Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-cnmwb Total loading time: 0 Render date: 2024-07-20T08:59:33.088Z Has data issue: false hasContentIssue false

Gray Matter

from Section 4 - Disruptions / Hypoxic-Ischemic Injury

Published online by Cambridge University Press:  07 August 2021

Mirna Lechpammer
Affiliation:
New York University School of Medicine
Marc Del Bigio
Affiliation:
University of Manitoba, Canada
Rebecca Folkerth
Affiliation:
New York University School of Medicine
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Courville, CB. Antenatal and paranatal circulatory disorders as a cause of cerebral damage in early life. J Neuropathol Exp Neurol. 1959;18(1):115–40.Google Scholar
Courville, CB. Paranatal anoxia and its residual encephalic lesions. Can Anaesth Soc J. 1961;8:313.CrossRefGoogle ScholarPubMed
Marin-Padilla, M. Developmental neuropathology and impact of perinatal brain damage. II: white matter lesions of the neocortex. J Neuropathol Exp Neurol. 1997;56(3):219–35.Google Scholar
Marin-Padilla, M. Developmental neuropathology and impact of perinatal brain damage. III: Gray matter lesions of the neocortex. J Neuropathol Exp Neurol. 1999;58(5):407–29.CrossRefGoogle ScholarPubMed
Millar, LJ, Shi, L, Hoerder-Suabedissen, A, Molnar, Z. Neonatal hypoxia ischaemia: mechanisms, models, and therapeutic challenges. Front Cell Neurosci. 2017;11:78.CrossRefGoogle ScholarPubMed
Little, WJ. On the influence of parturition, difficult labours, premature birth, and asphyxia neonatorum on the mental and physical condition of the child, especially in relation to deformities. Trans Obstet Soc Lond. 1862;3:293344.Google Scholar
Courville, CB. Palsy, Cerebral. A Brief Introduction to Its History, Etiology, and Pathology, with Some Notes on the Resultant Clinical Syndromes and Their Treatment. Los Angeles: San Lucas Press; 1954. p. 80.Google Scholar
Towbin, A. Pathology of cerebral palsy. II. Cerebral palsy due to encephaloclastic processes. AMA Arch Pathol. 1955;59:529–52.Google ScholarPubMed
Crome, L. Some morbid-anatomical aspects of mental deficiency. J Ment Sci. 1954;100(421):894912.CrossRefGoogle ScholarPubMed
Crome, LL. Cortical lesions in cerebral palsy. Dev Med Chil Neurol. 1959;1(6):22–8.Google Scholar
Crome, L. The brain and mental retardation. Br Med J. 1960;1(5177):897904.Google Scholar
Southard, EE. General aspects of the brain anatomy of the feeble-minded. Mem Am Acad Arts Sci. 1918;14(2):2558.Google Scholar
Schreiber, F. Apnea of the newborn and associated cerebral injury. A clinical and statistical study. JAMA. 1938;111(14):1263–9.Google Scholar
Brandenburg, JE, Fogarty, MJ, Sieck, GC. A critical evaluation of current concepts in cerebral palsy. Physiology (Bethesda). 2019;34(3):216–29.Google Scholar
Leviton, A. Why the term neonatal encephalopathy should be preferred over neonatal hypoxic-ischemic encephalopathy. Am J Obstet Gynecol. 2013;208(3):176–80.Google Scholar
Volpe, JJ. Neonatal encephalopathy: an inadequate term for hypoxic-ischemic encephalopathy. Ann Neurol. 2012;72(2):156–66.Google Scholar
Becher, JC, Bell, JE, Keeling, JW, Liston, WA, McIntosh, N, Wyatt, B. The Scottish Perinatal Neuropathology Study–clinicopathological correlation in stillbirths. BJOG. 2006;113(3):310–7.Google Scholar
Zhang, X, Kramer, MS. Temporal trends in stillbirth in the United States, 1992–2004: a population-based cohort study. BJOG. 2014;121(10):1229–36.CrossRefGoogle ScholarPubMed
Platts, J, Mitchell, EA, Stacey, T, Martin, BL, Roberts, D, McCowan, L, et al. The Midland and North of England Stillbirth Study (MiNESS). BMC Pregnancy Childbirth. 2014;14:171.CrossRefGoogle ScholarPubMed
Salihu, HM. Epidemiology of stillbirth and fetal central nervous system injury. Semin Perinatol. 2008;32(4):232–8.CrossRefGoogle ScholarPubMed
McCormick, MC, Litt, JS, Smith, VC, Zupancic, JA. Prematurity: an overview and public health implications. Annu Rev Public Health. 2011;32:367–79.Google Scholar
Volpe, JJ. The encephalopathy of prematurity – brain injury and impaired brain development inextricably intertwined. Semin Pediatr Neurol. 2009;16(4):167–78.Google Scholar
