Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-18T06:07:02.021Z Has data issue: false hasContentIssue false

11 - Sequencing, Artificial Grammar, and Recursion in Primates

Published online by Cambridge University Press:  28 July 2022

Bennett L. Schwartz
Affiliation:
Florida International University
Michael J. Beran
Affiliation:
Georgia State University
Get access

Summary

The difference between humans and other primates has often been attributed to humans’ unique ability to learn language and more specifically, represent complex sequential and grammatical structures. Even in the case of language-trained apes, the animals are severely limited in how they put together strings of their learned symbols. This led to theories that this limitation is due to animals’ inability to represent the complex sequential and grammatical patterns needed for language. However, work testing the types of sequences and artificial grammars that nonhuman primates can represent has come a long way. Studies have shown that like humans, nonhuman primates can represent adjacent dependencies, ordinal sequences, and algebraic patterns. Until recently, the types of sequential structures attested in nonhuman animals have been limited to these linear sequences. However, recent work has shown that even in some of the most complex forms of grammatical structures, long-distance dependence and recursive sequences are within the limits of the nonhuman mind.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agus, T. R., Thorpe, S. J., & Pressnitzer, D. (2010). Rapid formation of robust auditory memories: Insights from noise. Neuron, 66, 610618.Google Scholar
Bach, E., Brown, C., & Marslen-Wilson, W. (1986). Crossed and nested dependencies in German and Dutch: A psycholinguistic study. Language and Cognitive Processes, 1, 249262.Google Scholar
Baddeley, A. D., & Hitch, G. (1974). Working memory. In Bower, G. H. (Ed.), Psychology of learning and motivation (Vol. 8, pp. 4789). Elsevier.Google Scholar
Badler, N. I., Bindinganavale, R., Allbeck, J., Schuler, W., Zhao, L., Palmer, M. (2000). Parameterized action representation for virtual human agents. Embodied Conversational Agents (pp. 256284). MIT Press.Google Scholar
Beckers, G. J., Berwick, R. C., Okanoya, K., & Bolhuis, J. J. (2017). What do animals learn in artificial grammar studies? Neuroscience & Biobehavioral Reviews, 81, 238246.Google Scholar
Berwick, R. C., & Chomsky, N. (2016). Why only us? Language and evolution. MIT Press.Google Scholar
Berwick, R. C., Friederici, A. D., Chomsky, N., & Bolhuis, J. J. (2013). Evolution, brain, and the nature of language. Trends in Cognitive Sciences, 17, 8998.Google Scholar
Bond, A. B., Kamil, A. C., & Balda, R. P. (2004). Pinyon jays use transitive inference to predict social dominance. Nature, 430, 778781.Google Scholar
Botvinick, M. M., Wang, J., Cowan, E., Roy, S., Bastianen, C., Mayo, J. P., & Houk, J. C. (2009). An analysis of immediate serial recall performance in a macaque. Animal Cognition, 12, 671678.Google Scholar
Bursley, J. K. (2020). Evidence for Recursive Operations in Human Cognition. PhD Thesis. Harvard University.Google Scholar
Cantlon, J. F., & Brannon, E. M. (2007). How much does number matter to a monkey (Macaca mulatta)? Journal of Experimental Psychology: Animal Behavior Processes, 33, 3241.Google Scholar
Carey, S. (2009). The origin of concepts. Oxford University Press.Google Scholar
Chen, J., & ten Cate, C. (2015). Zebra finches can use positional and transitional cues to distinguish vocal element strings. Behavioural Processes, 117, 2934.Google Scholar
Chen, S., Swartz, K. B., & Terrace, H. S. (1997). Knowledge of the ordinal position of list items in rhesus monkeys. Psychological Science, 8, 8086.Google Scholar
Conway, C. M., & Christiansen, M. H. (2001). Sequential learning in non-human primates. Trends in Cognitive Sciences, 5, 539546.Google Scholar
