Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-vpsfw Total loading time: 0 Render date: 2024-07-22T01:01:26.212Z Has data issue: false hasContentIssue false

Cellular Responses

from Section 4 - Disruptions / Hypoxic-Ischemic Injury

Published online by Cambridge University Press:  07 August 2021

Mirna Lechpammer
Affiliation:
New York University School of Medicine
Marc Del Bigio
Affiliation:
University of Manitoba, Canada
Rebecca Folkerth
Affiliation:
New York University School of Medicine
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Lockshin, RA, Williams, CM. Programmed cell death–I. Cytology of degeneration in the intersegmental muscles of the pernyi silkmoth. J Insect Physiol. 1965;11:123–33.Google Scholar
Kerr, JF, Wyllie, AH, Currie, AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer. 1972;26(4):239–57.CrossRefGoogle ScholarPubMed
Schweichel, JU, Merker, HJ. The morphology of various types of cell death in prenatal tissues. Teratology. 1973;7(3):253–66.CrossRefGoogle ScholarPubMed
Tsujimoto, Y. Multiple ways to die: non-apoptotic forms of cell death. Acta Oncol. 2012;51(3):293300.CrossRefGoogle ScholarPubMed
Denaxa, M, Neves, G, Rabinowitz, A, Kemlo, S, Liodis, P, Burrone, J, et al. Modulation of apoptosis controls inhibitory interneuron number in the cortex. Cell Rep. 2018;22(7):1710–21.CrossRefGoogle ScholarPubMed
Orrenius, S, McConkey, DJ, Jones, DP, Nicotera, P. Ca2+-activated mechanisms in toxicity and programmed cell death. ISI Atlas Sci: Pharmacol. 1988;2(4):319–24.Google Scholar
Burke, RE, Kholodilov, NG. Programmed cell death: does it play a role in Parkinson’s disease? Ann Neurol. 1998;44(3 Suppl 1):S126–33.CrossRefGoogle ScholarPubMed
Zhang, L, Kokkonen, G, Roth, GS. Identification of neuronal programmed cell death in situ in the striatum of normal adult rat brain and its relationship to neuronal death during aging. Brain Res. 1995;677(1):177–9.CrossRefGoogle ScholarPubMed
Bursch, W, Kleine, L, Tenniswood, M. The biochemistry of cell death by apoptosis. Biochem Cell Biol. 1990;68(9):1071–4.CrossRefGoogle ScholarPubMed
Goya, RG. Role of programmed cell death in the aging process: an unexplored possibility. Gerontology. 1986;32(1):3742.CrossRefGoogle ScholarPubMed
Krantic, S, Mechawar, N, Reix, S, Quirion, R. Molecular basis of programmed cell death involved in neurodegeneration. Trends Neurosci. 2005;28(12):670–6.CrossRefGoogle ScholarPubMed
Galluzzi, L, Vitale, I, Aaronson, SA, Abrams, JM, Adam, D, Agostinis, P, et al. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ. 2018;25(3):486541.Google Scholar
Napoletano, F, Baron, O, Vandenabeele, P, Mollereau, B, Fanto, M. Intersections between regulated cell death and autophagy. Trends Cell Biol. 2019;29(4):323–38.Google Scholar
Virchow, R. Die Cellularpathologie in ihrer Begründung auf physiologische und pathologische Gewebelehre. 1st ed. Berlin: August Hirschwald; 1858.Google Scholar
King, LS. Studies on eastern equine encephalomyelitis. I. Histopathology of the nervous system in the guinea pig. J Exp Med. 1938;68(5):677–92.CrossRefGoogle ScholarPubMed
Weller, SD, Norman, RM. Epilepsy due to birth injury in one of identical twins. Arch Dis Child. 1955;30(153):453–6.CrossRefGoogle ScholarPubMed
Meriwether, LS, Hager, H, Scholz, W. Kernicterus; hypoxemia, significant pathogenic factor. AMA Arch Neurol Psychiatry. 1955;73(3):293301.CrossRefGoogle ScholarPubMed
Levine, S. Anoxic-ischemic encephalopathy in rats. Am J Pathol. 1960;36:117.Google ScholarPubMed
Claireaux, A. Haemolytic disease of the newborn: Part I. A clinical-pathological study of 157 cases. Arch Dis Child. 1950;25(121):6180.Google Scholar
Lossi, L, Castagna, C, Merighi, A. Neuronal cell death: an overview of its different forms in central and peripheral neurons. Methods Mol Biol. 2015;1254:118.CrossRefGoogle ScholarPubMed
Fricker, M, Tolkovsky, AM, Borutaite, V, Coleman, M, Brown, GC. Neuronal cell death. Physiol Rev. 2018;98(2):813–80.CrossRefGoogle ScholarPubMed
Unal-Cevik, I, Kilinc, M, Can, A, Gursoy-Ozdemir, Y, Dalkara, T. Apoptotic and necrotic death mechanisms are concomitantly activated in the same cell after cerebral ischemia. Stroke. 2004;35(9):2189–94.Google ScholarPubMed
Elmore, SA, Dixon, D, Hailey, JR, Harada, T, Herbert, RA, Maronpot, RR, et al. Recommendations from the INHAND Apoptosis/Necrosis Working Group. Toxicol Pathol. 2016;44(2):173–88.Google Scholar
Kroemer, G, Galluzzi, L, Vandenabeele, P, Abrams, J, Alnemri, ES, Baehrecke, EH, et al. Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ. 2009;16(1):311.CrossRefGoogle Scholar
Galluzzi, L, Bravo-San Pedro, JM, Vitale, I, Aaronson, SA, Abrams, JM, Adam, D, et al. Essential versus accessory aspects of cell death: recommendations of the NCCD 2015. Cell Death Differ. 2015;22(1):5873.CrossRefGoogle ScholarPubMed
Galluzzi, L, Vitale, I, Abrams, JM, Alnemri, ES, Baehrecke, EH, Blagosklonny, MV, et al. Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ. 2012;19(1):107–20.CrossRefGoogle ScholarPubMed
Martin, LJ, Chang, Q. DNA damage response and repair, DNA methylation, and cell death in human neurons and experimental animal neurons are different. J Neuropathol Exp Neurol. 2018;77(7):636–55.CrossRefGoogle ScholarPubMed
Tagaya, M, Liu, KF, Copeland, B, Seiffert, D, Engler, R, Garcia, JH, et al. DNA scission after focal brain ischemia. Temporal differences in two species. Stroke. 1997;28(6):1245–54.CrossRefGoogle ScholarPubMed
Elmore, S. Apoptosis: a review of programmed cell death. Toxicol Pathol. 2007;35(4):495516.Google Scholar
Mnatsakanyan, N, Beutner, G, Porter, GA, Alavian, KN, Jonas, EA. Physiological roles of the mitochondrial permeability transition pore. J Bioenerg Biomembr. 2017;49(1):1325.Google Scholar
Lossi, L, Castagna, C, Merighi, A. Caspase-3 mediated cell death in the normal development of the mammalian cerebellum. Int J Mol Sci. 2018;19(12):ii:E3999.CrossRefGoogle ScholarPubMed