Lee, AC, Kozuki, N, Blencowe, H, Vos, T, Bahalim, A, Darmstadt, GL, et al. Intrapartum-related neonatal encephalopathy incidence and impairment at regional and global levels for 2010 with trends from 1990. Pediatr Res. 2013;74 Suppl 1:5072.CrossRefGoogle ScholarPubMed
American College of Obstetricians and Gynecologists’ Task Force on Neonatal Encephalopathy. Executive summary: Neonatal Encephalopathy and Neurologic Outcome, 2nd edition. Obstet Gynecol. 2014;123(4):896901.Google Scholar
Smith, J, Wells, L, Dodd, K. The continuing fall in incidence of hypoxic-ischaemic encephalopathy in term infants. BJOG. 2000;107(4):461–6.CrossRefGoogle ScholarPubMed
Kurinczuk, JJ, White-Koning, M, Badawi, N. Epidemiology of neonatal encephalopathy and hypoxic-ischaemic encephalopathy. Early Hum Dev. 2010;86(6):329–38.CrossRefGoogle ScholarPubMed
Martinez-Biarge, M, Diez-Sebastian, J, Wusthoff, CJ, Mercuri, E, Cowan, FM. Antepartum and intrapartum factors preceding neonatal hypoxic-ischemic encephalopathy. Pediatrics. 2013;132(4):e952–e9.CrossRefGoogle ScholarPubMed
McIntyre, S, Blair, E, Badawi, N, Keogh, J, Nelson, KB. Antecedents of cerebral palsy and perinatal death in term and late preterm singletons. Obstet Gynecol. 2013;122(4):869–77.Google Scholar
Rutherford, M, Malamateniou, C, McGuinness, A, Allsop, J, Biarge, MM, Counsell, S. Magnetic resonance imaging in hypoxic-ischaemic encephalopathy. Early Hum Dev. 2010;86(6):351–60.CrossRefGoogle ScholarPubMed
Nikas, I, Dermentzoglou, V, Theofanopoulou, M, Theodoropoulos, V. Parasagittal lesions and ulegyria in hypoxic-ischemic encephalopathy: neuroimaging findings and review of the pathogenesis. J Child Neurol. 2008;23(1):51–8.Google Scholar
Thayyil, S, Chandrasekaran, M, Taylor, A, Bainbridge, A, Cady, EB, Chong, WK, et al. Cerebral magnetic resonance biomarkers in neonatal encephalopathy: a meta-analysis. Pediatrics. 2010;125(2):e382–e95.Google Scholar
Montaldo, P, Chaban, B, Lally, PJ, Sebire, NJ, Taylor, AM, Thayyil, S. Quantification of ante-mortem hypoxic ischemic brain injury by post-mortem cerebral magnetic resonance imaging in neonatal encephalopathy. Eur J Paediatr Neurol. 2015;19(6):665–71.Google Scholar
Squier, W, Cowan, FM. The value of autopsy in determining the cause of failure to respond to resuscitation at birth. Semin Neonatol. 2004;9(4):331–45.Google Scholar
Elder, DE, Zuccollo, JM. Autopsy after death due to extreme prematurity. Arch Dis Child Fetal Neonatal Ed. 2005;90(3):F270–F2.Google Scholar
Jacques, SM, Kupsky, WJ, Qureshi, F. Antenatal brain injury in third trimester neonates with severe congenital anomalies: an autopsy study. J Matern Fetal Neonatal Med. 2015;28(12):1414–20.CrossRefGoogle ScholarPubMed
Swinton, CH, Weiner, J, Okah, FA. The neonatal autopsy: can it be revived? Am J Perinatol. 2013;30(9):739–44.Google Scholar
Brown, AW. Structural abnormalities in neurons. J Clin Pathol Suppl. 1977;11:155–69.Google Scholar
Brody, BA, Kinney, HC, Kloman, AS, Gilles, FH. Sequence of central nervous system myelination in human infancy. I. An autopsy study of myelination. J Neuropathol Exp Neurol. 1987;46:283301.CrossRefGoogle ScholarPubMed
Yakovlev, PI, Lecours, AR. The myelogenetic cycles of regional maturation of the brain. In: Minkowski, A, editor. Regional Development of the Brain in Early Life. Oxford: Blackwell Scientific Publications; 1967. pp. 370.Google Scholar
Kramer, W. Multilocular encephalomalacia. J Neurol Neurosurg Psychiatry. 1956;19(3):209–16.Google Scholar
Ahdab-Barmada, M, Moossy, J, Painter, M. Pontosubicular necrosis and hyperoxemia. Pediatrics. 1980;66(6):840–7.CrossRefGoogle ScholarPubMed
Friede, RL. Ponto-subicular lesions in perinatal anoxia. Arch Pathol. 1972;94(4):343–54.Google ScholarPubMed
Sohma, O, Mito, T, Mizuguchi, M, Takashima, S. The prenatal age critical for the development of the pontosubicular necrosis. Acta Neuropathol. 1995;90(1):710.CrossRefGoogle ScholarPubMed
Bruck, Y, Bruck, W, Kretzschmar, HA, Lassmann, H. Evidence for neuronal apoptosis in pontosubicular neuron necrosis. Neuropathol Appl Neurobiol. 1996;22(1):23–9.Google Scholar
Burke, C, Gobe, G. Pontosubicular apoptosis (“necrosis”) in human neonates with intrauterine growth retardation and placental infarction. Virchows Arch. 2005;446(6):640–5.Google Scholar
