Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-gq7q9 Total loading time: 0 Render date: 2024-07-23T00:02:36.505Z Has data issue: false hasContentIssue false

3 - Spectroscopic tools

Published online by Cambridge University Press:  05 March 2015

David F. Gray
Affiliation:
University of Western Ontario
Get access

Summary

Observations of stellar photospheres require instruments for collecting and analyzing light. Low-resolution spectrographs are used for measuring the continuous spectrum, while high-resolution spectrographs are needed to measure the spectral lines. In this chapter, we delve into several basic aspects of spectrographs and diffraction gratings, then turn our attention briefly to interferometers, and finally to telescopes. Special features and application of spectrophotometric equipment are discussed separately in Chapter 10 (continua) and Chapter 12 (lines). Chapter 4 is about light detectors.

Spectrographs: some general relations

The basic astronomical spectrograph is shown in Fig. 3.1. It consists of an entrance slit placed at the focus of the telescope, a collimator that intercepts the divergent telescope beam, a dispersing element (prism or grating), and a camera that focuses the dispersed light onto a detector. Since the purpose of the collimator is to make the divergent beam parallel, the distance between the slit and the collimator is the focal length of the collimator, Fcoll. Similarly, the distance between the camera and the focused spectrum is the focal length of the camera, Fcam. The distances between the collimator, disperser, and camera affect the detailed design and optimization of the spectrograph, but do not matter for the basics we are considering at the moment. We concentrate on plane diffraction gratings as the dispersing element since these are almost universally used in astronomical spectrographs.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alencar, S.H.P., C.M., Johns-Krull, & G., Basri 2001. Ast. J. 122, 3335.CrossRef
Allington-Smith, J.R., R., Content, G.N., Dodsworth, et al. 2000. SPIE 4008, 1172.
Baldry, I. K., J., Bland-Hawthorn, & J.G., Robertson 2004. Pub. Ast. Soc. Pacific 116, 403.CrossRef
Barden, S.C., L.W., Ramsey, & R.J., Truax 1981. Pub. Ast. Soc. Pacific 93, 154.CrossRef
Barden, S.C., T., Armandroff, P., Massey, et al. 1993. ASP Conf. Proc. 37, Fiber Optics in Astronomy II, ed. P. M., Gray. (San Francisco: Ast. Soc. Pacific), p. 185.Google Scholar
Barden, S.C., J.A., Arns, W.S., Colburn, & J.B., Williams 2000. Pub. Ast. Soc. Pacific 112, 809.CrossRef
Beer, R., R.B., Hutchison, R.H., Norton, & D.L., Lambert 1972. Ap. J. 172, 89.CrossRef
Bell, R.J. 1972. Introductory Fourier Transform Spectroscopy. (New York: Academic).Google Scholar
Bloemhof, E.E., R.G., Dekany, M., Troy, & B.R., Oppenheimer 2001. Ap. J. 558, L71.CrossRef
Brault, J.W. 1982. Phil. Trans. Roy. Soc. London, Ser. A, 307, 503.CrossRef
Breckinridge, J.B. 1971. Appl. Optics 10, 286.CrossRef
Calatroni, J.A. & M., Garavaglia 1973. Appl. Optics 12, 2298.CrossRef
Calatroni, J.A. & M., Garavaglia 1974. Appl. Optics 13, 1009.CrossRef
Chaffee, F.H. & D.J., Schroeder 1976. Ann. Rev. Ast. Ap. 14, 23.CrossRef
Connes, P. 1961. Rev. Optics 40, 45, 116, 171, 231.
Connes, P. 1969. Theory and Observation of Normal Stellar Atmospheres, ed. O., Gingerich. (Cambridge: MIT Press), p. 323.Google Scholar
Connes, P. 1970. Ann. Rev. Ast. Ap. 8, 209.CrossRef
Conti, G., E., Mattaini, L., Chiappetti, et al. 2001. Pub. Ast. Soc. Pacific 113, 452.CrossRef
Coudé du Foresto, V., M., Faucherre, N., Hubin, & P., Gitton 2000. Ast. Ap. Suppl. 145, 305.
Coulman, C.E. 1985. Ann. Rev. Ast. Ap. 23, 19.CrossRef
Diego, F. 1985. Pub. Ast. Soc. Pacific 97, 1209.CrossRef
Doyon, R., S., Thibault, D., Nadeau, & P., Vallee, 2000. SPIE 4008, 1103.
Dyck, H.M. & R.R., Howell 1983. Pub. Ast. Soc. Pacific 95, 786.CrossRef
Epps, H. & S.S., Vogt 1993. Appl. Opt. 32, 6270.CrossRef
Felenbok, P. & J., Guerin 1988. Instrumentation for Ground Based Optical Astronomy, ed. L.B., Robinson. (New York: Springer-Verlag), p. 260.CrossRefGoogle Scholar
Furenlid, I. & O., Cardona 1988. Pub. Ast. Soc. Pacific 100, 1001.CrossRef
Gray, D.F. 1986. Instrumentation and Research Programmes for Small Telescopes, I.A.U. Symposium No. 118, ed. J. B., Hearnshaw & P. L., Cottrell. (Dordrecht: D. Reidel), p. 401.CrossRefGoogle Scholar