Srinivasan, A, Roth, KA, Sayers, RO, Shindler, KS, Wong, AM, Fritz, LC, et al. In situ immunodetection of activated caspase-3 in apoptotic neurons in the developing nervous system. Cell Death Differ. 1998;5(12):1004–16.CrossRefGoogle ScholarPubMed
Love, S, Barber, R, Srinivasan, A, Wilcock, GK. Activation of caspase-3 in permanent and transient brain ischaemia in man. Neuroreport. 2000;11(11):2495–9.Google Scholar
Stadelman, C, Mews, I, Srinivasan, A, Deckwerth, TL, Lassmann, H, Bruck, W. Expression of cell death-associated proteins in neuronal apoptosis associated with pontosubicular neuron necrosis. Brain Pathol. 2001;11(3):273–81.CrossRefGoogle ScholarPubMed
Machaalani, R, Radford, JL, Waters, KA. Tissue fixation effects on immunohistochemical staining of caspase-3 in brain tissue. Appl Immunohistochem Mol Morphol. 2007;15(4):463–70.CrossRefGoogle ScholarPubMed
Rossiter, JP, Anderson, LL, Yang, F, Cole, GM. Caspase-3 activation and caspase-like proteolytic activity in human perinatal hypoxic-ischemic brain injury. Acta Neuropathol. 2002;103(1):6673.Google Scholar
Schafer, MK, Pfeiffer, A, Jaeckel, M, Pouya, A, Dolga, AM, Methner, A. Regulators of mitochondrial Ca(2+) homeostasis in cerebral ischemia. Cell Tissue Res. 2014;357(2):395405.CrossRefGoogle ScholarPubMed
Nagley, P, Higgins, GC, Atkin, JD, Beart, PM. Multifaceted deaths orchestrated by mitochondria in neurones. Biochim Biophys Acta. 2010;1802(1):167–85.Google Scholar
Samejima, K, Earnshaw, WC. Trashing the genome: the role of nucleases during apoptosis. Nat Rev Mol Cell Biol. 2005;6(9):677–88.CrossRefGoogle ScholarPubMed
Larsen, BD, Sorensen, CS. The caspase-activated DNase: apoptosis and beyond. FEBS J. 2017;284(8):1160–70.Google Scholar
Ruchaud, S, Korfali, N, Villa, P, Kottke, TJ, Dingwall, C, Kaufmann, SH, et al. Caspase-6 gene disruption reveals a requirement for lamin A cleavage in apoptotic chromatin condensation. EMBO J. 2002;21(8):1967–77.Google Scholar
Miller, JA, Ding, SL, Sunkin, SM, Smith, KA, Ng, L, Szafer, A, et al. Transcriptional landscape of the prenatal human brain. Nature. 2014;508(7495):199206.CrossRefGoogle ScholarPubMed
Hyman, BT, Yuan, J. Apoptotic and non-apoptotic roles of caspases in neuronal physiology and pathophysiology. Nat Rev Neurosci. 2012;13(6):395406.CrossRefGoogle ScholarPubMed
Hooker, DJ, Mobarok, M, Anderson, JL, Rajasuriar, R, Gray, LR, Ellett, AM, et al. A new way of measuring apoptosis by absolute quantitation of inter-nucleosomally fragmented genomic DNA. Nucleic Acids Res. 2012;40(15):e113.CrossRefGoogle ScholarPubMed
Lesauskaite, V, Epistolato, MC, Ivanoviene, L, Tanganelli, P. Apoptosis of cardiomyocytes in explanted and transplanted hearts. Comparison of results from in situ TUNEL, ISEL, and ISOL reactions. Am J Clin Pathol. 2004;121(1):108–16.CrossRefGoogle ScholarPubMed
Charriaut-Marlangue, C, Ben-Ari, Y. A cautionary note on the use of the TUNEL stain to determine apoptosis. Neuroreport. 1995;7(1):61–4.Google Scholar
Burke, C, Gobe, G. Pontosubicular apoptosis (“necrosis”) in human neonates with intrauterine growth retardation and placental infarction. Virchows Arch. 2005;446(6):640–5.Google Scholar
Zille, M, Farr, TD, Przesdzing, I, Muller, J, Sommer, C, Dirnagl, U, et al. Visualizing cell death in experimental focal cerebral ischemia: promises, problems, and perspectives. J Cereb Blood Flow Metab. 2012;32(2):213–31.CrossRefGoogle ScholarPubMed
Didenko, VV, Ngo, H, Minchew, CL, Boudreaux, DJ, Widmayer, MA, Baskin, DS. Visualization of irreparable ischemic damage in brain by selective labeling of double strand blunt-ended DNA breaks. Mol Med. 2002;8(12):818–23.Google Scholar
Hornsby, PJ, Didenko, VV. In situ ligation: a decade and a half of experience. Methods Mol Biol. 2011;682:4963.CrossRefGoogle Scholar
Nakajima, YI, Kuranaga, E. Caspase-dependent non-apoptotic processes in development. Cell Death Differ. 2017;24(8):1422–30.CrossRefGoogle ScholarPubMed
Kumar, A, Rothman, JH. Cell death: hook, line and linker. Curr Biol. 2007;17(8):R286-9.Google Scholar
Kutscher, LM, Shaham, S. Non-apoptotic cell death in animal development. Cell Death Differ. 2017;24(8):1326–36.CrossRefGoogle ScholarPubMed
Gudipaty, SA, Conner, CM, Rosenblatt, J, Montell, DJ. Unconventional ways to live and die: cell death and survival in development, homeostasis, and disease. Annu Rev Cell Dev Biol. 2018;34:311–32.CrossRefGoogle ScholarPubMed
Loh, KY, Wang, Z, Liao, P. Oncotic cell death in stroke. Rev Physiol Biochem Pharmacol. 2019;176:3764.Google Scholar
Yagami, T, Yamamoto, Y, Koma, H. Pathophysiological roles of intracellular proteases in neuronal development and neurological diseases. Mol Neurobiol. 2019;56(5):3090–112.CrossRefGoogle ScholarPubMed
Czogalla, A, Sikorski, AF. Spectrin and calpain: a ‘target’ and a ‘sniper’ in the pathology of neuronal cells. Cell Mol Life Sci. 2005;62(17):1913–24.Google Scholar
Vanderklish, PW, Bahr, BA. The pathogenic activation of calpain: a marker and mediator of cellular toxicity and disease states. Int J Exp Pathol. 2000;81(5):323–39.Google Scholar
McCracken, E, Hunter, AJ, Patel, S, Graham, DI, Dewar, D. Calpain activation and cytoskeletal protein breakdown in the corpus callosum of head-injured patients. J Neurotrauma. 1999;16(9):749–61.CrossRefGoogle ScholarPubMed
Fujikawa, DG. The role of excitotoxic programmed necrosis in acute brain injury. Comput Struct Biotechnol J. 2015;13:212–21.CrossRefGoogle ScholarPubMed
Varela-Ramirez, A, Abendroth, J, Mejia, AA, Phan, IQ, Lorimer, DD, Edwards, TE, et al. Structure of acid deoxyribonuclease. Nucleic Acids Res. 2017;45(10):6217–27.CrossRefGoogle ScholarPubMed
Minchew, CL, Didenko, VV. Dual detection of nucleolytic and proteolytic markers of lysosomal cell death: DNase ii-type breaks and cathepsin d. Methods Mol Biol. 2017;1554:229–36.Google Scholar
Uhlen, M, Fagerberg, L, Hallstrom, BM, Lindskog, C, Oksvold, P, Mardinoglu, A, et al. Proteomics. Tissue-based map of the human proteome. Science. 2015;347(6220):1260419.Google Scholar