Conway, C. M., Ellefson, M. R., & Christiansen, M. H. (2003). When less is less and when less is more: Starting small with staged input. Proceedings of the Annual Meeting of the Cognitive Science Society, 25.Google Scholar
Corballis, M. C. (2007). Recursion, language, and starlings. Cognitive Science, 31, 697704.Google Scholar
Corsi, P. M. (1972). Human memory and the medial temporal region of the brain. PhD Thesis, McGill University.Google Scholar
Creel, S. C., Newport, E. L., & Aslin, R. N. (2004). Distant melodies: Statistical learning of nonadjacent dependencies in tone sequences. Journal of Experimental Psychology: Learning, Memory, and Cognition, 30, 11191130.Google Scholar
D’Anna, C. A., Zechmeister, E. B., & Hall, J. W. (1991). Toward a meaningful definition of vocabulary size. Journal of Reading Behavior, 23, 109122.Google Scholar
De Vries, M., Christiansen, M., & Petersson, K. M. (2011). Learning recursion: Multiple nested and crossed dependencies. Biolinguistics, 5, 1035.Google Scholar
De Vries, M. H., Monaghan, P., Knecht, S., & Zwitserlood, P. (2008). Syntactic structure and artificial grammar learning: The learnability of embedded hierarchical structures. Cognition, 107, 763774.CrossRefGoogle ScholarPubMed
De Vries, M. H., Petersson, K. M., Geukes, S., Zwitserlood, P., & Christiansen, M. H. (2012). Processing multiple non-adjacent dependencies: Evidence from sequence learning. Philosophical Transactions of the Royal Society B: Biological Sciences, 367, 20652076.Google Scholar
Deacon, T. W. (1997). The symbolic species: The co-evolution of language and the brain. WW Norton & Company.Google Scholar
Ebbinghaus, H. (1885/1964). Memory: A contribution to experimental psychology. Ruger, H. A., Bussenius, C. E., Trans. Dover. (Original work published 1885.)Google Scholar
Endress, A. D., Nespor, M., & Mehler, J. (2009). Perceptual and memory constraints on language acquisition. Trends in Cognitive Sciences, 13, 348353.Google Scholar
Endress, A. D., Scholl, B. J., & Mehler, J. (2005). The role of salience in the extraction of algebraic rules. Journal of Experimental Psychology: General, 134, 406419.Google Scholar
Fagot, J., & De Lillo, C. (2011). A comparative study of working memory: Immediate serial spatial recall in baboons (Papio papio) and humans. Neuropsychologia, 49, 38703880.Google Scholar
Fedorenko, E., Behr, M. K., & Kanwisher, N. (2011). Functional specificity for high-level linguistic processing in the human brain. Proceedings of the National Academy of Sciences, 108, 1642816433.Google Scholar
Fedorenko, E., & Thompson-Schill, S. L. (2014). Reworking the language network. Trends in Cognitive Sciences, 18, 120126.Google Scholar
Ferrigno, S., & Carey, S. (2020). The representation of recursive center-embedded and cross-serial sequences in children and adults. In Denison, S.., Mack, M., Xu, Y., & Armstrong, B. C. (Eds.), Proceedings of the 42nd Annual Conference of the Cognitive Science Society (p. 2677). Cognitive Science Society.Google Scholar
Ferrigno, S., & Cantlon, J. F. (2017). Evolutionary constraints on the emergence of human mathematical concepts. In Kaas, J. (Ed.), Evolution of nervous systems (2nd ed., vol. 3) (pp. 511521). Elsevier.Google Scholar
Ferrigno, S., Cheyette, S. J., Piantadosi, S. T., & Cantlon, J. F. (2020a). Recursive sequence generation in monkeys, children, US adults, and native Amazonians. Science Advances, 6, eaaz1002.Google Scholar
Ferrigno, S., Cheyette, S. J., Dedhe, A., Piantadosi, S. T., & Cantlon, J. F. (2020b). Simple models of sequential processing cannot explain center-embedded generalizations [electronic response to Ferrigno et al. (2020a)]. Science Advances, 6, eaaz1002.Google Scholar
Ferrigno, S., Hughes, K. D., & Cantlon, J. F. (2016). Precocious quantitative cognition in monkeys. Psychonomic Bulletin & Review, 23, 141147.Google Scholar
Ferrigno, S., Jara-Ettinger, J., Piantadosi, S. T., & Cantlon, J. F. (2017). Universal and uniquely human factors in spontaneous number perception. Nature Communications, 8, 110.CrossRefGoogle ScholarPubMed
