Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-19T10:27:45.470Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  17 May 2018

John Watrous
Affiliation:
University of Waterloo, Ontario
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abeyesinghe, A., Devetak, I., Hayden, P., and Winter, A. 2009. The mother of all protocols: restructuring quantum information’s family tree. Proceedings of the Royal Society A, 465(2108), 25372563.CrossRefGoogle Scholar
Adami, C., and Cerf, N. 1997. Von Neumann capacity of noisy quantum channels. Physical Review A, 56(5), 34703483.CrossRefGoogle Scholar
Aharonov, D., Kitaev, A., and Nisan, N. 1998. Quantum circuits with mixed states. Pages 20–30 of: Proceedings of the 30th Annual ACM Symposium on Theory of Computing.Google Scholar
Alber, G., Beth, T., Charnes, C., Delgado, A., Grassl, M., and Mussinger, M. 2001. Stabilizing distinguishable qubits against spontaneous decay by detected-jump correcting quantum codes. Physical Review Letters, 86(19), 44024405.Google Scholar
Alberti, P. 1983. A note on the transition probability over C*-algebras. Letters in Mathematical Physics, 7(1), 2532.CrossRefGoogle Scholar
Alberti, P., and Uhlmann, A. 1982. Stochasticity and Partial Order. Mathematics and Its Applications, vol. 9. D. Reidel.Google Scholar
Alberti, P., and Uhlmann, A. 1983. Stochastic linear maps and transition probability. Letters in Mathematical Physics, 7(2), 107112.CrossRefGoogle Scholar
Ambainis, A., Nayak, A., Ta-Shma, A., and Vazirani, U. 1999. Dense quantum coding and a lower bound for 1-way quantum automata. Pages 376–383 of: Proceedings of the Thirty-First Annual ACM Symposium on Theory of Computing.CrossRefGoogle Scholar
Ambainis, A., Nayak, A., Ta-Shma, A., and Vazirani, U. 2002. Dense quantum coding and quantum finite automata. Journal of the ACM, 49(4), 496511.CrossRefGoogle Scholar
Ando, T. 1979. Concavity of certain maps on positive definite matrices and applications to Haramard products. Linear Algebra and Its Applications, 26, 203241.CrossRefGoogle Scholar
Apostol, T. 1974. Mathematical Analysis, 2nd edn. Addison-Wesley.Google Scholar
Araki, H., and Lieb, E. 1970. Entropy inequalities. Communications in Mathematical Physics, 18(2), 160170.CrossRefGoogle Scholar
Arias, A., Gheondea, A., and Gudder, S. 2002. Fixed points of quantum operations. Journal of Mathematical Physics, 43(12), 58725881.CrossRefGoogle Scholar
Arveson, W. 1969. Subalgebras of C*-algebras. Acta Mathematica, 123(1), 141224.Google Scholar
Ash, R. 1990. Information Theory. Dover. Originally published in 1965 by Interscience.Google Scholar
Aubrun, G., Szarek, S., and Werner, E. 2011. Hastings’ additivity counterexample via Dvoretzky’s theorem. Communications in Mathematical Physics, 305(1), 8597.Google Scholar
Audenaert, K. 2007. A sharp Fannes-type inequality for the von Neumann entropy. Journal of Physics A: Mathematical and Theoretical, 40(28), 81278136.Google Scholar
Audenaert, K., and Scheel, S. 2008. On random unitary channels. New Journal of Physics, 10, 023011.CrossRefGoogle Scholar
Axler, S. 1997. Linear Algebra Done Right, 2nd edn. Springer.Google Scholar
Barnum, H., and Knill, E. 2002. Reversing quantum dynamics with near-optimal quantum and classical fidelity. Journal of Mathematical Physics, 43(5), 20972106.Google Scholar
Barnum, H., Nielsen, M., and Schumacher, B. 1998. Information transmission through a noisy quantum channel. Physical Review A, 57(6), 41534175.Google Scholar
Barnum, H., Knill, E., and Nielsen, M. 2000. On quantum fidelities and channel capacities. IEEE Transactions on Information Theory, 46(4), 13171329.CrossRefGoogle Scholar
Barrett, J. 2002. Nonsequential positive-operator-valued measurements on entangled mixed states do not always violate a Bell inequality. Physical Review A, 65(4), 042302.Google Scholar
Bartle, R. 1966. The Elements of Integration. John Wiley & Sons.Google Scholar
Beckman, D., Gottesman, D., Nielsen, M., and Preskill, J. 2001. Causal and localizable quantum operations. Physical Review A, 64(5), 52309.Google Scholar
Belavkin, V. 1975. Optimal multiple quantum statistical hypothesis testing. Stochastics, 1, 315345.Google Scholar
Bell, J. 1964. On the Einstein Podolsky Rosen paradox. Physics, 1(3), 195200.Google Scholar
Ben-Aroya, A., and Ta-Shma, A. 2010. On the complexity of approximating the diamond norm. Quantum Information and Computation, 10(1), 7786.Google Scholar
