Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2025-01-03T03:30:46.455Z Has data issue: false hasContentIssue false

13 - The F Ring of Saturn

from III - Ring Systems by Type and Topic

Published online by Cambridge University Press:  26 February 2018

C. D. Murray
Affiliation:
Queen Mary University of London London, ENGLAND
R. S. French
Affiliation:
SETI Institute Mountain View, California, USA
Matthew S. Tiscareno
Affiliation:
SETI Institute, California
Carl D. Murray
Affiliation:
Queen Mary University of London
Get access
Type
Chapter
Information
Planetary Ring Systems
Properties, Structure, and Evolution
, pp. 338 - 362
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albers, N., Sremčević, M., Colwell, J. E., and Esposito, L. W. 2012. Saturn's F ring as seen by Cassini UVIS: Kinematics and statistics. Icarus, 217, 367-388.CrossRefGoogle Scholar
Attree, N. O., Murray, C. D., Cooper, N. J., and Williams, G. A. 2012. Detection of low-velocity collisions in Saturn's F ring. The Astrophysical Journal Letters, 755, L27.CrossRefGoogle Scholar
Attree, N. O., Murray, C. D., Williams, G. A., and Cooper, N. J. 2014. A survey of low-velocity collisional features in Saturn's F ring. Icarus, 227, 56-66.CrossRefGoogle Scholar
Attree, N. O., Murray, C. D., Cooper, N. J., and Williams, G. A. 2018. The morphology and dynamics of Saturn's F ring: II. The role of collisions. Icarus, in press.
Barbara, J. M., and Esposito, L. W. 2002. Moonlet collisions and the effects of tidally modified accretion in Saturn's F ring. Icarus, 160, 161-171.CrossRefGoogle Scholar
Becker, T. M. 2016. Saturn's Rings: Measuring Particle Size Distributions Using Cassini UVIS Occultation Data. Ph. D., University of Central Florida, Orlando, FL.Google Scholar
Beurle, K., Murray, C. D., Williams, G. A., et al. 2010. Direct evidence for gravitational instability and moonlet formation in Saturn's rings. The AstrophysicalJournal, 718, L176-180.Google Scholar
Borderies, N., Goldreich, P., and Tremaine, S. 1983. The variations in eccentricity and apse precession rate of a narrow ring perturbed by a close satellite. Icarus, 53, 84—89.CrossRefGoogle Scholar
Bosh, A. S., and Rivkin, A. S. 1996. Observations of Saturn's inner satellites during the May 1995 ring-plane crossing. Science, 272, 518-521.CrossRefGoogle Scholar
Bosh, A. S., Olkin, C. B., French, R. G., and Nicholson, P. D. 2002. Saturn's F ring: Kinematics and particle sizes from stellar occultation studies. Icarus, 157, 57-75.CrossRefGoogle Scholar
Burns, J. A., Showalter, M. R., and Morfill, G. E. 1984. The ethereal rings of Jupiter and Saturn. Pages 200—272 of: Greenberg, R., and Brahic, A. (eds.), Planetary Rings. Tucson, AZ: University of Arizona Press.Google Scholar
Chandrasekhar, S. 1960. Radiative Transfer. New York, NY: Dover Publications, Inc.Google Scholar
Charnoz, S., Porco, C. C., Deau, E., et al. 2005. Cassini discovers a kinematic spiral ring around Saturn. Science, 310, 1300—1304.CrossRefGoogle ScholarPubMed
Charnoz, S. 2009. Physical collisions of moonlets and clumps with the Saturn's F-ring core. Icarus, 201(1), 191-197.CrossRefGoogle Scholar
Chavez, C. E. 2009. Appearance of Saturn's F ring azimuthal channels for the anti-alignment configuration between the ring and Prometheus. Icarus, 203, 233-237.CrossRefGoogle Scholar
Christiansen, C. 1884. Untersuchungen iiber die optischen Eigen-schaften von fein vertheilten Korpern. Annalen der Physik, 259, 298-306.CrossRefGoogle Scholar
Christiansen, C. 1885. Untersuchungen iiber die optischen Eigen-schaften von fein vertheilten Korpern. Annalen der Physik, 260, 439-46.CrossRefGoogle Scholar
Cooper, N. J., and Murray, C. D. 2004. Dynamical influences on the orbits of Prometheus and Pandora. The Astronomical Journal, 127, 1204-1217.CrossRefGoogle Scholar
Cooper, N. J., Murray, C. D., and Williams, G. A. 2013. Local vari-ability in the orbit of Saturn's F ring. The Astronomical Journal, 145(6), 161.