Fitch, W. T. (2014). Toward a computational framework for cognitive biology: Unifying approaches from cognitive neuroscience and comparative cognition. Physics of Life Reviews, 11, 329364.Google Scholar
Fitch, W. T., & Friederici, A. D. (2012). Artificial grammar learning meets formal language theory: An overview. Philosophical Transactions of the Royal Society B: Biological Sciences, 367, 19331955.Google Scholar
Fitch, W. T., & Hauser, M. D. (2004). Computational constraints on syntactic processing in a nonhuman primate. Science, 303, 377380.Google Scholar
Fitch, W. T., Hauser, M. D., & Chomsky, N. (2005). The evolution of the language faculty: Clarifications and implications. Cognition, 97, 179210.Google Scholar
Friederici, A. D., Bahlmann, J., Heim, S., Schubotz, R. I., & Anwander, A. (2006). The brain differentiates human and non-human grammars: Functional localization and structural connectivity. Proceedings of the National Academy of Sciences, 103, 24582463.Google Scholar
Gazes, R. P., Chee, N. W., & Hampton, R. R. (2012). Cognitive mechanisms for transitive inference performance in rhesus monkeys: Measuring the influence of associative strength and inferred order. Journal of Experimental Psychology: Animal Behavior Processes, 38, 331345.Google Scholar
Gentner, D. (2003). Why we’re so smart. In Gentner, D. & Goldin-Meadow, S. (Eds.), Language in mind: Advances in the study of language and thought (pp. 195235.) MIT Press.CrossRefGoogle Scholar
Gentner, T. Q., Fenn, K. M., Margoliash, D., & Nusbaum, H. C. (2006). Recursive syntactic pattern learning by songbirds. Nature, 440, 12041207.Google Scholar
Gillan, D. J. (1981). Reasoning in the chimpanzee: II. Transitive inference. Journal of Experimental Psychology: Animal Behavior Processes, 7, 150164.Google Scholar
Gomez, R. L. (2002). Variability and detection of invariant structure. Psychological Science, 13, 431436.Google Scholar
Hauser, M. D., Chomsky, N., & Fitch, W. T. (2002). The faculty of language: What is it, who has it, and how did it evolve? Science, 298, 15691579.Google Scholar
Hauser, M. D., & Glynn, D. (2009). Can free-ranging rhesus monkeys (Macaca mulatta) extract artificially created rules comprised of natural vocalizations? Journal of Comparative Psychology, 123, 161167.Google Scholar
Hauser, M. D., Newport, E. L., & Aslin, R. N. (2001). Segmentation of the speech stream in a non-human primate: Statistical learning in cotton-top tamarins. Cognition, 78, B53-B64.CrossRefGoogle Scholar
Hauser, M. D., Weiss, D., & Marcus, G. (2002). Rule learning by cotton-top tamarins. Retraction notice. Rule learning by cotton-top tamarins. Cognition, 86, B15B22. Retraction published October 2010, Cognition, 106.Google Scholar
Heimbauer, L. A., Conway, C. M., Christiansen, M. H., Beran, M. J., & Owren, M. J. (2012). A Serial Reaction Time (SRT) task with symmetrical joystick responding for nonhuman primates. Behavior Research Methods, 44, 733741.Google Scholar
Heimbauer, L. A., Conway, C. M., Christiansen, M. H., Beran, M. J., & Owren, M. J. (2018). Visual artificial grammar learning by rhesus macaques (Macaca mulatta): Exploring the role of grammar complexity and sequence length. Animal Cognition, 21, 267284.Google Scholar
Jackendoff, R. (2007). Language, consciousness, culture: Essays on mental structure. MIT Press.Google Scholar
Jackendoff, R., & Pinker, S. (2005). The nature of the language faculty and its implications for evolution of language (Reply to Fitch, Hauser, and Chomsky). Cognition, 97, 211225.Google Scholar
Jäger, G., & Rogers, J. (2012). Formal language theory: Refining the Chomsky hierarchy. Philosophical Transactions of the Royal Society B: Biological Sciences, 367, 19561970.CrossRefGoogle ScholarPubMed
Jensen, G., Alkan, Y., Ferrera, V. P., & Terrace, H. S. (2019). Reward associations do not explain transitive inference performance in monkeys. Science Advances, 5, eaaw2089.Google Scholar