Bengtsson, I., and Życzkowski, K. 2006. Geometry of Quantum States. Cambridge University Press.Google Scholar
Bennett, C., and Shor, P. 1998. Quantum information theory. IEEE Transactions on Information Theory, 44(6), 27242742.Google Scholar
Bennett, C., and Wiesner, S. 1992. Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Physical Review Letters, 69(20), 28812884.CrossRefGoogle ScholarPubMed
Bennett, C., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., and Wootters, W. 1993. Teleporting an unknown quantum state via dual classical and EPR channels. Physical Review Letters, 70(12), 18951899.CrossRefGoogle Scholar
Bennett, C., Bernstein, H., Popescu, S., and Schumacher, B. 1996a. Concentrating partial entanglement by local operations. Physical Review A, 53(4), 20462052.CrossRefGoogle ScholarPubMed
Bennett, C., DiVincenzo, D., Smolin, J., and Wootters, W. 1996b. Mixed-state entanglement and quantum error correction. Physical Review A, 54(5), 38243851.Google Scholar
Bennett, C., Brassard, G., Popescu, S., Schumacher, B., Smolin, J., and Wootters, W. 1996c. Purification of noisy entanglement and faithful teleportation via noisy channels. Physical Review Letters, 76(5), 722725.Google Scholar
Bennett, C., DiVincenzo, D., and Smolin, J. 1997. Capacities of quantum erasure channels. Physical Review Letters, 78(16), 32173220.CrossRefGoogle Scholar
Bennett, C., Shor, P., Smolin, J., and Thapliyal, A. 1999a. Entanglement-assisted classical capacity of noisy quantum channels. Physical Review Letters, 83(15), 30813084.CrossRefGoogle Scholar
Bennett, C., DiVincenzo, D., Fuchs, C., Mor, T., Rains, E., Shor, P., Smolin, J., and Wootters, W. 1999b. Quantum nonlocality without entanglement. Physical Review A, 59, 10701091.Google Scholar
Bennett, C., DiVincenzo, D., Mor, T., Shor, P., Smolin, J., and Terhal, B. 1999c. Unextendible product bases and bound entanglement. Physical Review Letters, 82(26), 53855388.CrossRefGoogle Scholar
Bennett, C., Hayden, P., Leung, D., Shor, P., and Winter, A. 2005. Remote preparation of quantum states. IEEE Transactions on Information Theory, 51(1), 5674.CrossRefGoogle Scholar
Bhatia, R. 1997. Matrix Analysis. Springer.Google Scholar
Bratteli, O., Jorgensen, P., Kishimoto, A., and Werner, R. 2000. Pure states on O d . Journal of Operator Theory, 43(1), 97143.Google Scholar
Buscemi, F. 2006. On the minimum number of unitaries needed to describe a random-unitary channel. Physics Letters A, 360(2), 256258.Google Scholar
Caves, C., Fuchs, C., and Schack, R. 2002. Unknown quantum states: the quantum de Finetti representation. Journal of Mathematical Physics, 43(9), 45374559.Google Scholar
Childs, A., Preskill, J., and Renes, J. 2000. Quantum information and precision measurement. Journal of Modern Optics, 47(2–3), 155176.Google Scholar
Childs, A., Leung, D., Mančinska, L., and Ozols, M. 2013. A framework for bounding nonlocality of state discrimination. Communications in Mathematical Physics, 323(3), 11211153.Google Scholar
Chiribella, G., D’Ariano, G., and Perinotti, P. 2008. Transforming quantum operations: quantum supermaps. Europhysics Letters, 83(3), 30004.Google Scholar
Chiribella, G., D’Ariano, G., and Perinotti, P. 2009. Theoretical framework for quantum networks. Physical Review A, 80(2), 022339.Google Scholar
Chitambar, E., Leung, D., Mančinska, L., Ozols, M., and Winter, A. 2014. Everything you always wanted to know about LOCC (but were afraid to ask). Communications in Mathematical Physics, 328(1), 303326.Google Scholar
Choi, M.-D. 1975. Completely positive linear maps on complex matrices. Linear Algebra and Its Applications, 10(3), 285290.Google Scholar
Christandl, M., König, R., Mitchison, G., and Renner, R. 2007. One-and-a-half quantum de Finetti theorems. Communications in Mathematical Physics, 273(2), 473498.CrossRefGoogle Scholar
Clauser, J., Horne, M., Shimony, A., and Holt, R. 1969. Proposed experiment to test local hidden-variable theories. Physical Review Letters, 23(15), 880884.Google Scholar
Cover, T., and Thomas, J. 2006. Elements of Information Theory, 2nd edn. Wiley Interscience.Google Scholar
Davies, E. 1970. On the repeated measurement of continuous observables in quantum mechanics. Journal of Functional Analysis, 6(2), 318346.Google Scholar
Davies, E., and Lewis, J. 1970. An operational approach to quantum probability. Communications in Mathematical Physics, 17, 239260.Google Scholar