Gray, D.F. 1997. Instrumentation for Large Telescopes, ed. J. M. Rodriguez, Espinosa, A., Herrero, & F., Sanchez. (Cambridge: Cambridge University Press), p. 173.Google Scholar
Griffin, R.F. 1968. A Photometric Atlas of the Spectrum of Arcturus. (Cambridge: Cambridge Phil. Soc.).Google Scholar
Hackenberg, W.K. & D., Bonaccini 2000. SPIE 4007, 258.
Harrison, G.R. 1973. Appl. Optics 12, 2039.CrossRef
Hinkle, K., L., Wallace, & W., Livingston 1995. Infrared Atlas of the Arcturus Spectrum, 0.9–5.3 μm. (San Francisco: Ast. Soc. Pacific).Google Scholar
Hubbard, E.N., J.R.P., Angel, & M. S., Gresham 1979. Ap. J. 229, 1074.CrossRef
Ismail, M.A. 1986. Ap. Space Sci. 122, 1.
Jaquinot, P. 1960. Rept Progress Phys. 23, 267.CrossRef
Kohl, J.L. & W.H., Parkinson 1976. Ap. J. 205, 599.CrossRef
Kurucz, R.L., I., Furenlid, J., Brault, & L., Testerman 1984. Solar Flux Atlas from 296 to 1300nm. (Sunspot: National Solar Observatory).Google Scholar
Lacy, J.H., M. J., Richter, T.K., Greathouse, D.T., Jaffe, & Q., Zhu 2002. Pub. Ast. Soc. Pacific 114, 153.CrossRef
Maillard, J.P. & G., Michel 1982. Instrumentation for Astronomy with Large Optical Telescopes, I.A.U. Coll. 67, ed. C.M. Humphries. (Dordrecht: Reidel), p. 213.CrossRefGoogle Scholar
Mandel, H. 1987. The Impact of Very High S/N Spectroscopy on Stellar Physics, I.A.U. Symp. 132, ed. G., Cayrel-de-Strobel & M., Spite. (Dordrecht: Reidel), p. 9.Google Scholar
Marschall, L.A. & L.M., Hobbs 1972. Ap. J. 173, 43.CrossRef
Mertz, L. 1965a. Transformations in Optics. (New York: Wiley).Google Scholar
Mertz, L. 1965b. Ast. J. 70, 548.CrossRef
Meyer, C.F. 1934. The Diffraction of Light, X-Rays, and Material Particles. (Chicago: Univ. Chicago), Appendix F.Google Scholar
Moffat, A.F.J. 1969. Ast. Ap. 3, 455.
Montes, D., J., López-Santiago, M. J., Fernández-Figueroa, & M. C., Gálvez 2001. Ast. Ap. 379, 976.
O'Byrne, J.W. 1988. Pub. Ast. Soc. Pacific 100, 1169.CrossRef
Parry, I.R., C.D., Mackay, R.A., Johnson, et al. 2000. Optical and IR Telescope Instrumentation and Detectors, ed. M., Iye & A., Moorwood, SPIE 4008, 1193.CrossRefGoogle Scholar
Piccirillo, J. 1973. Pub. Ast. Soc. Pacific 85, 278.CrossRef
Pilachowski, C., H., Dekker, K., Hinkle, et al. 1995. Pub. Ast. Soc. Pacific 107, 983.CrossRef
Racine, R. 1989. Pub. Ast. Soc. Pacific 101, 437.
Ridgway, S.T. & J.W., Brault 1984. Ann. Rev. Ast. Ap. 22, 291.CrossRef
Robinson, L.B., ed. 1988. Instrumentation for Ground-Based Optical Astronomy. (New York: Springer-Verlag).CrossRefGoogle Scholar
Rowland, H.A. 1893. Philos. Mag. 35, 397.CrossRef
Ryan, S.G., T., Kajino, T.C., Beers, et al. 2001. Ap. J. 549, 55.CrossRef
Schnopper, D.J. & R.I., Thompson 1974. Methods of Experimental Physics: Astrophysics, Part A, ed. N., Carleton. (New York: Academic), p. 491.Google Scholar
Schroeder, D.J. 1974. Methods of Experimental Physics: Astrophysics, Part A, ed. N., Carleton. (New York: Academic), p. 463.Google Scholar
Soderblom, D.R., B.F., Jones, & D., Fischer 2001. Ap.J. 563, 334.CrossRef
Stroke, G.W. 1967. Handb. Phys. 29, 426.
Taylor, K. & N.G., Douglas 1995. I.A.U. Coll. 149, ASP Conf. Ser. 71, p. 33.Google Scholar
Vanasse, G.A. & H., Sakai 1967. Progr. Opt., 6, 258.
Vogt, S.S. 1987. Pub. Ast. Soc. Pacific 99, 1214.CrossRef
Vogt, S.S., S.L., Allen, B.C., Bigelow, et al. 1994. SPIE 2198, 362.
Weiss, W.W., M., Barylak, J., Hron, & J., Schmiedmayer 1981. Pub. Ast. Soc. Pacific 93, 787.CrossRef
Wood, R.W. 1935. Phys. Rev. 48, 928.CrossRef
Young, A.T. 1974. Ap. J. 189, 587.CrossRef

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Spectroscopic tools
  • David F. Gray, University of Western Ontario
  • Book: The Observation and Analysis of Stellar Photospheres
  • Online publication: 05 March 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781316036570.006
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Spectroscopic tools
  • David F. Gray, University of Western Ontario
  • Book: The Observation and Analysis of Stellar Photospheres
  • Online publication: 05 March 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781316036570.006
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Spectroscopic tools
  • David F. Gray, University of Western Ontario
  • Book: The Observation and Analysis of Stellar Photospheres
  • Online publication: 05 March 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781316036570.006
Available formats
×