Hernandez-Jimenez, M, Sacristan, S, Morales, C, Garcia-Villanueva, M, Garcia-Fernandez, E, Alcazar, A, et al. Apoptosis-related proteins are potential markers of neonatal hypoxic-ischemic encephalopathy (HIE) injury. Neurosci Lett. 2014;558:143–8.Google Scholar
Del Bigio, MR, Becker, LE. Microglial aggregation in the dentate gyrus: a marker of mild hypoxic-ischaemic brain insult in human infants. Neuropathol Appl Neurobiol. 1994;20:144–51.Google Scholar
Squier, W, Salisbury, H, Sisodiya, S. Stroke in the developing brain and intractable epilepsy: effect of timing on hippocampal sclerosis. Dev Med Child Neurol. 2003;45(9):580–5.Google Scholar
Heschl, R. Gehirndefect und Hydrocephalus. Vierteljahrsschr prakt Heilk (Prager). 1859;61(1):5974.Google Scholar
de la Croix, NJ. Ein Fall von ausgebreiteter Porencephalie an der medialen Fläche der rechten Grosshirnhemisphäre. Virchows Archiv. 1884;97(2):307–29.Google Scholar
Lyon, G, Robain, O. Etude comparative des encephalopathies circulatories prenatales et para-natales (hydranencephalies, porencephalies et encephalomalacies kystiques de la substance blanche). Acta Neuropathol. 1967;9(1):7998.Google Scholar
Gilles, FH. Classification of cerebral palsy: neuropathologist’s perspective. Dev Med Child Neurol. 2007;49 Suppl 2:1921.Google Scholar
Norman, RM, Urich, H, Woods, GE. The relationship between prenatal porencephaly and the encephalomalacias of early life. J Ment Sci. 1958;104(436):758–71.CrossRefGoogle ScholarPubMed
Yakovlev, PI, Wadsworth, RC. Schizencephalies. A study of the congenital clefts in the cerebral mantle. I. Clefts with fused lips. J Neuropathol Exp Neurol. 1946;5:116–30.Google Scholar
Yakovlev, PI, Wadsworth, RC. Schizencephalies. A study of the congenital clefts in the cerebral mantle. II. Clefts with hydrocephalus and lips separated. J Neuropathol Exp Neurol. 1946;5(3):169206.Google Scholar
Curry, CJ, Lammer, EJ, Nelson, V, Shaw, GM. Schizencephaly: heterogeneous etiologies in a population of 4 million California births. Am J Med Genet A. 2005;137(2):181–9.Google Scholar
Fernandez-Bouzas, A, Harmony, T, Santiago-Rodriguez, E, Ricardo-Garcell, J, Fernandez, T, Avila-Acosta, D. Schizencephaly with occlusion or absence of middle cerebral artery. Neuroradiology. 2006;48(3):171–5.CrossRefGoogle ScholarPubMed
Merello, E, Swanson, E, De Marco, P, Akhter, M, Striano, P, Rossi, A, et al. No major role for the EMX2 gene in schizencephaly. Am J Med Genet A. 2008;146A(9):1142–50.Google Scholar
Yoneda, Y, Haginoya, K, Kato, M, Osaka, H, Yokochi, K, Arai, H, et al. Phenotypic spectrum of COL4A1 mutations: porencephaly to schizencephaly. Ann Neurol. 2013;73(1):4857.Google Scholar
Norman, RM. Atrophic sclerosis of the cerebral cortex associated with birth injury. Arch Dis Child. 1944;19(99):111–21.Google Scholar
Bresler, J. Klinische und pathologisch-anatomische Beiträge zur Mikrogyrie. Arch Psychiatr Nervenkr. 1899;31(3):566–73.CrossRefGoogle Scholar
Morys, J, Narkiewicz, O, Wisniewski, HM. Neuronal loss in the human claustrum following ulegyria. Brain Res. 1993;616(1–2):176–80.Google Scholar
Norman, MG. On the morphogenesis of ulegyria. Acta Neuropathol. 1981;53(4):331–2.CrossRefGoogle ScholarPubMed
Atapattu, N, Ainsworth, J, Willshaw, H, Parulekar, M, MacPherson, L, Miller, C, et al. Septo-optic dysplasia: antenatal risk factors and clinical features in a regional study. Horm Res Paediatr. 2012;78(2):81–7.Google Scholar
Maeda, T, Akaishi, M, Shimizu, M, Sekiguchi, K, Anan, A, Takano, T, et al. The subclassification of schizencephaly and its clinical characterization. Brain Dev. 2009;31(9):694701.Google Scholar
Bonasoni, MP, Reyes, J, Cromwell, S, Halliday, W, Taylor, GP, Chiasson, DA. Sudden death in the septo-optic dysplasia spectrum. Acad Forensic Pathol. 2014;4(3):400–8.Google Scholar
Bhatnagar, S, Kuber, R, Shah, D, Kulkarni, V. Unilateral closed lip schizencephaly with septo-optic dysplasia. Ann Med Health Sci Res. 2014;4(2):283–5.Google Scholar
Labate, A, Gambardella, A, Quattrone, A. Septo-optic dysplasia plus bilateral perisylvian polymicrogyria: a case report. Neurol Sci. 2013;34(8):1479–80.Google Scholar
Lubinsky, MS. Hypothesis: septo-optic dysplasia is a vascular disruption sequence. Am J Med Genet. 1997;69(3):235–6.3.0.CO;2-K>CrossRefGoogle ScholarPubMed