de Finetti, B. 1937. La prévision : ses lois logiques, ses sources subjectives. Annales de l’Institut Henri Poincaré, 7(1), 168.Google Scholar
de Pillis, J. 1967. Linear transformations which preserve Hermitian and positive semidefinite operators. Pacific Journal of Mathematics, 23(1), 129137.Google Scholar
Deiks, D. 1982. Communication by EPR devices. Physical Letters A, 92(6), 271272.Google Scholar
Devetak, I. 2005. The private classical capacity and quantum capacity of a quantum channel. IEEE Transactions on Information Theory, 51(1), 4455.CrossRefGoogle Scholar
Diaconis, P., and Freedman, D. 1980. Finite exchangeable sequences. Annals of Probability, 8(4), 745764.CrossRefGoogle Scholar
Diaconis, P., and Shahshahani, M. 1987. The subgroup algorithm for generating uniform random variables. Probability in the Engineering and Informational Sciences, 1(1), 1532.CrossRefGoogle Scholar
DiVincenzo, D., Shor, P., and Smolin, J. 1998. Quantum-channel capacity of very noisy channels. Physical Review A, 57(2), 830839.CrossRefGoogle Scholar
Dupuis, F. 2009. The Decoupling Approach to Quantum Information Theory. Ph.D. thesis, Université de Montréal.Google Scholar
Dvoretzky, A. 1961. Some results on convex bodies and Banach spaces. Pages 123– 160 of: Proceedings of the International Symposium on Linear Spaces (Held at the Hebrew University of Jerusalem, July 1960).Google Scholar
Dyson, F. 1962a. Statistical theory of the energy levels of complex systems. I. Journal of Mathematical Physics, 3(1), 140156.Google Scholar
Dyson, F. 1962b. Statistical theory of the energy levels of complex systems. II. Journal of Mathematical Physics, 3(1), 157165.Google Scholar
Dyson, F. 1962c. Statistical theory of the energy levels of complex systems. III. Journal of Mathematical Physics, 3(1), 166175.Google Scholar
Eggeling, T., Schlingemann, D., and Werner, R. 2002. Semicausal operations are semilocalizable. Europhysics Letters, 57(6), 782788.CrossRefGoogle Scholar
Einstein, A., Podolsky, B., and Rosen, N. 1935. Can quantum-mechanical description of physical reality be considered complete? Physical Review, 47(10), 777780.Google Scholar
Eldar, Y., and Forney, D. 2001. On quantum detection and the square-root measurement. IEEE Transactions on Information Theory, 47(3), 858872.CrossRefGoogle Scholar
Eldar, Y., Megretski, A., and Verghese, G. 2003. Designing optimal quantum detectors via semidefinite programming. IEEE Transactions on Information Theory, 49(4), 10071012.CrossRefGoogle Scholar
Fannes, M. 1973. A continuity property of the entropy density for spin lattice systems. Communications in Mathematical Physics, 31(4), 291294.CrossRefGoogle Scholar
Feller, W. 1968. An Introduction to Probability Theory and Its Applications, 3rd edn, vol. I. John Wiley & Sons.Google Scholar
Feller, W. 1971. An Introduction to Probability Theory and Its Applications, 2nd edn, vol. II. John Wiley & Sons.Google Scholar
Fuchs, C., and Caves, C. 1995. Mathematical techniques for quantum communication theory. Open Systems & Information Dynamics, 3(3), 345356.CrossRefGoogle Scholar
Fuchs, C., and van de Graaf, J. 1999. Cryptographic distinguishability measures for quantum-mechanical states. IEEE Transactions on Information Theory, 45(4), 12161227.Google Scholar
Fukuda, M., and Wolf, M. 2007. Simplifying additivity problems using direct sum constructions. Journal of Mathematical Physics, 48(7), 072101.Google Scholar
Gheorghiu, V., and Griffiths, R. 2008. Separable operations of pure states. Physical Review A, 78(2), 020304.Google Scholar
Gilchrist, A., Langford, N., and Nielsen, M. 2005. Distance measures to compare real and ideal quantum processes. Physical Review A, 71(6), 062310.CrossRefGoogle Scholar
Goodman, R., and Wallach, N. 1998. Representations and Invariants of the Classical Groups. Encyclopedia of Mathematics and Its Applications, vol. 68. Cambridge University Press.Google Scholar
Gregoratti, M., and Werner, R. 2003. Quantum lost and found. Journal of Modern Optics, 50(67), 915933.Google Scholar
Greub, W. 1978. Multilinear Algebra, 2nd edn. Springer.Google Scholar
Gurvits, L. 2003. Classical deterministic complexity of Edmonds’ problem and quantum entanglement. Pages 10–19 of: Proceedings of the Thirty-Fifth Annual ACM Symposium on Theory of Computing.Google Scholar
Gurvits, L., and Barnum, H. 2002. Largest separable balls around the maximally mixed bipartite quantum state. Physical Review A, 66(6), 062311.Google Scholar