Grassi Zucconi, G, Cosi, C, Palmieri, M, Furia, A, Bassetti, MA, Carsana, A. A pancreatic-like ribonuclease is synthesized in rat brain. Brain Res Mol Brain Res. 1992;14(1–2):16.Google Scholar
Morita, T, Sanda, A, Takizawa, Y, Ohgi, K, Irie, M. Distribution of a kidney acid-ribonuclease-like enzyme and the other ribonucleases in bovine organs and body fluids. Agric Biol Chem. 1987;51(10):2751–61.Google Scholar
Albrecht, J, Yanagihara, T. Effect of anoxia and ischemia on ribonuclease activity in brain. J Neurochem. 1979;32(3):1131–3.Google Scholar
Thornton, C, Hagberg, H. Role of mitochondria in apoptotic and necroptotic cell death in the developing brain. Clin Chim Acta. 2015;451(PartA):35–8.CrossRefGoogle ScholarPubMed
Grootjans, S, Vanden Berghe, T, Vandenabeele, P. Initiation and execution mechanisms of necroptosis: an overview. Cell Death Differ. 2017;24(7):1184–95.Google Scholar
Hribljan, V, Lisjak, D, Petrovic, DJ, Mitrecic, D. Necroptosis is one of the modalities of cell death accompanying ischemic brain stroke: from pathogenesis to therapeutic possibilities. Croat Med J. 2019;60(2):121–6.Google Scholar
Liu, T, Bao, YH, Wang, Y, Jiang, JY. The role of necroptosis in neurosurgical diseases. Braz J Med Biol Res. 2015;48(4):292–8.Google Scholar
Dunai, Z, Bauer, PI, Mihalik, R. Necroptosis: biochemical, physiological and pathological aspects. Pathol Oncol Res. 2011;17(4):791800.CrossRefGoogle ScholarPubMed
Jouan-Lanhouet, S, Riquet, F, Duprez, L, Vanden Berghe, T, Takahashi, N, Vandenabeele, P. Necroptosis, in vivo detection in experimental disease models. Semin Cell Dev Biol. 2014;35:213.CrossRefGoogle ScholarPubMed
Degterev, A, Zhou, W, Maki, JL, Yuan, J. Assays for necroptosis and activity of RIP kinases. Methods Enzymol. 2014;545:133.Google Scholar
Ofengeim, D, Ito, Y, Najafov, A, Zhang, Y, Shan, B, DeWitt, JP, et al. Activation of necroptosis in multiple sclerosis. Cell Rep. 2015;10(11):1836–49.Google Scholar
Fan, H, Tang, HB, Kang, J, Shan, L, Song, H, Zhu, K, et al. Involvement of endoplasmic reticulum stress in the necroptosis of microglia/macrophages after spinal cord injury. Neuroscience. 2015;311:362–73.CrossRefGoogle ScholarPubMed
Wang, Y, An, R, Umanah, GK, Park, H, Nambiar, K, Eacker, SM, et al. A nuclease that mediates cell death induced by DNA damage and poly(ADP-ribose) polymerase-1. Science. 2016;354(6308):pii:aad6872.CrossRefGoogle ScholarPubMed
Sairanen, T, Szepesi, R, Karjalainen-Lindsberg, ML, Saksi, J, Paetau, A, Lindsberg, PJ. Neuronal caspase-3 and PARP-1 correlate differentially with apoptosis and necrosis in ischemic human stroke. Acta Neuropathol. 2009;118(4):541–52.CrossRefGoogle ScholarPubMed
Stockwell, BR, Friedmann Angeli, JP, Bayir, H, Bush, AI, Conrad, M, Dixon, SJ, et al. Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell. 2017;171(2):273–85.Google Scholar
Li, Q, Weiland, A, Chen, X, Lan, X, Han, X, Durham, F, et al. Ultrastructural characteristics of neuronal death and white matter injury in mouse brain tissues after intracerebral hemorrhage: coexistence of ferroptosis, autophagy, and necrosis. Front Neurol. 2018;9:581.Google Scholar
Wenzel, SE, Tyurina, YY, Zhao, J, St Croix, CM, Dar, HH, Mao, G, et al. PEBP1 wardens ferroptosis by enabling lipoxygenase generation of lipid death signals. Cell. 2017;171(3):628–41.CrossRefGoogle ScholarPubMed
Cui, D, Sun, D, Wang, X, Yi, L, Kulikowicz, E, Reyes, M, et al. Impaired autophagosome clearance contributes to neuronal death in a piglet model of neonatal hypoxic-ischemic encephalopathy. Cell Death Dis. 2017;8(7):e2919.Google Scholar
Galluzzi, L, Pedro, JM, Blomgren, K, Kroemer, G. Autophagy in acute brain injury. Nat Rev Neurosci. 2016;17(8):467–84.Google Scholar
Descloux, C, Ginet, V, Clarke, PG, Puyal, J, Truttmann, AC. Neuronal death after perinatal cerebral hypoxia-ischemia: Focus on autophagy-mediated cell death. Int J Dev Neurosci. 2015;45:7585.Google Scholar
Button, RW, Luo, S, Rubinsztein, DC. Autophagic activity in neuronal cell death. Neurosci Bull. 2015;31(4):382–94.Google Scholar
Uchiyama, Y, Koike, M, Shibata, M, Sasaki, M. Autophagic neuron death. Methods Enzymol. 2009;453:3351.Google Scholar
Tang, D, Kang, R, Berghe, TV, Vandenabeele, P, Kroemer, G. The molecular machinery of regulated cell death. Cell Res. 2019;29(5):347–64.Google Scholar
Weilinger, NL, Maslieieva, V, Bialecki, J, Sridharan, SS, Tang, PL, Thompson, RJ. Ionotropic receptors and ion channels in ischemic neuronal death and dysfunction. Acta Pharmacol Sin. 2013;34(1):3948.CrossRefGoogle ScholarPubMed
Serwach, K, Gruszczynska-Biegala, J. STIM proteins and glutamate receptors in neurons: role in neuronal physiology and neurodegenerative diseases. Int J Mol Sci. 2019;20(9):E2289.Google Scholar
Back, SA, Rosenberg, PA. Pathophysiology of glia in perinatal white matter injury. Glia. 2014;62(11):1790–815.Google Scholar
Back, SA. White matter injury in the preterm infant: pathology and mechanisms. Acta Neuropathol. 2017;134(3):331–49.Google Scholar
Fujikawa, DG. Activation of caspase-independent programmed pathways in seizure-induced neuronal necrosis. In: Fujikawa, DG, editor. Acute Neuronal Injury. New York: Springer; 2018. pp. 191211.Google Scholar
Olney, JW, Rhee, V, Ho, OL. Kainic acid: a powerful neurotoxic analogue of glutamate. Brain Res. 1974;77(3):507–12.Google Scholar
Olney, JW. Glutamate-induced neuronal necrosis in the infant mouse hypothalamus. An electron microscopic study. J Neuropathol Exp Neurol. 1971;30(1):7590.Google Scholar
Bano, D, Ankarcrona, M. Beyond the critical point: An overview of excitotoxicity, calcium overload and the downstream consequences. Neurosci Lett. 2018;663:7985.Google Scholar
Curcio, M, Salazar, IL, Mele, M, Canzoniero, LM, Duarte, CB. Calpains and neuronal damage in the ischemic brain: The swiss knife in synaptic injury. Prog Neurobiol. 2016;143:135.Google Scholar