Borchert, M. Reappraisal of the optic nerve hypoplasia syndrome. J Neuroophthalmol. 2012;32(1):5867.CrossRefGoogle ScholarPubMed
Clinch, TA. A case of imperfect porencephaly. J Mental Sci. 1899;45(189):246–57.CrossRefGoogle Scholar
Andriezen, WL. The pathogenesis of epileptic idiocy and epileptic imbecility. Brit Med J. 1897;1:1081–3.CrossRefGoogle ScholarPubMed
Mickle, WJ. Atypical and unusual brain-forms, especially in relation to mental status: a study on brain-surface morphology. J Mental Sci. 1896;42(178):541–83.Google Scholar
Binswanger, O. Ueber eine Missbildung des Gehirns. Virchows Archiv. 1882;87(3):427–76.Google Scholar
Jacob, H. Die feinere Oberflächengestaltung der Hirnwindungen, die Hirnwarzenbildung und die Mikropolygyrie. Z gesamte Neurol Psychiatrie. 1940;170(1):6484.Google Scholar
Warner, FJ. The histogenic principle of microgyria and related cerebral malformations. J Nerv Ment Dis. 1953;118(1):118.Google Scholar
Heffner, RR. Syndrome of absent abdominal muscles: two cases with microcephaly, polymicrogyria, and cerebellar malformations. J Neurol Neurosurg Psychiatry. 1970;33(6):844–50.Google Scholar
Pitner, SE, Edwards, JE, McCormick, WF. Observations on the pathology of the Moebius syndrome. J Neurol Neurosurg Psychiatry. 1965;28:362–74.Google Scholar
Squier, W, Jansen, A. Polymicrogyria: pathology, fetal origins and mechanisms. Acta Neuropathol Commun. 2014;2:80.Google Scholar
Jansen, AC, Robitaille, Y, Honavar, M, Mullatti, N, Leventer, RJ, Andermann, E, et al. The histopathology of polymicrogyria: a series of 71 brain autopsy studies. Dev Med Child Neurol. 2016;58(1):3948.Google Scholar
Friede, RL, Mikolasek, J. Postencephalitic porencephaly, hydranencephaly or polymicrogyria. A review. Acta Neuropathol. 1978;43(1–2):161–8.Google Scholar
Judkins, AR, Martinez, D, Ferreira, P, Dobyns, WB, Golden, JA. Polymicrogyria includes fusion of the molecular layer and decreased neuronal populations but normal cortical laminar organization. J Neuropathol Exp Neurol. 2011;70(6):438–43.Google Scholar
Ferrer, I, Catala, I. Unlayered polymicrogyria: structural and developmental aspects. Anat Embryol. 1991;184:517–28.CrossRefGoogle ScholarPubMed
Diamandis, P, Chitayat, D, Toi, A, Blaser, S, Shannon, P. The pathology of incipient polymicrogyria. Brain Dev. 2017;39(1):2339.Google Scholar
Stutterd, CA, Leventer, RJ. Polymicrogyria: a common and heterogeneous malformation of cortical development. Am J Med Genet C Semin Med Genet. 2014;166C(2):227–39.Google Scholar
Aggarwal, S, Bahal, A, Dalal, A. Renal dysfunction in sibs with band like calcification with simplified gyration and polymicrogyria: report of a new mutation and review of literature. Eur J Med Genet. 2016;59(1):510.Google Scholar
Pagnamenta, AT, Howard, MF, Wisniewski, E, Popitsch, N, Knight, SJ, Keays, DA, et al. Germline recessive mutations in PI4 KA are associated with perisylvian polymicrogyria, cerebellar hypoplasia and arthrogryposis. Hum Mol Genet. 2015;24(13):3732–41.Google Scholar
Poirier, K, Saillour, Y, Fourniol, F, Francis, F, Souville, I, Valence, S, et al. Expanding the spectrum of TUBA1A-related cortical dysgenesis to polymicrogyria. Eur J Hum Genet. 2013;21(4):381–5.Google Scholar
Fry, AE, Fawcett, KA, Zelnik, N, Yuan, H, Thompson, BAN, Shemer-Meiri, L, et al. De novo mutations in GRIN1 cause extensive bilateral polymicrogyria. Brain. 2018;141(3):698712.Google Scholar
Chabrier, S, Husson, B, Dinomais, M, Landrieu, P, Nguyen The Tich S. New insights (and new interrogations) in perinatal arterial ischemic stroke. Thromb Res. 2011;127(1):1322.Google Scholar
Martinez-Biarge, M, Cheong, JL, Diez-Sebastian, J, Mercuri, E, Dubowitz, LM, Cowan, FM. Risk factors for neonatal arterial ischemic stroke: the importance of the intrapartum period. J Pediatr. 2016;173:62–8.Google Scholar
van der Aa, NE, Benders, MJ, Groenendaal, F, de Vries, LS. Neonatal stroke: a review of the current evidence on epidemiology, pathogenesis, diagnostics and therapeutic options. Acta Paediatr. 2014;103(4):356–64.Google Scholar
Fernandez-Lopez, D, Natarajan, N, Ashwal, S, Vexler, ZS. Mechanisms of perinatal arterial ischemic stroke. J Cereb Blood Flow Metab. 2014;34(6):921–32.Google Scholar
Lehman, LL, Rivkin, MJ. Perinatal arterial ischemic stroke: presentation, risk factors, evaluation, and outcome. Pediatr Neurol. 2014;51(6):760–8.Google Scholar