Gutoski, G., and Watrous, J. 2005. Quantum interactive proofs with competing provers. Pages 605–616 of: Proceedings of the 22nd Symposium on Theoretical Aspects of Computer Science. Lecture Notes in Computer Science, vol. 3404. Springer.Google Scholar
Gutoski, G., and Watrous, J. 2007. Toward a general theory of quantum games. Pages 565–574 of: Proceedings of the 39th Annual ACM Symposium on Theory of Computing.CrossRefGoogle Scholar
Haag, R., and Kastler, D. 1964. An algebraic approach to quantum field theory. Journal of Mathematical Physics, 5(7), 848861.Google Scholar
Haar, A. 1933. Der Massbegriff in der Theorie der kontinuierlichen Gruppen. Annals of Mathematics (Second Series), 34(1), 147169.CrossRefGoogle Scholar
Halmos, P. 1974. Measure Theory. Springer. Originally published in 1950 by Litton Educational.CrossRefGoogle Scholar
Halmos, P. 1978. Finite-Dimensional Vector Spaces. Springer. Originally published in 1942 by Princeton University Press.Google Scholar
Harrow, A., Hayden, P., and Leung, D. 2004. Superdense coding of quantum states. Physical Review Letters, 92(18), 187901.Google Scholar
Hastings, M. 2009. Superadditivity of communication capacity using entangled inputs. Nature Physics, 5(4), 255257.CrossRefGoogle Scholar
Hausladen, P., and Wootters, W. 1994. A “pretty good” measurement for distinguishing quantum states. Journal of Modern Optics, 41(12), 23852390.CrossRefGoogle Scholar
Hausladen, P., Jozsa, R., Schumacher, B., Westmoreland, M., and Wootters, W. 1996. Classical information capacity of a quantum channel. Physical Review A, 54(3), 18691876.CrossRefGoogle ScholarPubMed
Hayashi, M., and Nagaoka, H. 2003. General formulas for capacity of classical– quantum channels. IEEE Transactions on Information Theory, 49(7), 17531768.Google Scholar
Hayden, P., and Winter, A. 2008. Counterexamples to the maximal p-norm multiplicativity conjecture for all p > 1. Communications in Mathematical Physics, 284(1), 263280.CrossRefGoogle Scholar
Hayden, P., Leung, D., Shor, P., and Winter, A. 2004. Randomizing quantum states: constructions and applications. Communications in Mathematical Physics, 250(2), 371391.CrossRefGoogle Scholar
Hayden, P., Leung, D., and Winter, A. 2006. Aspects of generic entanglement. Communications in Mathematical Physics, 265(1), 95117.CrossRefGoogle Scholar
Hayden, P., Horodecki, M., Winter, A., and Yard, J. 2008a. A decoupling approach to the quantum capacity. Open Systems & Information Dynamics, 15(1), 719.Google Scholar
Hayden, P., Shor, P., and Winter, A. 2008b. Random quantum codes from Gaussian ensembles and an uncertainty relation. Open Systems & Information Dynamics, 15(1), 7189.Google Scholar
Helstrom, C. 1967. Detection theory and quantum mechanics. Information and Control, 10, 254291.Google Scholar
Helstrom, C. 1976. Quantum Detection and Estimation Theory. Academic Press.Google Scholar
Hiai, F., Ohya, M., and Tsukada, M. 1981. Sufficiency, KMS condition and relative entropy in von Neumann algebras. Pacific Journal of Mathematics, 96(1), 99109.Google Scholar
Hoffman, K., and Kunze, R. 1971. Linear Algebra, 2nd edn. Prentice-Hall.Google Scholar
Holevo, A. 1972. An analogue of statistical decision theory and noncommutative probability theory. Trudy Moskovskogo Matematicheskogo Obshchestva, 26, 133149.Google Scholar
Holevo, A. 1973a. Bounds for the quantity of information transmitted by a quantum communication channel. Problemy Peredachi Informatsii, 9(3), 311.Google Scholar
Holevo, A. 1973b. Information-theoretical aspects of quantum measurement. Problemy Peredachi Informatsii, 9(2), 3142.Google Scholar
Holevo, A. 1973c. Statistical decision theory for quantum systems. Journal of Multivariate Analysis, 3, 337394.Google Scholar
Holevo, A. 1973d. Statistical problems in quantum physics. Pages 104–119 of: Proceedings of the Second Japan–USSR Symposium on Probability Theory. Lecture Notes in Mathematics, vol. 330. Springer.Google Scholar
Holevo, A. 1993. A note on covariant dynamical semigroups. Reports on Mathematical Physics, 32(2), 211216.CrossRefGoogle Scholar
Holevo, A. 1996. Covariant quantum Markovian evolutions. Journal of Mathematical Physics, 37(4), 18121832.CrossRefGoogle Scholar
Holevo, A. 1998. The capacity of the quantum channel with general signal states. IEEE Transactions on Information Theory, 44(1), 269273.Google Scholar
Holevo, A. 2002. On entanglement-assisted classical capacity. Journal of Mathematical Physics, 43(9), 43264333.Google Scholar