Bonfoco, E, Krainc, D, Ankarcrona, M, Nicotera, P, Lipton, SA. Apoptosis and necrosis: two distinct events induced, respectively, by mild and intense insults with N-methyl-D-aspartate or nitric oxide/superoxide in cortical cell cultures. Proc Natl Acad Sci U S A. 1995;92(16):7162–6.Google Scholar
Petito, CK, Pulsinelli, WA. Sequential development of reversible and irreversible neuronal damage following cerebral ischemia. J Neuropathol Exp Neurol. 1984;43(2):141–53.Google Scholar
Garcia, JH, Liu, KF, Ho, KL. Neuronal necrosis after middle cerebral artery occlusion in Wistar rats progresses at different time intervals in the caudoputamen and the cortex. Stroke. 1995;26:636–43.Google Scholar
Pulsinelli, WA, Brierley, JB, Plum, F. Temporal profile of neuronal damage in a model of transient forebrain ischemia. Ann Neurol. 1982;11(5):491–8.CrossRefGoogle Scholar
Schmued, LC, Stowers, CC, Scallet, AC, Xu, L. Fluoro-Jade C results in ultra high resolution and contrast labeling of degenerating neurons. Brain Res. 2005;1035(1):2431.Google Scholar
Xu, X, Lai, Y, Hua, ZC. Apoptosis and apoptotic body: disease message and therapeutic target potentials. Biosci Rep. 2019;39(1):BSR20180992.Google Scholar
Shen, Y, Wang, Z, Li, F, Sun, L. Morphological characteristics of eosinophilic neuronal death after transient unilateral forebrain ischemia in Mongolian gerbils. Neuropathology. 2016;36(3):227–36.Google Scholar
Nitatori, T, Sato, N, Waguri, S, Karasawa, Y, Araki, H, Shibanai, K, et al. Delayed neuronal death in the CA1 pyramidal cell layer of the gerbil hippocampus following transient ischemia is apoptosis. J Neurosci. 1995;15(2):1001–11.CrossRefGoogle ScholarPubMed
Bartus, RT, Dean, RL, Mennerick, S, Eveleth, D, Lynch, G. Temporal ordering of pathogenic events following transient global ischemia. Brain Res. 1998;790(1–2):113.CrossRefGoogle ScholarPubMed
Sun, L, Kuroiwa, T, Ishibashi, S, Katsumata, N, Endo, S, Mizusawa, H. Transition of areas of eosinophilic neurons and reactive astrocytes to delayed cortical infarcts after transient unilateral forebrain ischemia in Mongolian gerbils. Acta Neuropathol. 2006;111(1):21–8.Google Scholar
Garcia, JH, Liu, KF, Ye, ZR, Gutierrez, JA. Incomplete infarct and delayed neuronal death after transient middle cerebral artery occlusion in rats. Stroke. 1997;28(11):2303–9.Google Scholar
Colbourne, F, Li, H, Buchan, AM, Clemens, JA. Continuing postischemic neuronal death in CA1: influence of ischemia duration and cytoprotective doses of NBQX and SNX-111 in rats. Stroke. 1999;30(3):662–8.Google Scholar
Friede, RL. Developmental Neuropathology. 2nd edition. Berlin: Springer Verlag; 1989.Google Scholar
Marin-Padilla, M. Developmental neuropathology and impact of perinatal brain damage. III: Gray matter lesions of the neocortex. J Neuropathol Exp Neurol. 1999;58(5):407–29.Google Scholar
Mito, T, Becker, LE, Takashima, S. Neuropathology of central respiratory dysfunction in infancy. Pediatr Neurosurg. 1991;17(2):80–7.Google Scholar
DiMario, FJ, Jr., Clancy, R. Symmetrical thalamic degeneration with calcifications of infancy. Am J Dis Child. 1989;143(9):1056–60.Google Scholar
Rosales, RK, Riggs, HE. Symmetrical thalamic degeneration in infants. J Neuropathol Exp Neurol. 1962;21:372–6.CrossRefGoogle ScholarPubMed
Parisi, JE, Collins, GH, Kim, RC, Crosley, CJ. Prenatal symmetrical thalamic degeneration with flexion spasticity at birth. Ann Neurol. 1983;13(1):94–7.Google Scholar
Leestma, JE, Martin, E. An electron probe and histochemical study of the “ferruginated” neuron. Arch Pathol. 1968;86(6):597605.Google Scholar
Gayoso, MJ, Al-Majdalawi, A, Garrosa, M, Calvo, B, Diaz-Flores, L. Selective calcification of rat brain lesions caused by systemic administration of kainic acid. Histol Histopathol. 2003;18(3):855–69.Google Scholar
Oehmichen, M. Vitality and time course of wounds. Forensic Sci Int. 2004;144(2–3):221–31.Google Scholar
Portera-Cailliau, C, Price, DL, Martin, LJ. Excitotoxic neuronal death in the immature brain is an apoptosis-necrosis morphological continuum. J Comp Neurol. 1997;378(1):7087.Google Scholar
Thornton, C, Leaw, B, Mallard, C, Nair, S, Jinnai, M, Hagberg, H. Cell death in the developing brain after hypoxia-ischemia. Front Cell Neurosci. 2017;11:248.CrossRefGoogle ScholarPubMed
Kuan, CY, Roth, KA, Flavell, RA, Rakic, P. Mechanisms of programmed cell death in the developing brain. Trends Neurosci. 2000;23(7):291–7.Google Scholar
Krajewska, M, Mai, JK, Zapata, JM, Ashwell, KW, Schendel, SL, Reed, JC, et al. Dynamics of expression of apoptosis-regulatory proteins Bid, Bcl-2, Bcl-X, Bax and Bak during development of murine nervous system. Cell Death Differ. 2002;9(2):145–57.Google Scholar
Ludwig-Galezowska, AH, Flanagan, L, Rehm, M. Apoptosis repressor with caspase recruitment domain, a multifunctional modulator of cell death. J Cell Mol Med. 2011;15(5):1044–53.Google Scholar
Yuan, J, Amin, P, Ofengeim D. Necroptosis and RIPK1-mediated neuroinflammation in CNS diseases. Nat Rev Neurosci. 2019;20(1):1933.Google Scholar
Hill, CS, Coleman, MP, Menon, DK. Traumatic axonal injury: mechanisms and translational opportunities. Trends Neurosci. 2016;39(5):311–24.Google Scholar
Cornejo, VH, Luarte, A, Couve, A. Global and local mechanisms sustain axonal proteostasis of transmembrane proteins. Traffic. 2017;18(5):255–66.CrossRefGoogle ScholarPubMed
Iwata, A, Stys, PK, Wolf, JA, Chen, XH, Taylor, AG, Meaney, DF, et al. Traumatic axonal injury induces proteolytic cleavage of the voltage-gated sodium channels modulated by tetrodotoxin and protease inhibitors. J Neurosci. 2004;24(19):4605–13.CrossRefGoogle ScholarPubMed
Simon, DJ, Weimer, RM, McLaughlin, T, Kallop, D, Stanger, K, Yang, J, et al. A caspase cascade regulating developmental axon degeneration. J Neurosci. 2012;32(49):17540–53.Google Scholar
Arrazola, MS, Saquel, C, Catalan, RJ, Barrientos, SA, Hernandez, DE, Martinez, NW, et al. Axonal degeneration is mediated by necroptosis activation. J Neurosci. 2019;39(20):3832–44.Google Scholar
