Skip to main content Accessibility help
×
Hostname: page-component-7bb8b95d7b-nptnm Total loading time: 0 Render date: 2024-09-06T03:42:12.038Z Has data issue: false hasContentIssue false

9 - Phase transition in FOL covering test

Published online by Cambridge University Press:  05 August 2012

Lorenza Saitta
Affiliation:
Università degli Studi del Piemonte Orientale Amedeo Avogadro
Attilio Giordana
Affiliation:
Università degli Studi del Piemonte Orientale Amedeo Avogadro
Antoine Cornuéjols
Affiliation:
AgroParis Tech (INA-PG)
Get access

Summary

In this chapter we will discuss in depth the results that have emerged in recent work on the covering test in first-order logic (Giordana and Saitta, 2000; Maloberti and Sebag, 2004); this was introduced in Section 5.2.3, with particular emphasis on the DATALOG language. With this language, the covering test for a hypothesis ϕ(x1, …, xn) reduces to the problem of finding a substitution θ, for the variables x1, …, xn, by a set of constants a1, …, an that satisfies the formula ϕ.

Moreover, in Section 8.3 we showed how a covering test, i.e., the matching problem (ϕ, e), can be transformed into a CSP. As a consequence, a phase transition may be expected in the covering test, according to results obtained by several authors (Smith and Dyer, 1996; Prosser, 1996). As discussed in Chapter 4, studies on CSPs have exploited a variety of generative models designed to randomly sample areas of interest in the CSP space. As the CSPs occurring in practice may have hundreds or thousands of variables and constraints, the investigations were oriented toward large problems; also, there was much interest in the asymptotic behavior of CSPs for large n.

Machine learning deals with small CSP problems

In machine learning, even though the equivalence of the matching problem with a CSP suggests the emergence of a phase transition, the range of problem sizes involved is much smaller, as the typical number of variables and constraints in relational learning is rarely greater than 10.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×