Barmada, MA, Moossy, J, Shuman, RM. Cerebral infarcts with arterial occlusion in neonates. Ann Neurol. 1979;6(6):495502.Google Scholar
Benders, MJ, Groenendaal, F, De Vries, LS. Preterm arterial ischemic stroke. Semin Fetal Neonatal Med. 2009;14(5):272–7.Google Scholar
deVeber, G, Andrew, M, Adams, C, Bjornson, B, Booth, F, Buckley, DJ, et al. Cerebral sinovenous thrombosis in children. N Engl J Med. 2001;345(6):417–23.Google Scholar
Tan, M, Deveber, G, Shroff, M, Moharir, M, Pontigon, AM, Widjaja, E, et al. Sagittal sinus compression is associated with neonatal cerebral sinovenous thrombosis. Pediatrics. 2011;128(2):e429-35.CrossRefGoogle ScholarPubMed
Kirton, A, Shroff, M, Pontigon, AM, deVeber, G. Risk factors and presentations of periventricular venous infarction vs arterial presumed perinatal ischemic stroke. Arch Neurol. 2010;67(7):842–8.CrossRefGoogle ScholarPubMed
Grunt, S, Wingeier, K, Wehrli, E, Boltshauser, E, Capone, A, Fluss, J, et al. Cerebral sinus venous thrombosis in Swiss children. Dev Med Child Neurol. 2010;52(12):1145–50.Google Scholar
Lahutte, M, Bordarier, C, Hornoy, P, Fallet-Bianco, C, Adamsbaum, C. L’infarctus veineux hémorragique du nouveau-né. J Radiol. 2010;91(7–8):787–96.Google Scholar
Davies, RP, Slavotinek, JP, James, SL, Morphett, AD. Calcified cerebral sinus thrombosis in infancy–CT appearances with pathological correlation. Pediatr Radiol. 1989;20(1–2):101–3.Google Scholar
Halsey, JH, Jr., Allen, N, Chamberlin, HR. The morphogenesis of hydranencephaly. J Neurol Sci. 1971;12(2):187217.Google Scholar
Muir, CS. Hydranencephaly and allied disorders: a study of cerebral defect in Chinese children. Arch Dis Child. 1959;34:231–46.Google Scholar
Naidich, TP, Griffiths, PD, Rosenbloom, L. Central nervous system injury in utero: selected entities. Pediatr Radiol. 2015;45 Suppl 3:S454-S62.Google Scholar
Weiss, MH, Young, HF, McFarland, DE. Hydranencephaly of postnatal origin. Case report. J Neurosurg. 1970;32(6):715–20.Google Scholar
Fowler, M, Dow, R, White, TA, Greer, CH. Congenital hydrocephalus-hydrencephaly in five siblings, with autopsy studies: a new disease. Dev Med Child Neurol. 1972;14(2):173–88.Google Scholar
Harding, BN, Ramani, P, Thurley, P. The familial syndrome of proliferative vasculopathy and hydranencephaly-hydrocephaly: immunocytochemical and ultrastructural evidence for endothelial proliferation. Neuropathol Appl Neurobiol. 1995;21(1):61–7.Google Scholar
Williams, D, Patel, C, Fallet-Bianco, C, Kalyanasundaram, K, Yacoubi, M, Dechelotte, P, et al. Fowler syndrome-a clinical, radiological, and pathological study of 14 cases. Am J Med Genet A. 2010;152A(1):153–60.Google Scholar
Bessieres-Grattagliano, B, Foliguet, B, Devisme, L, Loeuillet, L, Marcorelles, P, Bonniere, M, et al. Refining the clinicopathological pattern of cerebral proliferative glomeruloid vasculopathy (Fowler syndrome): report of 16 fetal cases. Eur J Med Genet. 2009;52(6):386–92.Google Scholar
Meyer, E, Ricketts, C, Morgan, NV, Morris, MR, Pasha, S, Tee, LJ, et al. Mutations in FLVCR2 are associated with proliferative vasculopathy and hydranencephaly-hydrocephaly syndrome (Fowler syndrome). Am J Hum Genet. 2010;86(3):471–8.Google Scholar
Radio, FC, Di Meglio, L, Agolini, E, Bellacchio, E, Rinelli, M, Toscano, P, et al. Proliferative vasculopathy and hydranencephaly-hydrocephaly syndrome or Fowler syndrome: report of a family and insight into the disease’s mechanism. Mol Genet Genomic Med. 2018;6(3):446–51.Google Scholar
Frosk, P, Arts, HH, Philippe, J, Gunn, CS, Brown, EL, Chodirker, B, et al. A truncating mutation in CEP55 is the likely cause of MARCH, a novel syndrome affecting neuronal mitosis. J Med Genet. 2017;54(7):490501.Google Scholar
Ligam, P, Haynes, RL, Folkerth, RD, Liu, L, Yang, M, Volpe, JJ, et al. Thalamic damage in periventricular leukomalacia: novel pathologic observations relevant to cognitive deficits in survivors of prematurity. Pediatr Res. 2009;65(5):524–9.Google Scholar
Parisi, JE, Collins, GH, Kim, RC, Crosley, CJ. Prenatal symmetrical thalamic degeneration with flexion spasticity at birth. Ann Neurol. 1983;13(1):94–7.CrossRefGoogle ScholarPubMed