Arrazola, MS, Court, FA. Compartmentalized necroptosis activation in excitotoxicity-induced axonal degeneration: a novel mechanism implicated in neurodegenerative disease pathology. Neural Regen Res. 2019;14(8):1385–6.Google Scholar
Hernandez, DE, Salvadores, NA, Moya-Alvarado, G, Catalan, RJ, Bronfman, FC, Court, FA. Axonal degeneration induced by glutamate excitotoxicity is mediated by necroptosis. J Cell Sci. 2018;131(22):jcs214684.Google Scholar
Ding, C, Hammarlund, M. Mechanisms of injury-induced axon degeneration. Curr Opin Neurobiol. 2019;57:171–8.Google Scholar
Sherriff, FE, Bridges, LR, Gentleman, SM, Sivaloganathan, S, Wilson, S. Markers of axonal injury in post mortem human brain. Acta Neuropathol. 1994;88(5):433–9.Google Scholar
Baiden Amissah, K, Joashi, U, Blumberg, R, Mehmet, H, Edwards, AD, Cox, PM. Expression of amyloid precursor protein (beta-APP) in the neonatal brain following hypoxic ischaemic injury. Neuropathol Appl Neurobiol. 1998;24(5):346–52.Google Scholar
Bell, JE, Becher, JC, Wyatt, B, Keeling, JW, McIntosh, N. Brain damage and axonal injury in a Scottish cohort of neonatal deaths. Brain. 2005;128(Pt. 5):1070–81.Google Scholar
Johnson, VE, Stewart, W, Weber, MT, Cullen, DK, Siman, R, Smith, DH. SNTF immunostaining reveals previously undetected axonal pathology in traumatic brain injury. Acta Neuropathol. 2016;131(1):115–35.Google Scholar
Liu, CH, Rasband, MN. Axonal spectrins: nanoscale organization, functional domains and spectrinopathies. Front Cell Neurosci. 2019;13:234.Google Scholar
Siman, R, Baudry, M, Lynch, G. Brain fodrin: substrate for calpain I, an endogenous calcium-activated protease. Proc Natl Acad Sci U S A. 1984;81(11):3572–6.Google Scholar
Sokolowski, JD, Gamage, KK, Heffron, DS, Leblanc, AC, Deppmann, CD, Mandell, JW. Caspase-mediated cleavage of actin and tubulin is a common feature and sensitive marker of axonal degeneration in neural development and injury. Acta Neuropathol Commun. 2014;2:16.Google Scholar
Maor-Nof, M, Yaron, A. Neurite pruning and neuronal cell death: spatial regulation of shared destruction programs. Curr Opin Neurobiol. 2013;23(6):990–6.Google Scholar

References

Sofroniew, MV, Vinters, HV. Astrocytes: biology and pathology. Acta Neuropathol. 2010;119(1):735.Google Scholar
Verkhratsky, A, Steardo, L, Parpura, V, Montana, V. Translational potential of astrocytes in brain disorders. Prog Neurobiol. 2016;144:188–205.Google Scholar
Bayraktar, OA, Fuentealba, LC, Alvarez-Buylla, A, Rowitch, DH. Astrocyte development and heterogeneity. Cold Spring Harb Perspect Biol. 2015;7(1):a020362.Google Scholar
Namihira, M, Nakashima, K. Mechanisms of astrocytogenesis in the mammalian brain. Curr Opin Neurobiol. 2013;23(6):921–7.Google Scholar
Thrane, AS, Rangroo Thrane, V, Nedergaard, M. Drowning stars: reassessing the role of astrocytes in brain edema. Trends Neurosci. 2014;37(11):620–8.Google Scholar
Bazargani, N, Attwell, D. Astrocyte calcium signaling: the third wave. Nat Neurosci. 2016;19(2):182–9.Google Scholar
Matyash, V, Kettenmann, H. Heterogeneity in astrocyte morphology and physiology. Brain Res Rev. 2010;63(1–2):210.Google Scholar
Sun, W, Cornwell, A, Li, J, Peng, S, Osorio, MJ, Su Wanga, NA, et al. SOX9 is an astrocyte-specific nuclear marker in the adult brain outside the neurogenic regions. J Neurosci. 2017;37(17):4493–507.Google Scholar
Lafrenaye, AD, Simard, JM. Bursting at the seams: molecular mechanisms mediating astrocyte swelling. Int J Mol Sci. 2019;20(2):pii:E330.CrossRefGoogle ScholarPubMed
Del Bigio, MR, Deck, JHN, Davidson, GS. Glial swelling with eosinophilia in human post-mortem brains: a change indicative of plasma extravasation. Acta Neuropathol. 2000;100:688–94.CrossRefGoogle ScholarPubMed
Pekny, M, Nilsson, M. Astrocyte activation and reactive gliosis. Glia. 2005;50(4):427–34.Google Scholar
Pekny, M, Pekna, M. Astrocyte reactivity and reactive astrogliosis: costs and benefits. Physiol Rev. 2014;94(4):1077–98.CrossRefGoogle ScholarPubMed
Rosenstein, JM, Krum, JM, Ruhrberg, C. VEGF in the nervous system. Organogenesis. 2010;6(2):107–14.Google Scholar
Liberto, CM, Albrecht, PJ, Herx, LM, Yong, VW, Levison, SW. Pro-regenerative properties of cytokine-activated astrocytes. J Neurochem. 2004;89(5):1092–100.Google Scholar
Liddelow, SA, Barres, BA. Reactive astrocytes: production, function, and therapeutic potential. Immunity. 2017;46(6):957–67.Google Scholar
Ge, WP, Jia, JM. Local production of astrocytes in the cerebral cortex. Neuroscience. 2016;323:39.Google Scholar
Kanski, R, van Strien, ME, van Tijn, P, Hol, EM. A star is born: new insights into the mechanism of astrogenesis. Cell Mol Life Sci. 2014;71(3):433–47.Google Scholar
Manlow, A, Munoz, DG. A non-toxic method for the demonstration of gliosis. J Neuropathol Exp Neurol. 1992;51:298302.Google Scholar
Fernandez-Klett, F, Priller, J. The fibrotic scar in neurological disorders. Brain Pathol. 2014;24(4):404–13.Google Scholar
Nave, KA. Myelination and the trophic support of long axons. Nat Rev Neurosci. 2010;11(4):275–83.Google Scholar
van Tilborg, E, CGM, de Theije, van Hal, M, Wagenaar, N, de Vries, LS, Benders, MJ, et al. Origin and dynamics of oligodendrocytes in the developing brain: Implications for perinatal white matter injury. Glia. 2018;66(2):221–38.Google Scholar
Chang, A, Nishiyama, A, Peterson, J, Prineas, J, Trapp, BD. NG2-positive oligodendrocyte progenitor cells in adult human brain and multiple sclerosis lesions. J Neurosci. 2000;20(17):6404–12.Google Scholar
Levine, JM, Reynolds, R, Fawcett, JW. The oligodendrocyte precursor cell in health and disease. Trends Neurosci. 2001;24(1):3947.Google Scholar
Foerster, S, Hill, MFE, Franklin, RJM. Diversity in the oligodendrocyte lineage: Plasticity or heterogeneity? Glia. 2019;67(10):1797–1805.Google Scholar
Elbaz, B, Popko, B. Molecular control of oligodendrocyte development. Trends Neurosci. 2019;42(4):263–77.Google Scholar
Takase, H, Washida, K, Hayakawa, K, Arai, K, Wang, X, Lo, EH, et al. Oligodendrogenesis after traumatic brain injury. Behav Brain Res. 2018;340:205–11.Google Scholar