Horn, A. 1954. Doubly stochastic matrices and the diagonal of a rotation matrix. American Journal of Mathematics, 76(3), 620630.Google Scholar
Horn, R., and Johnson, C. 1985. Matrix Analysis. Cambridge University Press.Google Scholar
Horodecki, K., Pankowski, Ł., Horodecki, M., and Horodecki, P. 2008. Low-dimensional bound entanglement with one-way distillable cryptographic key. IEEE Transactions on Information Theory, 54(6), 26212625.Google Scholar
Horodecki, M., Horodecki, P., and Horodecki, R. 1996. Separability of mixed states: necessary and sufficient conditions. Physics Letters A, 223(1), 18.CrossRefGoogle Scholar
Horodecki, M., Horodecki, P., and Horodecki, R. 1998. Mixed-state entanglement and distillation: is there a “bound” entanglement in nature? Physical Review Letters, 80(24), 52395242.Google Scholar
Horodecki, M., Oppenheim, J., and Winter, A. 2007. Quantum state merging and negative information. Communications in Mathematical Physics, 269(1), 107136.Google Scholar
Horodecki, P. 1997. Separability criterion and inseparable mixed states with positive partial transposition. Physics Letters A, 232(5), 333339.Google Scholar
Horodecki, P. 2001. From entanglement witnesses to positive maps: towards optimal characterisation of separability. Pages 299–307 of: Gonis, A., and Turchi, P. (eds), Decoherence and Its Implications in Quantum Computing and Information Transfer. NATO Science Series III: Computer and System Sciences, vol. 182. IOS Press.Google Scholar
Horodecki, R., Horodecki, P., Horodecki, M., and Horodecki, K. 2009. Quantum entanglement. Reviews of Modern Physics, 81(865), 865942.CrossRefGoogle Scholar
Hudson, R., and Moody, G. 1976. Locally normal symmetric states and an analogue of de Finetti’s theorem. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 33(4), 343351.Google Scholar
Hughston, L., Jozsa, R., and Wootters, W. 1993. A complete classification of quantum ensembles having a given density matrix. Physics Letters A, 183(1), 1418.CrossRefGoogle Scholar
Jain, R. 2005. Distinguishing sets of quantum states. Unpublished manuscript. Available as arXiv.org e-Print quant-ph/0506205.Google Scholar
Jamiołkowski, A. 1972. Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics, 3(4), 275278.Google Scholar
Johnston, N., Kribs, D., and Paulsen, V. 2009. Computing stabilized norms for quantum operations. Quantum Information and Computation, 9(1), 1635.Google Scholar
Jozsa, R. 1994. Fidelity for mixed quantum states. Journal of Modern Optics, 41(12), 23152323.Google Scholar
Killoran, N. 2012. Entanglement Quantification and Quantum Benchmarking of Optical Communication Devices. Ph.D. thesis, University of Waterloo.Google Scholar
Kitaev, A. 1997. Quantum computations: algorithms and error correction. Russian Mathematical Surveys, 52(6), 11911249.Google Scholar
Kitaev, A., Shen, A., and Vyalyi, M. 2002. Classical and Quantum Computation. Graduate Studies in Mathematics, vol. 47. American Mathematical Society.Google Scholar
Klein, O. 1931. Zur quantenmechanischen Begründung des zweiten Hauptsatzes der Wärmelehre. Zeitschrift für Physik, 72(11–12), 767775.Google Scholar
Klesse, R. 2008. A random coding based proof for the quantum coding theorem. Open Systems & Information Dynamics, 15(1), 2145.Google Scholar
König, R., and Renner, R. 2005. A de Finetti representation for finite symmetric quantum states. Journal of Mathematical Physics, 46(12), 122108.Google Scholar
Kraus, K. 1971. General state changes in quantum theory. Annals of Physics, 64, 311335.Google Scholar
Kraus, K. 1983. States, Effects, and Operations: Fundamental Notions of Quantum Theory. Springer.Google Scholar
Kretschmann, D., and Werner, R. 2004. Tema con variazioni: quantum channel capacity. New Journal of Physics, 6(1), 26.Google Scholar
Kretschmann, D., Schlingemann, D., and Werner, R. 2008. The information– disturbance tradeoff and the continuity of Stinespring’s representation. IEEE Transactions on Information Theory, 54(4), 17081717.Google Scholar
Kribs, D. 2003. Quantum channels, wavelets, dilations and representations of On. Proceedings of the Edinburgh Mathematical Society (Series 2), 46, 421433.Google Scholar
Kullback, S., and Leibler, R. 1951. On information and sufficiency. Annals of Mathematical Statistics, 22(1), 7986.Google Scholar
Kümmerer, B., and Maassen, H. 1987. The essentially commutative dilations of dynamical semigroups on M n . Communications in Mathematical Physics, 109(1), 122.CrossRefGoogle Scholar
