. Ast. Soc. 162, 243.CrossRef
Gullberg, D. & L., Lindegren 2002. Ast. Ap. 390, 383.
Gunn, A.G., J.C., Hall, G. W., Lockwood, & J.G., Doyle 1996. Ast. Ap. 305, 146.
Helfer, H.L., G., Wallerstein, & J.L., Greenstein 1963. Ap. J. 138, 97.CrossRef
Iye, M., N., Ebizuka, & H., Takami 1998. Proc. SPIE 3355, 417.CrossRef
Kurucz, R.L., I., Furenlid, J., Brault, & L., Testerman 1984. Solar Flux Atlas from 296 to 1300 nm. (Sunspot: National Solar Obs.).Google Scholar
Marcy, G.W. & R.P., Butler 1992. Pub. Ast. Soc. Pacific 104, 270.CrossRef
Middleton, D. 1960. Introduction to Statistical Communication Theory. (New York: McGraw-Hill).Google Scholar
Murdoch, K. & J.B., Hearnshaw 1991. Ap. Space Sci. 186, 169.CrossRef
Nidever, D.L., G.W., Marcy, R.P., Butler, D.A., Fischer, & S.S., Vogt 2002. Ap. J. Suppl. 141, 503.CrossRef
Panofsky, H.A.A. 1943. Ap. J. 97, 180.CrossRef
Peterson, D.M. 1969. Smithsonian Ap. Obs. Special Report 293, The Balmer Lines in Early Type Stars.Google Scholar
Pierce, A.K. 1965. Pub. Ast. Soc. Pacific 77, 216.CrossRef
Ren, D. & J., Ge 2004. Pub. Ast. Soc. Pacific 116, 46.CrossRef
Richardson, E.H. 1966. Pub. Ast. Soc. Pacific 78, 436.CrossRef
Richardson, E.H., G.A., Brealey, & R., Dancey 1971. Pub. Dominion Ap. Obs. Victoria XIV, 1.
Ridgway, S.T. & J.W., Brault 1984. Ann. Rev. Ast. Ap. 22, 291.CrossRef
Shane, C.D. 1932. Lick Obs. Bull. 16, 76.CrossRef
Shulte, D.H. 1966. Appl. Opt. 5, 457.CrossRef
Skuljan, J., J.B., Hearnshaw, & P. L., Cottrell 2000. Pub. Ast. Soc. Pacific 112, 966.CrossRef
Smith, M.A., J.E., Graves, D.B., Jaksha, C. L., Plymate, & L. W., Ramsey 1987. Pub. Ast. Soc. Pacific 99, 654.CrossRef
Taylor, D.J. & E.G., Schmidt 1975. Pub. Ast. Soc. Pacific 87, 357.CrossRef
Taylor, K. 1997. Instrumentation for Large Telescopes, ed. J. M., Rodriguez Espinosa, A., Herrero, & F., Sánchez. (Cambridge: Cambridge University Press), p. 158.Google Scholar
Teske, R.G. 1967. Pub. Ast. Soc. Pacific 79, 110.CrossRef
Tull, R.G. 1969. Sky Telescope 38, 156.
Tull, R.G. 1972. Proc. ESO/CERN Conf., Auxillary Instrumentation for Large Telescopes, Geneva, ed. S. Laustsen & A. Reiz, p. 259.Google Scholar
Vaughan, A.H. Jr. 1967. Ann. Rev. Ast. Ap. 5, 139.CrossRef
Waddell, J. 1956. An Empirical Determination of the Turbulence Field in the Solar Photosphere Based on a Study of Weak Fraunhofer Lines, Ph.D. thesis, University of Michigan.Google Scholar
Walker, G.A.H., E., Shkolnik, D.A., Bohlender, & S., Yang 2003. Pub. Ast. Soc. Pacific 115, 700.CrossRef
Wright, K.O. 1958. Trans. Int. Astron. Union 10, 558.
Wright, K.O. 1966. Abundance Determinations in Stellar Spectra, IAU, Symposium 26, ed. H., Hubenet. (London: Academic), p. 15.Google Scholar
Young, A.T. 1974. Observatory 94, 22.

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • The measurement of spectral lines
  • David F. Gray, University of Western Ontario
  • Book: The Observation and Analysis of Stellar Photospheres
  • Online publication: 05 March 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781316036570.015
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • The measurement of spectral lines
  • David F. Gray, University of Western Ontario
  • Book: The Observation and Analysis of Stellar Photospheres
  • Online publication: 05 March 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781316036570.015
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • The measurement of spectral lines
  • David F. Gray, University of Western Ontario
  • Book: The Observation and Analysis of Stellar Photospheres
  • Online publication: 05 March 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781316036570.015
Available formats
×