Flygt, J, Gumucio, A, Ingelsson, M, Skoglund, K, Holm, J, Alafuzoff, I, et al. Human traumatic brain injury results in oligodendrocyte death and increases the number of oligodendrocyte progenitor cells. J Neuropathol Exp Neurol. 2016;75(6):503–15.Google Scholar
Bruni, JE. Ependymal development, proliferation, and functions: a review. Microsc Res Tech. 1998;41(1):213.Google Scholar
Sarnat, HB. Role of the human fetal ependyma. Pediatr Neurol. 1992;8:163–78.CrossRefGoogle ScholarPubMed
Del Bigio, MR. Cell proliferation in human ganglionic eminence and suppression after prematurity-associated haemorrhage. Brain. 2011;134(Pt 5):1344–61.Google Scholar
Shah, PT, Stratton, JA, Stykel, MG, Abbasi, S, Sharma, S, Mayr, KA, et al. Single-cell transcriptomics and fate mapping of ependymal cells reveals an absence of neural stem cell function. Cell. 2018;173(4):1045–57.e9.Google Scholar
Coletti, AM, Singh, D, Kumar, S, Shafin, TN, Briody, PJ, Babbitt, BF, et al. Characterization of the ventricular-subventricular stem cell niche during human brain development. Development. 2018;145(20):pii:dev170100.Google Scholar
Sarnat, HB. Histochemistry and immunocytochemistry of the developing ependyma and choroid plexus. Microsc Res Tech. 1998;41(1):1428.Google Scholar
Kawanishi, R, Mizutani, T, Yamada, H, Minami, M, Kakimi, S, Yamada, T, et al. Ubiquitin-positive inclusions in ependymal cells. Acta Neuropathol. 2003;106(2):129–36.Google Scholar
Abdi, K, Lai, CH, Paez-Gonzalez, P, Lay, M, Pyun, J, Kuo, CT. Uncovering inherent cellular plasticity of multiciliated ependyma leading to ventricular wall transformation and hydrocephalus. Nat Commun. 2018;9(1):1655.Google Scholar
Del Bigio, MR. Ependymal cells: biology and pathology. Acta Neuropathol. 2010;119(1):5573.Google Scholar
Sarnat, HB. Ependymal reactions to injury. A review. J Neuropathol Exp Neurol. 1995;54(1):115.Google Scholar
Bruni, JE, Del Bigio, MR, Clattenburg, RE. Ependyma: normal and pathological. A review of the literature. Brain Res. 1985;356(1):119.Google Scholar
Munoz, RI, Kahne, T, Herrera, H, Rodriguez, S, Guerra, MM, Vio, K, et al. The subcommissural organ and the Reissner fiber: old friends revisited. Cell Tissue Res. 2019;375(2):507–29.Google Scholar
Wohlsein, P, Deschl, U, Baumgartner, W. Nonlesions, unusual cell types, and postmortem artifacts in the central nervous system of domestic animals. Vet Pathol. 2013;50(1):122–43.Google Scholar
Keene, MF, Hewer, EE. The subcommissural organ and the mesocoelic recess in the human brain, together with a note on reissner’s fibre. J Anat. 1935;69(4):501–7.Google Scholar
Galarza, M. Evidence of the subcommissural organ in humans and its association with hydrocephalus. Neurosurg Rev. 2002;25(4):205–15.Google Scholar
Cantaut-Belarif, Y, Sternberg, JR, Thouvenin, O, Wyart, C, Bardet, PL. The Reissner fiber in the cerebrospinal fluid controls morphogenesis of the body axis. Curr Biol. 2018;28(15):2479–86 e4.Google Scholar
Grondona, JM, Hoyo-Becerra, C, Visser, R, Fernandez-Llebrez, P, Lopez-Avalos, MD. The subcommissural organ and the development of the posterior commissure. Int Rev Cell Mol Biol. 2012;296:63137.Google Scholar
Milhorat, TH, Kotzen, RM, Anzil, AP. Stenosis of central canal of spinal cord in man: incidence and pathological findings in 232 autopsy cases. J Neurosurg. 1994;80(4):716–22.Google Scholar

References

Kuper, CF, van Bilsen, J, Cnossen, H, Houben, G, Garthoff, J, Wolterbeek, A. Development of immune organs and functioning in humans and test animals: Implications for immune intervention studies. Reprod Toxicol. 2016;64:180–90.Google Scholar
Yockey, LJ, Iwasaki, A. Interferons and proinflammatory cytokines in pregnancy and fetal development. Immunity. 2018;49(3):397412.Google Scholar
Simon, AK, Hollander, GA, McMichael, A. Evolution of the immune system in humans from infancy to old age. Proc Biol Sci. 2015;282(1821):20143085.Google Scholar
Thapa, P, Farber, DL. The role of the thymus in the immune response. Thorac Surg Clin. 2019;29(2):123–31.CrossRefGoogle ScholarPubMed
Kinder, JM, Stelzer, IA, Arck, PC, Way, SS. Immunological implications of pregnancy-induced microchimerism. Nat Rev Immunol. 2017;17(8):483–94.Google Scholar
Rijnink, EC, Penning, ME, Wolterbeek, R, Wilhelmus, S, Zandbergen, M, van Duinen, SG, et al. Tissue microchimerism is increased during pregnancy: a human autopsy study. Mol Hum Reprod. 2015;21(11):857–64.Google Scholar
Visser, GHA, Di Renzo, GC, Spitalnik, SL, Motherhood, FCS, Newborn, H. The continuing burden of Rh disease 50 years after the introduction of anti-Rh(D) immunoglobin prophylaxis: call to action. Am J Obstet Gynecol. 2019;Epub:pii: S0002-9378(19)30677–5.Google Scholar
Maddux, AB, Douglas, IS. Is the developmentally immature immune response in paediatric sepsis a recapitulation of immune tolerance? Immunology. 2015;145(1):110.Google Scholar
Graeber, MB, Streit, WJ. Microglia: biology and pathology. Acta Neuropathol. 2010;119:89105.Google Scholar
Menassa, DA, Gomez-Nicola, D. Microglial dynamics during human brain development. Front Immunol. 2018;9:1014.Google Scholar
Askew, K, Gomez-Nicola, D. A story of birth and death: Insights into the formation and dynamics of the microglial population. Brain Behav Immun. 2018;69:917.Google Scholar
Smolders, SM, Kessels, S, Vangansewinkel, T, Rigo, JM, Legendre, P, Brone, B. Microglia: brain cells on the move. Prog Neurobiol. 2019;178:101612.CrossRefGoogle ScholarPubMed
Askew, K, Li, K, Olmos-Alonso, A, Garcia-Moreno, F, Liang, Y, Richardson, P, et al. Coupled proliferation and apoptosis maintain the rapid turnover of microglia in the adult brain. Cell Rep. 2017;18(2):391405.Google Scholar
Dennis, CV, Suh, LS, Rodriguez, ML, Kril, JJ, Sutherland, GT. Human adult neurogenesis across the ages: An immunohistochemical study. Neuropathol Appl Neurobiol. 2016;42(7):621–38.Google Scholar
Reu, P, Khosravi, A, Bernard, S, Mold, JE, Salehpour, M, Alkass, K, et al. The lifespan and turnover of microglia in the human brain. Cell Rep. 2017;20(4):779–84.Google Scholar