Cooper, N. J., Renner, S., Murray, C. D., and Evans, M. W. 2015. Saturn's inner satellites: Orbits, masses, and the chaotic motion of Atlas from new Cassini imaging observations. The Astronomical Journal, 149(1), 18.Google Scholar
Crida, A., and Charnoz, S. 2012. Formation of regular satellites from ancient massive rings in the solar system. Science, 338, 1196.CrossRefGoogle ScholarPubMed
Cuzzi, J. N. 1985. Rings of Uranus —Not so thick, not so black. Icarus, 63, 312-316.CrossRefGoogle Scholar
Cuzzi, J. N., and Burns, J. A. 1988. Charged particle depletion sur-rounding Saturn's F ring —Evidence for a moonlet belt? Icarus, 74, 284-324.CrossRefGoogle Scholar
Cuzzi, J., Clark, R., Filacchione, G., et al. 2009. Ring particle composition and size distribution. Page 459 of: Dougherty, M., Esposito, L., and Krimigis, S. (eds.), Saturn from Cassini-Huygens. Springer.Google Scholar
Cuzzi, J. N., Whizin, A. D., Hogan, R. C., et al. 2014a. Saturn's F Ring core: Calm in the midst of chaos. Icarus, 232, 157-175.CrossRefGoogle Scholar
Cuzzi, J. N., Marouf, E. A., French, R. C., and Jacobson, R. 2014b. Saturn's F ring core: Calm in the midst of chaos; Part 2. In: Esposito, L. W.(ed.), Planetary Rings Summer Workshop.
Dermott, S. R., Gold, T., and Sinclair, A. T. 1979. The rings of Uranus -Nature and origin. The Astronomical Journal, 84, 1225-1232.CrossRefGoogle Scholar
Dones, L., Cuzzi, J. N., and Showalter, M. R. 1993. Voyager photometry of Saturn's A ring. Icarus, 105, 184—215.CrossRefGoogle Scholar
El Moutamid, M., Sicardy, B., and Renner, S. 2014. Coupling between corotation and Lindblad resonances in the presence of secular precession rates. Celestial Mechanics and Dynamical Astronomy, 118, 235-252.CrossRefGoogle Scholar
Elliot, J. L., French, R. G., Meech, K. J., and Elias, J. H. 1984. Structure of the Uranian rings. I —Square-well model and particle-size constraints. The Astronomical Journal, 89, 1587-1603.CrossRefGoogle Scholar
Esposito, L. W., Meinke, B. K., Colwell, J. E., Nicholson, P. D., and Hedman, M. M. 2008. Moonlets and clumps in Saturn's F ring. Icarus, 194, 278-289.CrossRefGoogle Scholar
French, R. G., Nicholson, P. D., Porco, C. C., and Marouf, E. A. 1991. Dynamics and structure of the Uranian rings. Pages 327-109 of: Bergstralh, J. T., Miner, E. D., and Matthews, M. S. (eds.), Uranus. Tucson, AZ: University of Arizona Press.Google Scholar
French, R. S., Showalter, M. R., Sfair, R., et al. 2012. The brightening of Saturn's F ring. Icarus, 219(1), 181-193.CrossRefGoogle Scholar
French, R. S., Hicks, S. K., Showalter, M. R., Antonsen, A. K., and Packard, D. R. 2014. Analysis of clumps in Saturn's F ring from Voyager and Cassini. Icarus, 241, 200-220.CrossRefGoogle Scholar
Gehrels, T., Baker, L. R., Beshore, E., et al. 1980. Imaging photopo-larimeter on Pioneer Saturn. Science, 207(4429), 434-39.CrossRefGoogle ScholarPubMed
Giuliatti Winter, S. 1994 (August). The dynamics of Saturn's T ring. Ph. D. thesis, Queen Mary and Westfield College, University of London.Google Scholar
Goldreich, P., and Rappaport, N. 2003a. Chaotic motions of prometheus and pandora. Icarus, 162, 391—399.CrossRefGoogle Scholar