Landau, L. 1927. Das Dämpfungsproblem in der Wellenmechanik. Zeitschrift für Physik, 45, 430441.Google Scholar
Landau, L., and Streater, R. 1993. On Birkhoff’s theorem for doubly stochastic completely positive maps of matrix algebras. Linear Algebra and Its Applications, 193, 107127.Google Scholar
Lanford, O., and Robinson, D. 1968. Mean entropy of states in quantum-statistical mechanics. Journal of Mathematical Physics, 9(7), 11201125.Google Scholar
Ledoux, M. 2001. The Concentration of Measure Phenomenon. Mathematical Surveys and Monographs, vol. 89. American Mathematical Society.Google Scholar
Lévy, P. 1951. Problémes Concrets d’Analyse Fonctionelle. Gauthier-Villars.Google Scholar
Lieb, E. 1973. Convex trace functions and the Wigner–Yanase–Dyson conjecture. Advances in Mathematics, 11(3), 267288.Google Scholar
Lieb, E., and Ruskai, M. 1973. Proof of the strong subadditivity of quantum-mechanical entropy. Journal of Mathematical Physics, 14(12), 19381941.Google Scholar
Lindblad, G. 1974. Expectation and entropy inequalities for finite quantum systems. Communications in Mathematical Physics, 39(2), 111119.Google Scholar
Lindblad, G. 1999. A general no-cloning theorem. Letters in Mathematical Physics, 47(2), 189196.Google Scholar
Lloyd, S. 1997. Capacity of the noisy quantum channel. Physical Review A, 55(3), 16131622.CrossRefGoogle Scholar
Lo, H.-K., and Popescu, S. 2001. Concentrating entanglement by local actions: beyond mean values. Physical Review A, 63(2), 022301.Google Scholar
Marcus, M. 1973. Finite Dimensional Multilinear Algebra, vol. 1. Marcel Dekker.Google Scholar
Marcus, M. 1975. Finite Dimensional Multilinear Algebra, vol. 2. Marcel Dekker.Google Scholar
Marshall, A., Olkin, I., and Arnold, B. 2011. Inequalities: Theory of Majorization and Its Applications, 2nd edn. Springer.Google Scholar
Maurey, B., and Pisier, G. 1976. Séries de variables aléatoires vectorielles indépendantes et propriétés géométriques des espaces de Banach. Studia Mathematica, 58(1), 4590.CrossRefGoogle Scholar
Mehta, M. 2004. Random Matrices. Elsevier.Google Scholar
Mil’man, V. 1971. New proof of the theorem of A. Dvoretzky on intersections of convex bodies. Functional Analysis and Its Applications, 5(4), 288295.Google Scholar
Milman, V., and Schechtman, G. 1986. Asymptotic Theory of Finite Dimensional Normed Spaces. Lecture Notes in Mathematics, vol. 1200. Springer.Google Scholar
Naimark, M. 1943. On a representation of additive operator set functions. Doklady Akademii Nauk SSSR, 41, 359361.Google Scholar
Nathanson, M. 2005. Distinguishing bipartitite orthogonal states using LOCC: best and worst cases. Journal of Mathematical Physics, 46(6), 062103.Google Scholar
Nayak, A. 1999a. Lower Bounds for Quantum Computation and Communication. Ph.D. thesis, University of California, Berkeley.Google Scholar
Nayak, A. 1999b. Optimal lower bounds for quantum automata and random access codes. Pages 369–376 of: 40th Annual IEEE Symposium on Foundations of Computer Science.Google Scholar
Nielsen, M. 1999. Conditions for a class of entanglement transformations. Physical Review Letters, 83(2), 436439.Google Scholar
Nielsen, M. 2000. Probability distributions consistent with a mixed state. Physical Review A, 62(5), 052308.Google Scholar
Nielsen, M., and Chuang, I. 2000. Quantum Computation and Quantum Information. Cambridge University Press.Google Scholar
Nielson, M. 1998. Quantum Information Theory. Ph.D. thesis, University of New Mexico.Google Scholar
Park, J. 1970. The concept of transition in quantum mechanics. Foundations of Physics, 1(1), 2333.Google Scholar
Parthasarathy, K. 1999. Extremal decision rules in quantum hypothesis testing. Infinite Dimensional Analysis, Quantum Probability and Related Topics, 2(4), 557568.Google Scholar
Paulsen, V. 2002. Completely Bounded Maps and Operator Algebras. Cambridge Studies in Advanced Mathematics. Cambridge University Press.Google Scholar
Peres, A. 1993. Quantum Theory: Concepts and Methods. Kluwer Academic.Google Scholar
Peres, A. 1996. Separability criterion for density matrices. Physical Review Letters, 77(8), 14131415.Google Scholar
Peres, A., and Wootters, W. 1991. Optimal detection of quantum information. Physical Review Letters, 66(9), 11191122.Google Scholar
Pérez-García, D., Wolf, M., Petz, D., and Ruskai, M. 2006. Contractivity of positive and trace-preserving maps under L p norms. Journal of Mathematical Physics, 47(8), 083506.Google Scholar