Peters, B, Walka, MM, Friedmann, W, Stoltenburg-Didinger, G, Obladen, M. Hypoxic-ischemic encephalopathy with cystic brain stem necroses and thalamic calcifications in a preterm twin. Brain Dev. 2000;22(4):265–71.Google Scholar
Pols, T, de Vries, LS, Salamon, AS, Nikkels, PGJ, Lichtenbelt, KD, Mulder-de Tollenaer, SM, et al. Symmetrical thalamic lesions in the newborn: a case series. Neuropediatrics. 2019;50(3):152–9.Google Scholar
Rodriguez, MJ, Ursu, G, Bernal, F, Cusi, V, Mahy, N. Perinatal human hypoxia-ischemia vulnerability correlates with brain calcification. Neurobiol Dis. 2001;8(1):5968.Google Scholar
Rosales, RK, Riggs, HE. Symmetrical thalamic degeneration in infants. J Neuropathol Exp Neurol. 1962;21:372–6.Google Scholar
Malamud, N. Status marmoratus; a form of cerebral palsy following either birth injury or inflammation of the central nervous system. J Pediatr. 1950;37(4):610–19.Google Scholar
Norman, RM. An example of status marmoratus of the cerebral cortex. J Neurol Psychiatry. 1938;1(1):716.Google Scholar
Löwenburg, K, Malamud, W. Status marmoratus: etiology and manner of development. Arch Neurol Psychiatr. 1933;29(1):104–24.Google Scholar
Norman, RM. Etat marbre of the corpus striatum following birth injury. J Neurol Neurosurg Psychiatry. 1947;10(1):1225.Google Scholar
Norman, RM. Etat marbre of the thalamus following birth injury. Brain. 1949;72:83–8.Google Scholar
Friede, RL, Schachenmayr, W. Early stages of status marmoratus. Acta Neuropathol. 1977;38(2):123–7.Google Scholar
Aravamuthan, BR, Waugh, JL. Localization of basal ganglia and thalamic damage in dyskinetic cerebral palsy. Pediatr Neurol. 2016;54:1121.Google Scholar
Yagishita, A, Nakano, I, Ushioda, T, Otsuki, N, Hasegawa, A. Acute encephalopathy with bilateral thalamotegmental involvement in infants and children: imaging and pathology findings. AJNR Am J Neuroradiol. 1995;16(3):439–47.Google Scholar
Miller, SP, McQuillen, PS, Hamrick, S, Xu, D, Glidden, DV, Charlton, N, et al. Abnormal brain development in newborns with congenital heart disease. N Engl J Med. 2007;357(19):1928–38.Google Scholar
Berman, JI, Hamrick, SE, McQuillen, PS, Studholme, C, Xu, D, Henry, RG, et al. Diffusion-weighted imaging in fetuses with severe congenital heart defects. AJNR Am J Neuroradiol. 2011;32(2):E21–2.Google Scholar
Schneider, H, Ballowitz, L, Schachinger, H, Hanefeld, F, Droszus, JU. Anoxic encephalopathy with predominant involvement of basal ganglia, brain stem and spinal cord in the perinatal period. Report on seven newborns. Acta Neuropathol. 1975;32(4):287–98.Google Scholar
Kwan, S, Boudes, E, Gilbert, G, Saint-Martin, C, Albrecht, S, Shevell, M, et al. Injury to the cerebellum in term asphyxiated newborns treated with hypothermia. AJNR Am J Neuroradiol. 2015;36(8):1542–9.Google Scholar
Pierson, CR, Al Sufiani, F. Preterm birth and cerebellar neuropathology. Semin Fetal Neonatal Med. 2016;21(5):305–11.Google Scholar
Biran, V, Verney, C, Ferriero, DM. Perinatal cerebellar injury in human and animal models. Neurol Res Int. 2012;2012:858929.Google Scholar
Sargent, MA, Poskitt, KJ, Roland, EH, Hill, A, Hendson, G. Cerebellar vermian atrophy after neonatal hypoxic-ischemic encephalopathy. AJNR Am J Neuroradiol. 2004;25(6):1008–15.Google Scholar
Poretti, A, Prayer, D, Boltshauser, E. Morphological spectrum of prenatal cerebellar disruptions. Eur J Paediatr Neurol. 2009;13(5):397407.Google Scholar
Poretti, A, Boltshauser, E, Huisman, TA. Prenatal cerebellar disruptions: neuroimaging spectrum of findings in correlation with likely mechanisms and etiologies of injury. Neuroimaging Clin N Am. 2016;26(3):359–72.Google Scholar
Sarnat, HB, Nochlin, D, Born, DE. Neuronal nuclear antigen (NeuN): a marker of neuronal maturation in early human fetal nervous system. Brain Dev. 1998;20(2):8894.Google Scholar
Leech, RW, Alvord, EC. Anoxic-ischemic encephalopathy in the human neonatal period. The significance of brain stem involvement. Arch Neurol. 1977;34:109–13.Google Scholar
Leong, S, Ashwell, KW. Is there a zone of vascular vulnerability in the fetal brain stem? Neurotoxicol Teratol. 1997;19(4):265–75.Google Scholar
Shioda, M, Hayashi, M, Takanashi, J, Osawa, M. Lesions in the central tegmental tract in autopsy cases of developmental brain disorders. Brain Dev. 2011;33(7):541–7.Google Scholar