Goldreich, P., and Rappaport, N. 2003b. Origin of chaos in the Prometheus-Pandora system. Icarus, 166, 320-327.CrossRefGoogle Scholar
Grun, E., MorfiU, G. E., and Mendis, D. A. 1984. Dust-magnetosphere interactions. Pages 275—332 of: Greenberg, R., and Brahic, A. (eds.), Planetary Rings. Tucson, AZ: University of Arizona Press.Google Scholar
Hansen, J. E., and Travis, L. D. 1974. Light scattering in planetary atmospheres. Space Science Reviews, 16, 527-610.CrossRefGoogle Scholar
Hedman, M. M., Nicholson, P. D., Showalter, M. R., et al. 2011. The Christiansen Effect in Saturn's narrow dusty rings and the spectral identification of clumps in the F ring. Icarus, 215, 695-711.CrossRefGoogle Scholar
Jacobson, R. A., Spitale, J., Porco, C. C., et al. 2008. Revised orbits of Saturn's small inner satellites. The Astronomical Journal, 135(1), 261-263.CrossRefGoogle Scholar
Kolvoord, R. A., and Burns, J. A. 1992. Three-dimensional perturbations of particles in a narrow planetary ring. Icarus, 95(Feb.), 253-264.CrossRefGoogle Scholar
Lam, W. F. 2014 (April). Clumping features in Saturn's F ring. M. Phil. thesis, Queen Mary University of London.Google Scholar
Lane, A. L., Hord, C. W., West, R. A., et al. 1982. Photopolarimetry from Voyager 2 -Preliminary results on Saturn, Titan, and the rings. Science, 215, 537-543.CrossRefGoogle ScholarPubMed
Marouf, E. A., Tyler, G. L., and Rosen, P. A. 1986. Profiling Saturn's rings by radio occultation. Icarus, 68, 120—166.CrossRefGoogle Scholar
Marouf, E. A., Wong, K., French, R., Rappaport, N., and McGhee, C. 2010. The discontinuous core of Saturn's F-ring and orbit model. vol. 42. http://adsabs.harvard.edu/abs/2010DPS.42.2202M
McGhee, C. A., Nicholson, P. D., French, R. G., and Hall, K. J. 2001. HST observations of Saturnian satellites during the 1995 ring plane crossings. Icarus, 152, 282—315.CrossRefGoogle Scholar
Meinke, B. K., Esposito, L. W., Albers, N., and Sremčević, M. 2012. Classification of F ring features observed in Cassini UVIS occul-tations. Icarus, 218, 545-554.CrossRefGoogle Scholar
Murray C, D. 1994. Planetary ring dynamics. Philosophical Transac-tions of the Royal Society of London, 349, 335-344.Google Scholar
Murray, C. D., and Dermott, S. F. 1999. Solar System Dynamics. Cambridge University Press.Google Scholar
Murray, C. D., and Giuliatti Winter, S. M. 1996. Periodic collisions between the moon Prometheus and Saturn's F ring. Nature, 380, 139-141.CrossRefGoogle Scholar
Murray, C. D., Gordon, M. K., and Giuliatti Winter, S. M. 1997. Unraveling the strands of Saturn's F ring. Icarus, 129, 304-316.CrossRefGoogle Scholar
Murray, C. D., Chavez, C., Beurle, K., et al. 2005. How Prometheus creates structure in Saturn's F ring. Nature, 437, 1326—1329.CrossRefGoogle ScholarPubMed
Murray, C. D., Beurle, K., Cooper, N. J., et al. 2008. The determination of the structure of Saturn's F ring by nearby moonlets. Nature, 453, 739-744.CrossRefGoogle ScholarPubMed
Murray, C. D., Cooper, N. J., Williams, G. A., and Attree, N. O. 2018. The morphology and dynamics of Saturn's F ring. I: Gravitational effects. Icarus, in press.