Pinsker, M. 1964. Information and Information Stability of Random Variables and Processes. Holden-Day.Google Scholar
Rains, E. 1997. Entanglement purification via separable superoperators. Unpublished manuscript. Available as arXiv.org e-Print quant-ph/9707002.Google Scholar
Rockafellar, R. 1970. Convex Analysis. Princeton University Press.Google Scholar
Rosenkrantz, R. (ed). 1989. Jaynes, E. T.: Papers on Probability, Statistics and Statistical Physics. Kluwer Academic. Google Scholar
Rosgen, B., and Watrous, J. 2005. On the hardness of distinguishing mixed-state quantum computations. Pages 344–354 of: Proceedings of the 20th Annual Conference on Computational Complexity.Google Scholar
Rudin, W. 1964. Principles of Mathematical Analysis. McGraw–Hill.Google Scholar
Russo, B., and Dye, H. 1966. A note on unitary operators in C*-algebras. Duke Mathematical Journal, 33(2), 413416.Google Scholar
Schrödinger, E. 1935a. Die gegenwärtige Situation in der Quantenmechanik. Naturwissenschaften, 23(48), 807812.Google Scholar
Schrödinger, E. 1935b. Die gegenwärtige Situation in der Quantenmechanik. Naturwissenschaften, 23(49), 823828.CrossRefGoogle Scholar
Schrödinger, E. 1935c. Die gegenwärtige Situation in der Quantenmechanik. Naturwissenschaften, 23(50), 844849.Google Scholar
Schrödinger, E. 1935d. Discussion of probability relations between separated systems. Mathematical Proceedings of the Cambridge Philosophical Society, 31(4), 555563.Google Scholar
Schrödinger, E. 1936. Probability relations between separated systems. Mathematical Proceedings of the Cambridge Philosophical Society, 32(3), 446452.Google Scholar
Schumacher, B. 1995. Quantum coding. Physical Review A, 51(4), 27382747.CrossRefGoogle ScholarPubMed
Schumacher, B. 1996. Sending entanglement through noisy quantum channels. Physical Review A, 54(4), 26142628.Google Scholar
Schumacher, B., and Nielsen, M. 1996. Quantum data processing and error correction. Physical Review A, 54(4), 26292635.CrossRefGoogle ScholarPubMed
Schumacher, B., and Westmoreland, M. 1997. Sending classical information via noisy quantum channels. Physical Review A, 56(1), 131138.CrossRefGoogle Scholar
Schur, I. 1923. Über eine Klasse von Mittelbildungen mit Anwendungen auf die Determinantentheorie. Sitzungsberichte der Berliner Mathematischen Gesellschaft, 22, 920.Google Scholar
Schur, J. 1911. Bemerkungen zur Theorie der beschränkten Bilinearformen mit unendlich vielen Veränderlichen. Journal für die reine und angewandte Mathematik, 140, 128.Google Scholar
Shannon, C. 1948. A mathematical theory of communication. Bell System Technical Journal, 27, 379423.CrossRefGoogle Scholar
Shor, P. 2004. Equivalence of additivity questions in quantum information theory. Communications in Mathematical Physics, 246(3), 453472.Google Scholar
Simon, B. 1979. Trace Ideals and Their Applications. London Mathematical Society Lecture Note Series, vol. 35. Cambridge University Press.Google Scholar
Smith, G., and Yard, J. 2008. Quantum communication with zero-capacity channels. Science, 321(5897), 18121815.Google Scholar
Smith, R. 1983. Completely bounded maps between C -algebras. Journal of the London Mathematical Society, 2(1), 157166.Google Scholar
Spekkens, R., and Rudolph, T. 2001. Degrees of concealment and bindingness in quantum bit commitment protocols. Physical Review A, 65(1), 012310.Google Scholar
Stinespring, W. 1955. Positive functions on C -algebras. Proceedings of the American Mathematical Society, 6(2), 211216.Google Scholar
Størmer, E. 1963. Positive linear maps of operator algebras. Acta Mathematica, 110(1), 233278.Google Scholar
Talagrand, M. 2006. The Generic Chaining: Upper and Lower Bounds of Stochastic Processes. Springer.Google Scholar
Terhal, B., and Horodecki, P. 2000. Schmidt number for density matrices. Physical Review A, 61(4), 040301.Google Scholar
Timoney, R. 2003. Computing the norms of elementary operators. Illinois Journal of Mathematics, 47(4), 12071226.Google Scholar
Tregub, S. 1986. Bistochastic operators on finite-dimensional von Neumann algebras. Izvestiya Vysshikh Uchebnykh Zavedenii Matematika, 30(3), 7577.Google Scholar
Tribus, M., and McIrvine, E. 1971. Energy and information. Scientific American, 225(3), 179188.Google Scholar
Trimmer, J. 1980. The present situation in quantum mechanics: a translation of Schrödinger’s “cat paradox” paper. Proceedings of the American Philosophical Society, 124(5), 323338.Google Scholar