Leech, RW, Brumback, RA. Massive brain stem necrosis in the human neonate: presentation of three cases with review of the literature. J Child Neurol. 1988;3(4):258–62.Google Scholar
Pindur, J, Capin, DM, Johnson, MI, Rance, NE. Cystic brain stem necrosis in a premature infant after prolonged bradycardia. Acta Neuropathol. 1992;83(6):667–9.Google Scholar
Cortez, SC, Kinney, HC. Brainstem tegmental necrosis and olivary hypoplasia: a lethal entity associated with congenital apnea. J Neuropathol Exp Neurol. 1996;55(7):841–9.Google Scholar
D’Cruz, OF, Swisher, CN, Jaradeh, S, Tang, T, Konkol, RJ. Mobius syndrome: evidence for a vascular etiology. J Child Neurol. 1993;8(3):260–5.Google Scholar
Borlot, F, da Paz, JA, Gonzalez, CH, Lucato, LT, Marques-Dias, MJ. Mobius sequence in a girl and arthrogryposis in her half-brother: distinct phenotypes caused by prenatal injuries. Fetal Pediatr Pathol. 2011;30(4):260–5.Google Scholar
Katsetos, CD, Anderson, CE, Guzman, MA, Pascasio, JM, de Chadarevian, JP, Legido, A. Brainstem tegmental necrosis and olivary hypoplasia: raising awareness of a rare neuropathologic correlate of congenital apnea. Semin Pediatr Neurol. 2014;21(2):177–83.Google Scholar
Marques-Dias, MJ, Gonzalez, CH, Rosemberg, S. Mobius sequence in children exposed in utero to misoprostol: neuropathological study of three cases. Birth Defects Res A Clin Mol Teratol. 2003;67(12):1002–7.Google Scholar
Mito, T, Becker, LE, Takashima, S. Neuropathology of central respiratory dysfunction in infancy. Pediatr Neurosurg. 1991;17(2):80–7.Google Scholar
Moya, MP, Delong, GR, Barboriak, D, Cummings, TJ. A lethal association of congenital apnea with brainstem tegmental necrosis. Pediatr Neurol. 2004;30(3):219–21.Google Scholar
Thakkar, N, O’Neil, W, Duvally, J, Liu, C, Ambler, M. Mobius syndrome due to brain stem tegmental necrosis. Arch Neurol. 1977;34(2):124–6.Google Scholar
Towfighi, J, Marks, K, Palmer, E, Vannucci, R. Mobius syndrome. Neuropathologic observations. Acta Neuropathol. 1979;48(1):1117.Google Scholar
Verloes, A, Bitoun, P, Heuskin, A, Amrom, D, van de Broeck, H, Nikkel, SM, et al. Mobius sequence, Robin complex, and hypotonia: severe expression of brainstem disruption spectrum versus Carey-Fineman-Ziter syndrome. Am J Med Genet A. 2004;127A(3):277–87.Google Scholar
Wilson, ER, Mirra, SS, Schwartz, JF. Congenital diencephalic and brain stem damage: neuropathologic study of three cases. Acta Neuropathol. 1982;57(1):70–4.Google Scholar
Gerards, M, Sallevelt, SC, Smeets, HJ. Leigh syndrome: resolving the clinical and genetic heterogeneity paves the way for treatment options. Mol Genet Metab. 2016;117(3):300–12.Google Scholar
Rudzinski, ER, Kapur, RP, Hevner, RF. Fetal akinesia deformation sequence with delayed skeletal muscle maturation and polymicrogyria: evidence for a hypoxic/ischemic pathogenesis. Pediatr Dev Pathol. 2010;13(3):192201.Google Scholar
Quinn, CM, Wigglesworth, JS, Heckmatt, J. Lethal arthrogryposis multiplex congenita: a pathological study of 21 cases. Histopathology. 1991;19(2):155–62.Google Scholar
Johnson, MW, Stoll, L, Rubio, A, Troncoso, J, Pletnikova, O, Fowler, DR, et al. Axonal injury in young pediatric head trauma: a comparison study of beta-amyloid precursor protein (beta-APP) immunohistochemical staining in traumatic and nontraumatic deaths. J Forensic Sci. 2011;56(5):1198–205.Google Scholar
McKenzie, KJ, McLellan, DR, Gentleman, SM, Maxwell, WL, Gennarelli, TA, Graham, DI. Is beta-APP a marker of axonal damage in short-surviving head injury? Acta Neuropathol (Berl). 1996;92(6):608–13.Google Scholar
Rahaman, P, Del Bigio, MR. Histology of brain trauma and hypoxia-ischemia. Acad Forensic Pathol. 2018;8(3):539–54.Google Scholar
Riezzo, I, Neri, M, De Stefano, F, Fulcheri, E, Ventura, F, Pomara, C, et al. The timing of perinatal hypoxia/ischemia events in term neonates: a retrospective autopsy study. HSPs, ORP-150 and COX2 are reliable markers to classify acute, perinatal events. Diagn Pathol. 2010;5:49.Google Scholar
Dies, KA, Bodell, A, Hisama, FM, Guo, CY, Barry, B, Chang, BS, et al. Schizencephaly: association with young maternal age, alcohol use, and lack of prenatal care. J Child Neurol. 2013;28(2):198203.Google Scholar