Jiang, X., Long, T., Cao, W., Li, J., Dehaene, S., & Wang, L. (2018). Production of supra-regular spatial sequences by macaque monkeys. Current Biology, 28, 18511859.Google Scholar
Jordan, K. E., MacLean, E. L., & Brannon, E. M. (2008). Monkeys match and tally quantities across senses. Cognition, 108, 617625.Google Scholar
Kaminski, J., Call, J., & Fischer, J. (2004). Word learning in a domestic dog: Evidence for “fast mapping.” Science, 304, 16821683.CrossRefGoogle Scholar
Kao, T., Jensen, G., Michaelcheck, C., Ferrera, V. P., & Terrace, H. S. (2019). Absolute and relative knowledge of ordinal position on implied lists. Journal of Experimental Psychology: Learning, Memory, and Cognition, 46, 22272243.Google Scholar
Kocab, A., Senghas, A., & Snedeker, J. (2016). The emergence of temporal language in Nicaraguan Sign Language. Cognition, 156, 147163.Google Scholar
Krause, M. A., & Beran, M. J. (2020). Words matter: Reflections on language projects with chimpanzees and their implications. American Journal of Primatology, 82, e23187.Google Scholar
Kunert, R., Willems, R. M., Casasanto, D., Patel, A. D., & Hagoort, P. (2015). Music and language syntax interact in Broca’s area: An fMRI study. PloS One, 10 e0141069.Google Scholar
Lany, J., & Gómez, R. L. (2008). Twelve-month-old infants benefit from prior experience in statistical learning. Psychological Science, 19, 12471252.CrossRefGoogle ScholarPubMed
Lashley, K. (1951). The problem of serial order in behavior. In Jeffress, L. A. (Ed.), Hixon symposium on cerebral mechanisms in behavior. Wiley.Google Scholar
Lazareva, O. F., Smirnova, A. A., Bagozkaja, M. S., Zorina, Z. A., Rayevsky, V. V., & Wasserman, E. A. (2004). Transitive responding in hooded crows requires linearly ordered stimuli. Journal of the Experimental Analysis of Behavior, 82, 119.Google Scholar
Le Corre, M., & Carey, S. (2007). One, two, three, four, nothing more: An investigation of the conceptual sources of the verbal counting principles. Cognition, 105, 395438.Google Scholar
Lerdahl, F., & Jackendoff, R. (1983). An overview of hierarchical structure in music. Music Perception: An Interdisciplinary Journal, 1, 229252.Google Scholar
Liu, Y. A., & Stoller, S. D. (1999). From recursion to iteration: What are the optimizations? ACM SIGPLAN Notices, 34, 3782.Google Scholar
Lobina, D. J. (2011). Recursion and the competence/performance distinction in AGL tasks. Language and Cognitive Processes, 26, 15631586.Google Scholar
Locurto, C., Fox, M., & Mazzella, A. (2015). Implicit learning in cotton-top tamarins (Saguinus oedipus) and pigeons (Columba livia). Learning & Behavior, 43, 129142.Google Scholar
Lu, K., & Vicario, D. S. (2014). Statistical learning of recurring sound patterns encodes auditory objects in songbird forebrain. Proceedings of the National Academy of Sciences, 111, 1455314558.CrossRefGoogle ScholarPubMed
Lukács, A., & Kemény, F. (2014). Domain-general sequence learning deficit in specific language impairment. Neuropsychology, 28, 472483.Google Scholar
MacLean, E. L., Merritt, D. J., & Brannon, E. M. (2008). Social complexity predicts transitive reasoning in prosimian primates. Animal Behaviour, 76, 479486.Google Scholar
Malassis, R., Dehaene, S., & Fagot, J. (2020). Baboons (Papio papio) process a context-free but not a context-sensitive grammar. Scientific Reports, 10, 112.Google Scholar
Malassis, R., & Fagot, J. (2020). Extraction of structural regularities by baboons (Papio papio): Adjacent and nonadjacent repetition patterns differ in learnability. Journal of Comparative Psychology, 135, 5163.Google Scholar
Malassis, R., Rey, A., & Fagot, J. (2018). Non‐adjacent dependencies processing in human and non‐human primates. Cognitive Science, 45, 16771699.Google Scholar
Marcus, G. F. (2001). The algebraic mind: Integrating connectionism and cognitive science. MIT Press.Google Scholar