Billiards, SS, Haynes, RL, Folkerth, RD, Trachtenberg, FL, Liu, LG, Volpe, JJ, et al. Development of microglia in the cerebral white matter of the human fetus and infant. J Comp Neurol. 2006;497(2):199208.Google Scholar
Joost, E, Jordao, MJC, Mages, B, Prinz, M, Bechmann, I, Krueger, M. Microglia contribute to the glia limitans around arteries, capillaries and veins under physiological conditions, in a model of neuroinflammation and in human brain tissue. Brain Struct Funct. 2019;224(3):1301–14.Google Scholar
Blakemore, WF. The ultrastructure of normal and reactive microglia. Acta Neuropathol Suppl. 1975;Suppl 6:273–8.Google Scholar
Zhao, X, Eyo, UB, Murugan, M, Wu, LJ. Microglial interactions with the neurovascular system in physiology and pathology. Dev Neurobiol. 2018;78(6):604–17.Google Scholar
Arnold, T, Betsholtz, C. The importance of microglia in the development of the vasculature in the central nervous system. Vasc Cell. 2013;5(1):12.Google Scholar
Konishi, H, Kiyama, H, Ueno, M. Dual functions of microglia in the formation and refinement of neural circuits during development. Int J Dev Neurosci. 2019 77:18–25.Google Scholar
Thion, MS, Ginhoux, F, Garel, S. Microglia and early brain development: An intimate journey. Science. 2018;362(6411):185–9.Google Scholar
Pierre, WC, Smith, PLP, Londono, I, Chemtob, S, Mallard, C, Lodygensky, GA. Neonatal microglia: The cornerstone of brain fate. Brain Behav Immun. 2017;59:333–45.Google Scholar
Kierdorf, K, Prinz, M. Microglia in steady state. J Clin Invest. 2017;127(9):3201–9.Google Scholar
Mosser, CA, Baptista, S, Arnoux, I, Audinat, E. Microglia in CNS development: shaping the brain for the future. Prog Neurobiol. 2017;149–150:120.Google Scholar
Eyo, UB, Wu, LJ. Microglia: lifelong patrolling immune cells of the brain. Prog Neurobiol. 2019;179:101614.Google Scholar
Goldmann, T, Wieghofer, P, Jordao, MJ, Prutek, F, Hagemeyer, N, Frenzel, K, et al. Origin, fate and dynamics of macrophages at central nervous system interfaces. Nat Immunol. 2016;17(7):797805.Google Scholar
Lopez-Atalaya, JP, Askew, KE, Sierra, A, Gomez-Nicola, D. Development and maintenance of the brain’s immune toolkit: Microglia and non-parenchymal brain macrophages. Dev Neurobiol. 2018;78(6):561–79.Google Scholar
Bechmann, I, Kwidzinski, E, Kovac, AD, Simburger, E, Horvath, T, Gimsa, U, et al. Turnover of rat brain perivascular cells. Exp Neurol. 2001;168(2):242–9.Google Scholar
Owens, T, Bechmann, I, Engelhardt, B. Perivascular spaces and the two steps to neuroinflammation. J Neuropathol Exp Neurol. 2008;67(12):1113–21.Google Scholar
Krueger, M, Bechmann, I. CNS pericytes: concepts, misconceptions, and a way out. Glia. 2010;58(1):110.Google Scholar
Muramatsu, R, Yamashita, T. Pericyte function in the physiological central nervous system. Neurosci Res. 2014;81–82:3841.Google Scholar
Berthiaume, AA, Hartmann, DA, Majesky, MW, Bhat, NR, Shih, AY. Pericyte structural remodeling in cerebrovascular health and homeostasis. Front Aging Neurosci. 2018;10:210.Google Scholar
Giannoni, P, Badaut, J, Dargazanli, C, De Maudave, AF, Klement, W, Costalat, V, et al. The pericyte-glia interface at the blood-brain barrier. Clin Sci (Lond). 2018;132(3):361–74.Google Scholar
Lambracht-Hall, M, Dimitriadou, V, Theoharides, TC. Migration of mast cells in the developing rat brain. Brain Res Dev Brain Res. 1990;56(2):151–9.Google Scholar
Dropp, JJ. Mast cells in the human brain. Acta Anat (Basel). 1979;105(4):505–13.Google Scholar
Forsythe, P. Mast cells in neuroimmune interactions. Trends Neurosci. 2019;42(1):4355.Google Scholar
Hendriksen, E, van Bergeijk, D, Oosting, RS, Redegeld, FA. Mast cells in neuroinflammation and brain disorders. Neurosci Biobehav Rev. 2017;79:119–33.Google Scholar
Silver, R, Silverman, AJ, Vitkovic, L, Lederhendler, II. Mast cells in the brain: evidence and functional significance. Trends Neurosci. 1996;19(1):2531.Google Scholar
Strecker, JK, Schmidt, A, Schabitz, WR, Minnerup, J. Neutrophil granulocytes in cerebral ischemia – Evolution from killers to key players. Neurochem Int. 2017;107:117–26.Google Scholar
Hickey, WF. Migration of hematogenous cells through the blood-brain barrier and the initiation of CNS inflammation. Brain Pathol. 1991;1:97105.Google Scholar
Hickey, WF. Leukocyte traffic in the central nervous system: the participants and their roles. Semin Immunol. 1999;11(2):125–37.Google Scholar
Williams, KC, Hickey, WF. Traffic of hematogenous cells through the central nervous system. Curr Top Microbiol Immunol. 1995;202:221–45.Google Scholar
Liu, F, McCullough, LD. Inflammatory responses in hypoxic ischemic encephalopathy. Acta Pharmacol Sin. 2013;34(9):1121–30.Google Scholar
Izquierdo, P, Attwell, D, Madry, C. Ion channels and receptors as determinants of microglial function. Trends Neurosci. 2019;42(4):278–92.Google Scholar
Alderliesten, T, Nikkels, PG, Benders, MJ, de Vries, LS, Groenendaal, F. Antemortem cranial MRI compared with postmortem histopathologic examination of the brain in term infants with neonatal encephalopathy following perinatal asphyxia. Arch Dis Child Fetal Neonatal Ed. 2013;98(4):F304–F9.Google Scholar
Boche, D, Perry, VH, Nicoll, JA. Activation patterns of microglia and their identification in the human brain. Neuropathol Appl Neurobiol. 2013;39:318.Google Scholar
Smith, AM, Dragunow, M. The human side of microglia. Trends Neurosci. 2014;37(3):125–35.Google Scholar
Walker, DG, Lue, LF. Immune phenotypes of microglia in human neurodegenerative disease: challenges to detecting microglial polarization in human brains. Alzheimer’s Res Ther. 2015;7(1):56.Google Scholar
Schetters, STT, Gomez-Nicola, D, Garcia-Vallejo, JJ, Van Kooyk, Y. Neuroinflammation: microglia and T cells get ready to tango. Front Immunol. 2017;8:1905.Google Scholar
Torres-Platas, SG, Comeau, S, Rachalski, A, Bo, GD, Cruceanu, C, Turecki, G, et al. Morphometric characterization of microglial phenotypes in human cerebral cortex. J Neuroinflammation. 2014;11:12.Google Scholar