Namouni, F. 1999. Secular interactions of coorbiting objects. Icarus, 137(2), 293-314.CrossRefGoogle Scholar
Nicholson, P. D., Showalter, M. R., Dones, L., et al. 1996. Observations of Saturn's ring-plane crossings in August and November 1995. Science, 272(Apr.), 509-515.CrossRefGoogle Scholar
Ockert, M. E., Cuzzi, J. N., Porco, C. C., and Johnson, T. V. 1987. Uranian ring photometry —Results from Voyager 2. Journal of Geophysical Research, 92 (Dec), 14969-14978.CrossRefGoogle Scholar
Pollack, J. B., and Cuzzi, J. N. 1980. Scattering by nonspherical particles of size comparable to wavelength -A new semi-empirical theory and its application to tropospheric aerosols. Journal of Atmospheric Sciences, 37, 868-881.2.0.CO;2>CrossRefGoogle Scholar
Porco, C. C., and Goldreich, P. 1987. Shepherding of the Uranian rings. I. Kinematics. The Astronomical Journal, 93, 724-737.CrossRefGoogle Scholar
Porco, C. C., West, R. A., Squyres, S., et al. 2004. Cassini imaging science: Instrument characteristics and anticipated scientific investigations at Saturn. Space Science Reviews, 115(1—4), 363-497.Google Scholar
Porco, C. C., Baker, E., Barbara, J., et al. 2005. Cassini imaging science: Initial results on Saturn's rings and small satellites. Science, 307(5713), 1226-1236.Google ScholarPubMed
Poulet, E., Sicardy, B., Dumas, C., Jorda, L., and Tiphene, D. 2000a. The crossings of Saturn ring plane by the Earth in 1995: Ring thickness. Icarus, 145, 147-165.CrossRefGoogle Scholar
Poulet, E., Sicardy, B., Nicholson, P. D., Karkoschka, E., and Caldwell, J. 2000b. Saturn's ring-plane crossings of August and November 1995: A model for the new F-ring objects. Icarus, 144, 135-148.CrossRefGoogle Scholar
Roddier, E., Roddier, C., Brahic, A., et al. 2000. Adaptive optics observations of Saturn's ring plane crossing in August 1995. Icarus, 143, 299-307.CrossRefGoogle Scholar
Scharringhausen, B. R., and Nicholson, P. D. 2013. The vertical structure of the F ring of Saturn from ring-plane crossings. Icarus, 226, 1275-1293.CrossRefGoogle Scholar
Showalter, M. R. 1998. Detection of centimeter-sized meteoroid impact events in Saturn's F ring. Science, 282, 1099—1102.CrossRefGoogle ScholarPubMed
Showalter, M. R. 2004. Disentangling Saturn's F ring. I. Clump orbits and lifetimes. Icarus, 111, 356—371.Google Scholar
Showalter, M. R., and Burns, J. A. 1982. A numerical study of Saturn's F-ring. Icarus, 52, 526-544.CrossRefGoogle Scholar
Showalter, M. R., Burns, J. A., Cuzzi, J. N., and Pollack, J. B. 1987. Jupiter's ring system —New results on structure and particle properties. Icarus, 69, 458-498.CrossRefGoogle Scholar
Showalter, M. R., PoUack, J. B., Ockert, M. E., Doyle, L. R., and Dal-ton, J. B. 1992. A photometric study of Saturn's F ring. Icarus, 100, 394-411.CrossRefGoogle Scholar
Simpson, J. A., Bastian, T. S., Chenette, D. L., et al. 1980. Saturnian trapped radiation and its absorption by satellites and rings -The first results from Pioneer 11. Science, 207, 411-415.CrossRefGoogle ScholarPubMed
Smith, B. A., Soderblom, L., Beebe, R. E., et al. 1981. Encounter with Saturn —Voyager 1 imaging science results. Science, 212, 163—191.Google ScholarPubMed
Smith, B. A., Soderblom, L., Batson, R. M., et al. 1982. A new look at the Saturn system -The Voyager 2 images. Science, 215, 504-537.CrossRefGoogle Scholar
Synnott, S. P., Peters, C. E., Smith, B. A., and Morabito, L. A. 1981. Orbits of the small satellites of Saturn. Science, 212, 191-192.CrossRefGoogle ScholarPubMed
Synnott, S. P., Terrile, R. J., Jacobson, R. A., and Smith, B. A. 1983. Orbits of Saturn's F ring and its shepherding satellites. Icarus, 53, 156-158.CrossRefGoogle Scholar
Tyler, G. L., Marouf, E. A., Simpson, R. A., Zebker, H. A., and Esh-leman, V. R. 1983. The microwave opacity of Saturn's rings at wavelengths of 3. 6 and 13 cm from Voyager 1 radio occultation. Icarus, 54, 160-188.CrossRefGoogle Scholar
Vahidinia, S., Cuzzi, J. N., Hedman, M., et al. 2011. Saturn's F ring grains: Aggregates made of crystalline water ice. Icarus, 215, 682-694.CrossRefGoogle Scholar
Williams, G. A. 2009. The three-body problem applied to close ring-satellite encounters. Ph. D. thesis, Queen Mary University of London.Google Scholar
Winter, O. C., Mourao, D. C., Giuliatti Winter, S. M., Spahn, E., and da Cruz, C. 2007. Moonlets wandering on a leash-ring. Monthly Notices of the Royal Astronomical Society, 380, L54-57.Google Scholar
Winter, O. C., Mourao, D. C., and Giuliatti Winter, S. M. 2010. Short Lyapunov time: a method for identifying confined chaos. Astronomy and Astrophysics, 523, A67CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×