Marcus, G. F., Vijayan, S., Rao, S. B., & Vishton, P. M. (1999). Rule learning by seven-month-old infants. Science, 283, 7780.CrossRefGoogle ScholarPubMed
Martins, M. D., Laaha, S., Freiberger, E. M., Choi, S., & Fitch, W. T. (2014). How children perceive fractals: Hierarchical self-similarity and cognitive development. Cognition, 133, 1024.Google Scholar
McGonigle, B. O., & Chalmers, M. (1977). Are monkeys logical? Nature, 267, 694696.Google Scholar
Milne, A. E., Mueller, J. L., Männel, C., Attaheri, A., Friederici, A. D., & Petkov, C. I. (2016). Evolutionary origins of non-adjacent sequence processing in primate brain potentials. Scientific Reports, 6, 110.CrossRefGoogle ScholarPubMed
Milner, B. (1971). Interhemispheric differences in the localization of psychological processes in man. British Medical Bulletin, 27, 272277.Google Scholar
Minier, L., Fagot, J., & Rey, A. (2016). The temporal dynamics of regularity extraction in non‐human primates. Cognitive Science, 40, 10191030.CrossRefGoogle ScholarPubMed
Misyak, J. B., Christiansen, M. H., & Tomblin, J. B. (2010). On-line individual differences in statistical learning predict language processing. Frontiers in Psychology, 1, 31.Google Scholar
Neiworth, J. J., London, J. M., Flynn, M. J., Rupert, D. D., Alldritt, O., & Hyde, C. (2017). Artificial grammar learning in tamarins (Saguinus oedipus) in varying stimulus contexts. Journal of Comparative Psychology, 131, 128138.CrossRefGoogle ScholarPubMed
Newport, E. L., Hauser, M. D., Spaepen, G., & Aslin, R. N. (2004). Learning at a distance II. Statistical learning of non-adjacent dependencies in a non-human primate. Cognitive Psychology, 49, 85117.CrossRefGoogle Scholar
Nieder, A., Freedman, D. J., & Miller, E. K. (2002). Representation of the quantity of visual items in the primate prefrontal cortex. Science, 297, 17081711.CrossRefGoogle ScholarPubMed
Öttl, B., Jäger, G., & Kaup, B. (2015). Does formal complexity reflect cognitive complexity? Investigating aspects of the Chomsky hierarchy in an artificial language learning study. PloS One, 10, e0123059.Google Scholar
Pepperberg, I. M., & Carey, S. (2012). Grey parrot number acquisition: The inference of cardinal value from ordinal position on the numeral list. Cognition, 125(2), 219232.Google Scholar
Pepperberg, I. M. (2012). Further evidence for addition and numerical competence by a Grey parrot (Psittacus erithacus). Animal Cognition, 15, 711717.Google Scholar
Perruchet, P., & Rey, A. (2005). Does the mastery of center-embedded linguistic structures distinguish humans from nonhuman primates? Psychonomic Bulletin & Review, 12, 307313.CrossRefGoogle ScholarPubMed
Petkov, C. I., & Ten Cate, C. (2020). Structured sequence learning: Animal abilities, cognitive operations, and language evolution. Topics in Cognitive Science, 12(3), 828842.Google Scholar
Piantadosi, S. T., Tenenbaum, J. B., & Goodman, N. D. (2012). Bootstrapping in a language of thought: A formal model of numerical concept learning. Cognition, 123, 199217.Google Scholar
Pica, P., Lemer, C., Izard, V., & Dehaene, S. (2004). Exact and approximate arithmetic in an Amazonian indigene group. Science, 306, 499503.Google Scholar
Pinker, S., & Jackendoff, R. (2005). The faculty of language: What’s special about it? Cognition, 95, 201236.Google Scholar
Read, D. W. (2008). Working memory: A cognitive limit to non-human primate recursive thinking prior to hominid evolution. Evolutionary Psychology, 6, 147470490800600413.Google Scholar
Reber, A. S. (1967). Implicit learning of artificial grammars. Journal of Verbal Learning and Verbal Behavior, 6, 855863.Google Scholar
Rey, A., Perruchet, P., & Fagot, J. (2012). Centre-embedded structures are a by-product of associative learning and working memory constraints: Evidence from baboons (Papio papio). Cognition, 123, 180184.Google Scholar
Saffran, J. R., Aslin, R. N., & Newport, E. L. (1996). Statistical learning by 8-month-old infants. Science, 274, 19261928.Google Scholar
