Skip to main content Accessibility help
×
Hostname: page-component-7bb8b95d7b-l4ctd Total loading time: 0 Render date: 2024-09-06T08:18:37.873Z Has data issue: false hasContentIssue false

3 - The satisfiability problem

Published online by Cambridge University Press:  05 August 2012

Lorenza Saitta
Affiliation:
Università degli Studi del Piemonte Orientale Amedeo Avogadro
Attilio Giordana
Affiliation:
Università degli Studi del Piemonte Orientale Amedeo Avogadro
Antoine Cornuéjols
Affiliation:
AgroParis Tech (INA-PG)
Get access

Summary

General framework

Surprising as it may be, the emergence of phase transitions is not limited to physical systems: it seems to be a rather ubiquitous phenomenon, existing in biology, genetics, neural networks, complex systems, and also in combinatorial problems. For the last, a precise parallel can be established with physical systems composed of very large numbers of particles. In a combinatorial problem the phase transition concerns the behavior of some order parameter (usually the expectation value of a microscopic quantity) characterizing an aspect of the system (often the probability of existence of a solution). Moreover, in correspondence to the phase transition (at a critical value of the control parameter), a large increase in the computational complexity of the algorithm used to find a solution is usually observed.

The key concept that allows ideas and methods to be transferred from statistical physics to combinatorial optimization and decision problems is randomness. If problem instances are taken in isolation, the application of these methods does not make sense. They are only meaningful if applied to a set, i.e., an ensemble, of problem instances whose probability of occurrence is governed by a well defined law. Then the results obtained can be considered valid for any randomly extracted element from the ensemble. It is thus necessary to specify exactly how the elements of the ensemble are constructed.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×