Brooks, SA. Lectin histochemistry: historical perspectives, state of the art, and the future. Methods Mol Biol. 2017;1560:93107.Google Scholar
Del Bigio, MR, Becker, LE. Microglial aggregation in the dentate gyrus: a marker of mild hypoxic-ischaemic brain insult in human infants. Neuropathol Appl Neurobiol. 1994;20:144–51.Google ScholarPubMed
Fujimoto, E, Miki, A, Mizoguti, H. Histochemical study of the differentiation of microglial cells in the developing human cerebral hemispheres. J Anat. 1989;166:253–64.Google Scholar
Zrzavy, T, Hoftberger, R, Berger, T, Rauschka, H, Butovsky, O, Weiner, H, et al. Pro-inflammatory activation of microglia in the brain of patients with sepsis. Neuropathol Appl Neurobiol. 2019;45(3):278–90.Google Scholar
Sarkar, T, Patro, N, Patro, IK. Cumulative multiple early life hits- a potent threat leading to neurological disorders. Brain Res Bull. 2019;147:5868.Google Scholar
Hantsoo, L, Kornfield, S, Anguera, MC, Epperson, CN. Inflammation: A Proposed Intermediary Between Maternal Stress and Offspring Neuropsychiatric Risk. Biol Psychiatry. 2019;85(2):97106.Google Scholar
Jiang, NM, Cowan, M, Moonah, SN, Petri, WA, Jr. The impact of systemic inflammation on neurodevelopment. Trends Mol Med. 2018;24(9):794804.Google Scholar
Hung, TH, Chen, VC, Yang, YH, Tsai, CS, Lu, ML, McIntyre, RS, et al. Association between enterovirus infection and speech and language impairments: a nationwide population-based study. Res Dev Disabil. 2018;77:7686.Google Scholar
Instanes, JT, Halmoy, A, Engeland, A, Haavik, J, Furu, K, Klungsoyr, K. Attention-deficit / hyperactivity disorder in offspring of mothers with inflammatory and immune system diseases. Biol Psychiatry. 2017;81(5):452–9.Google Scholar
Strunk, T, Inder, T, Wang, X, Burgner, D, Mallard, C, Levy, O. Infection-induced inflammation and cerebral injury in preterm infants. Lancet Infect Dis. 2014;14(8):751–62.Google Scholar
Mallard, C, Tremblay, ME, Vexler, ZS. Microglia and neonatal brain injury. Neuroscience. 2019;405:6876.Google Scholar
Ikegami, A, Haruwaka, K, Wake, H. Microglia: lifelong modulator of neural circuits. Neuropathology. 2019;39(3):173–80.Google Scholar
Wohleb, ES. Neuron-microglia interactions in mental health disorders: “for better, and for worse.Front Immunol. 2016;7:544.Google Scholar
Galloway, DA, Phillips, AEM, Owen, DRJ, Moore, CS. Phagocytosis in the brain: homeostasis and disease. Front Immunol. 2019;10:790.Google Scholar
Giraud, A, Guiraut, C, Chevin, M, Chabrier, S, Sebire, G. Role of perinatal inflammation in neonatal arterial ischemic stroke. Front Neurol. 2017;8:612.CrossRefGoogle ScholarPubMed
Parrella, E, Porrini, V, Benarese, M, Pizzi, M. The role of mast cells in stroke. Cells. 2019;8(5):E437.Google Scholar
Bhalala, US, Koehler, RC, Kannan, S. Neuroinflammation and neuroimmune dysregulation after acute hypoxic-ischemic injury of developing brain. Front Pediatr. 2014;2:144.Google Scholar
McDonough, A, Lee, RV, Weinstein, JR. Microglial interferon signaling and white matter. Neurochem Res. 2017;42(9):2625–38.Google Scholar
Aggarwal, S, Bahal, A, Dalal, A. Renal dysfunction in sibs with band like calcification with simplified gyration and polymicrogyria: report of a new mutation and review of literature. Eur J Med Genet. 2016;59(1):510.Google Scholar
Biber, K, Owens, T, Boddeke, E. What is microglia neurotoxicity (Not)? Glia. 2014;62(6):841–54.Google Scholar
Hendrickx, DAE, van Eden, CG, Schuurman, KG, Hamann, J, Huitinga, I. Staining of HLA-DR, Iba1 and CD68 in human microglia reveals partially overlapping expression depending on cellular morphology and pathology. J Neuroimmunol. 2017;309:1222.Google Scholar
Ito, D, Imai, Y, Ohsawa, K, Nakajima, K, Fukuuchi, Y, Kohsaka, S. Microglia-specific localisation of a novel calcium binding protein, Iba1. Brain Res Mol Brain Res. 1998;57(1):19.Google Scholar
Monier, A, Evrard, P, Gressens, P, Verney, C. Distribution and differentiation of microglia in the human encephalon during the first two trimesters of gestation. J Comp Neurol. 2006;499(4):565–82.Google Scholar
Monier, A, Adle-Biassette, H, Delezoide, AL, Evrard, P, Gressens, P, Verney, C. Entry and distribution of microglial cells in human embryonic and fetal cerebral cortex. J Neuropathol Exp Neurol. 2007;66(5):372–82.Google Scholar
Micklem, K, Rigney, E, Cordell, J, Simmons, D, Stross, P, Turley, H, et al. A human macrophage-associated antigen (CD68) detected by six different monoclonal antibodies. Br J Haematol. 1989;73(1):611.Google Scholar
Gehrmann, J, Banati, RB, Kreutzberg, GW. Microglia in the immune surveillance of the brain: human microglia constitutively express HLA-DR molecules. J Neuroimmunol. 1993;48(2):189–98.Google Scholar
Mildner, A, Huang, H, Radke, J, Stenzel, W, Priller, J. P2Y12 receptor is expressed on human microglia under physiological conditions throughout development and is sensitive to neuroinflammatory diseases. Glia. 2017;65(2):375–87.Google Scholar
Bennett, ML, Bennett, FC, Liddelow, SA, Ajami, B, Zamanian, JL, Fernhoff, NB, et al. New tools for studying microglia in the mouse and human CNS. Proc Natl Acad Sci U S A. 2016;113(12):E1738–E46.Google Scholar
Satoh, JI, Kino, Y, Asahina, N, Takitani, M, Miyoshi, J, Ishida, T, et al. TMEM119 marks a subset of microglia in the human brain. Neuropathology. 2015;36(1):3949.Google Scholar
Zrzavy, T, Machado-Santos, J, Christine, S, Baumgartner, C, Weiner, HL, Butovsky, O, et al. Dominant role of microglial and macrophage innate immune responses in human ischemic infarcts. Brain Pathol. 2018;28(6):791805.Google Scholar
Haage, V, Semtner, M, Vidal, RO, Hernandez, DP, Pong, WW, Chen, Z, et al. Comprehensive gene expression meta-analysis identifies signature genes that distinguish microglia from peripheral monocytes/macrophages in health and glioma. Acta Neuropathol Commun. 2019;7(1):20.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×