Saffran, J., Hauser, M., Seibel, R., Kapfhamer, J., Tsao, F., & Cushman, F. (2008). Grammatical pattern learning by human infants and cotton-top tamarin monkeys. Cognition, 107, 479500.Google Scholar
Savage-Rumbaugh, E. S. (1986). Ape language: From conditioned response to symbol. Columbia University Press.Google Scholar
Savage-Rumbaugh, E. S., & Lewin, R. (1994). Kanzi: The ape at the brink of the human mind. Wiley.Google Scholar
Senghas, A. (1995). Children’s contribution to the birth of Nicaraguan Sign Language. PhD Thesis, Massachusetts Institute of Technology.Google Scholar
Shima, K., Isoda, M., Mushiake, H., & Tanji, J. (2007). Categorization of behavioural sequences in the prefrontal cortex. Nature, 445, 315318.Google Scholar
Sonnweber, R., Ravignani, A., & Fitch, W. T. (2015). Non-adjacent visual dependency learning in chimpanzees. Animal cognition, 18, 733745.Google Scholar
Spelke, E. S. (2003). What makes us smart? Core knowledge and natural language. In Gentner, D. & Goldin-Meadow, S. (Eds.), Language in mind: Advances in the study of language and thought (pp. 277311.) MIT Press.Google Scholar
Straub, R. O., Seidenberg, M. S., Bever, T. G., & Terrace, H. S. (1979). Serial learning in the pigeon. Journal of the Experimental Analysis of Behavior, 32, 137148.Google Scholar
ten Cate, C., & Okanoya, K. (2012). Revisiting the syntactic abilities of non-human animals: Natural vocalizations and artificial grammar learning. Philosophical Transactions of the Royal Society B: Biological Sciences, 367, 19841994.Google Scholar
Terrace, H. S. (1984). Simultaneous chaining: The problem it poses for traditional chaining theory. Quantitative Analyses of Behavior: Discrimination Processes, 1984, 115–38.Google Scholar
Terrace, H. S. (2005). The simultaneous chain: A new approach to serial learning. Trends in Cognitive Sciences, 9, 202210.Google Scholar
Terrace, H. S. (2019). Why chimpanzees can’t learn language and only humans can. Columbia University Press.Google Scholar
Terrace, H. S., Petitto, L. A., Sanders, R. J., & Bever, T. G. (1979). Can an ape create a sentence? Science, 206, 891902.Google Scholar
Thomas, J. G., Milner, H. R., & Haberlandt, K. F. (2003). Forward and backward recall: Different response time patterns, same retrieval order. Psychological Science, 14, 169174.Google Scholar
Udden, J., Ingvar, M., Hagoort, P., & Petersson, K. M. (2012). Implicit acquisition of grammars with crossed and nested non‐adjacent dependencies: Investigating the push‐down stack model. Cognitive Science, 36, 10781101.Google Scholar
Versace, E., Rogge, J. R., Shelton-May, N., & Ravignani, A. (2019). Positional encoding in cotton-top tamarins (Saguinus oedipus). Animal Cognition, 22, 825838.Google Scholar
Wakita, M. (2019). Auditory sequence perception in common marmosets (Callithrix jacchus). Behavioural Processes, 162, 5563.Google Scholar
Watson, S. K., Burkart, J. M., Schapiro, S. J., Lambeth, S. P., Mueller, J. L., & Townsend, S. W. (2020). Nonadjacent dependency processing in monkeys, apes, and humans. Science Advances, 6, eabb0725.Google Scholar
Wilson, B., Slater, H., Kikuchi, Y., Milne, A. E., Marslen-Wilson, W. D., Smith, K., & Petkov, C. I. (2013). Auditory artificial grammar learning in macaque and marmoset monkeys. Journal of Neuroscience, 33, 1882518835.CrossRefGoogle ScholarPubMed
Wilson, B., Smith, K., & Petkov, C. I. (2015). Mixed‐complexity artificial grammar learning in humans and macaque monkeys: Evaluating learning strategies. European Journal of Neuroscience, 41, 568578.Google Scholar
Wilson, B., Spierings, M., Ravignani, A., Mueller, J. L., Mintz, T. H., Wijnen, F., Van der Kan, A., Smith, K., & Rey, A. (2020). Non‐adjacent dependency learning in humans and other animals. Topics in Cognitive Science, 12, 843858.Google Scholar
Zuberbühler, K. (2002). A syntactic rule in forest monkey communication. Animal Behaviour, 63, 293299.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×