Kuchukhidze, G, Unterberger, I, Dobesberger, J, Embacher, N, Walser, G, Haberlandt, E, et al. Electroclinical and imaging findings in ulegyria and epilepsy: a study on 25 patients. J Neurol Neurosurg Psychiatry. 2008;79(5):547–52.Google Scholar

References

Munell, F, Tormos, MA, Roig-Quilis, M. Brainstem dysgenesis: beyond Moebius syndrome. Rev Neurol 2018;66:241–50.Google Scholar
Webb, BD, Shaaban, S, Gaspar, H, Cunh, LF, Schubert, CR, Hao, K, Robson, CD, Chan, WM, Andrews C, , MacKinnon, S, Oystreck, DT, Hunter, DG, Iacovelli, AJ, Ye, X, Camminady, A, Engle, EC, Jabs, EW. HOXB1 founder mutation in humans recapitulates the phenotype of Hoxb1-/- mice. Am J Hum Genet 2012;91:171–9.Google Scholar
Pierson, CR, Folkerth, RD, Billiards, SS, Trachtenberg, FL, Drinkwater, ME, Volpe, JJ, Kinney, HC. Gray matter injury associated with periventricular leukomalacia in the premature infant. Acta Neuropathol 2007;114:619–31.Google Scholar
Sladky, JT, Rorke, LB. Perinatal hypoxic-ischemic spinal cord injury. Pediatr Pathol 1986;6:87101.Google Scholar
Singer, R, Joseph, K, Gilai, AN, Meyer, S. Nontraumatic, acute neonatal paraplegia. J Pediatr Orthop 1991;11:588–93.Google Scholar
Sheikh, A, Warren, D, Childs, A-M, Russell, J, Liddington, M, Guruswamy, V, Chumas, P. Paediatric spinal cord infarction – a review of the literature and two case reports. Childs Nerv Syst 2017;33:671–6.Google Scholar
Di Gioia, SA, Connors, S, Matsunami, N, Cannavino, J, Rose, MF, Gilette, NM, Artoni, P, de Macena Sobreira, NL, Chan, WM, Webb, BD, Robson, CD, Cheng, L, Van Ryzin, C, Ramirez-Martinez, A, Mohassel, P, Leppert, M, Scholand, MB, Grunseich, C, Ferreira, CR, Hartman, T, Hayes, IM, Morgan, T, Markie, DM, Fagiolini, M, Swift, A, Chines, PS, Speck-Martins, CE, Collins, FS, Jabs, EW, Bönnemann, CG, Olson, EN; Moebius Syndrome Research Consortium, Carey, JC, Robertson, SP, Manoli, I, Engle, EC. A defect in myoblast fusion underlies Carey-Fineman-Ziter syndrome. Nat Commun 2017;8:16077–93.Google Scholar
Quattrocchi, CC, Longo, D, Delfino, LN, Cilio, MR, Piersigilli, F, Capua, MD, Seganti, G, Danhaive, O, Fariello, G. Dorsal brain stem syndrome: MR imaging location of brain stem tegmental lesions in neonates with oral motor dysfunction. AJNR Am J Neuroradiol 2010;31:1438–42.Google Scholar
de Léon, GA, Radkowski, MA, Crawford, SE, Swisher, CN, Uzoaru, I, de Léon, W. Persistent respiratory failure due to low cervical cord infarction in newborn babies. J Child Neurol 1995;10:200–4.Google Scholar
Clancy, RR, Sladky, JT, Rorke, LB. Hypoxic-ischemic spinal cord injury following perinatal asphyxia. Ann Neurol 1989;25:185–9.Google Scholar
Poretti, A, Boltshauser, E, Huisman, TA. Prenatal cerebellar disruptions: Neuroimaging spectrum of findings in correlation with likely mechanisms and etiologies of injury. Neuroimaging Clin N Am 2016;26:359–72.Google Scholar
Mahieu-Caputo, D, Salomon, LJ, Dommergues, M, Aubry, MC, Sonigo, P, Martinovic, Y, Le Merrer, M, Dumez, Y, Encha-Razavi, F. Arthrogryposis multiplex congenita and cerebellopontine ischemic lesions in sibs: recurrence of prenatal disruptive brain lesions with different patterns of expression? Fetal Diagn Ther 2002;17:153–6.Google Scholar
Folkerth, RD, McLaughlin, ME, Levine, D. Organizing posterior fossa hematomas simulating developmental cysts on prenatal imaging: report of 3 cases. J Ultrasound Med 2001;20:1233–40.Google Scholar
Ebinger, F, Boor, R, Bruhl, K, Reitter, B. Cervical spinal cord atrophy in the atrumatically born neonate: one form of prenatal or perinatal ischaemic insult? Neuropediatrics 2003;34:4551.Google Scholar
Jiang, ZD, Xu, X, Yin, R, Shao, XM, Wilkinson, AR. Differential changes in peripheral and central components of the brain stem auditory evoked potentials during the neonatal period in term infants after perinatal hypoxia-ischemia. Ann Otol Rhinol Laryngol 2004;113:571–6.Google Scholar
Groenendaal, F, Vles, J, Lammers, H, De Vente, J, Smit, D, Nikkels, PG. Nitrotyrosine in human neonatal spinal cord after perinatal asphyxia. Neonatology 2008;93:16.Google Scholar
van Bel, F, Groenendaal, F. Drugs for neuroprotection after birth asphyxia: Pharmacologic adjuncts to hypothermia. Semin Perinatl 2016;40:152–9.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×