Tsirel’son, B. 1987. Quantum analogues of the Bell inequalities. The case of two spatially separated domains. Journal of Soviet Mathematics, 36, 557570.Google Scholar
Uhlmann, A. 1971. Sätze über Dichtematrizen. Wissenschaftliche Zeitschrift der Karl-Marx-Universitat Leipzig . Mathematisch-naturwissenschaftliche Reihe, 20(4/5), 633653.Google Scholar
Uhlmann, A. 1972. Endlich-dimensionale Dichtematrizen I. Wissenschaftliche Zeitschrift der Karl-Marx-Universitat Leipzig . Mathematisch-naturwissenschaftliche Reihe, 21(4), 421452.Google Scholar
Uhlmann, A. 1973. Endlich-dimensionale Dichtematrizen II. Wissenschaftliche Zeitschrift der Karl-Marx-Universitat Leipzig . Mathematisch-naturwissenschaftliche Reihe, 22(2), 139177.Google Scholar
Uhlmann, A. 1976. The “transition probability” in the state space of a -algebra. Reports on Mathematical Physics, 9(2), 273279.Google Scholar
Uhlmann, A. 1977. Relative entropy and the Wigner–Yanase–Dyson–Lieb concavity in an interpolation theory. Communications in Mathematical Physics, 54(1), 2132.Google Scholar
Umegaki, H. 1962. Conditional expectations in an operator algebra IV (entropy and information). Kodai Mathematical Seminar Reports, 14(2), 5985.Google Scholar
Vedral, V., Plenio, M., Rippin, M., and Knight, P. 1997. Quantifying entanglement. Physical Review Letters, 78(12), 22752278.CrossRefGoogle Scholar
von Neumann, J. 1927a. Thermodynamik quantenmechanischer Gesamtheiten. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, 1(11), 273291.Google Scholar
von Neumann, J. 1927b. Wahrscheinlichkeitstheoretischer aufbau der Mechanik. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, 1(11), 245272.Google Scholar
von Neumann, J. 1930. Zur Algebra der Funktionaloperationen und Theorie der normalen Operatoren. Mathematische Annalen, 102(1), 370427.Google Scholar
von Neumann, J. 1933. Die Einfuhrung analytischer Parameter in topologischen Gruppen. Annals of Mathematics (Second Series), 34(1), 170179.CrossRefGoogle Scholar
von Neumann, J. 1955 . Mathematical Foundations of Quantum Mechanics. Princeton University Press. Originally published in German in 1932 as Mathematische Grundlagen der Quantenmechanik.Google Scholar
Walgate, J., Short, A., Hardy, L., and Vedral, V. 2000. Local distinguishability of multipartite orthogonal quantum states. Physical Review Letters, 85(23), 49724975.Google Scholar
Watrous, J. 2005. Notes on super-operator norms induced by Schatten norms. Quantum Information and Computation, 5(1), 5868.CrossRefGoogle Scholar
Watrous, J. 2008. Distinguishing quantum operations having few Kraus operators. Quantum Information and Computation, 8(9), 819833.Google Scholar
Watrous, J. 2009a. Mixing doubly stochastic quantum channels with the completely depolarizing channel. Quantum Information and Computation, 9(5/6), 406413.Google Scholar
Watrous, J. 2009b. Semidefinite programs for completely bounded norms. Theory of Computing, 5 (art. 11), 217238.Google Scholar
Watrous, J. 2013. Simpler semidefinite programs for completely bounded norms. Chicago Journal of Theoretical Computer Science, 2013 (art. 8), 119.CrossRefGoogle Scholar
Weil, A. 1979. L’Intégration dans les Groupes Topologiques et ses Applications, 2nd edn. Hermann. Originally published in 1940.Google Scholar
Werner, R. 1989. Quantum states with Einstein–Podolsky–Rosen correlations admitting a hidden-variable model. Physical Review A, 40(8), 42774281.CrossRefGoogle ScholarPubMed
Werner, R. 1998. Optimal cloning of pure states. Physical Review A, 58(3), 18271832.Google Scholar
Werner, R. 2001. All teleportation and dense coding schemes. Journal of Physics A: Mathematical and General, 34(35), 70817094.CrossRefGoogle Scholar
Weyl, H. 1950. The Theory of Groups and Quantum Mechanics. Dover. Originally published in German in 1929.Google Scholar
Wiesner, S. 1983. Conjugate coding. SIGACT News, 15(1), 7888.Google Scholar
Wilde, M. 2013. Quantum Information Theory. Cambridge University Press.Google Scholar
Winter, A. 1999. Coding theorem and strong converse for quantum channels. IEEE Transactions on Information Theory, 45(7), 24812485.Google Scholar
Wolkowicz, H., Saigal, R., and Vandenberge, L. (eds). 2000. Handbook of Semidefinite Programming: Theory, Algorithms, and Applications. Kluwer Academic.Google Scholar
Wootters, W., and Zurek, W. 1982. A single quantum cannot be cloned. Nature, 299, 802803.Google Scholar
Woronowicz, S. 1976. Positive maps of low dimensional matrix algebras. Reports on Mathematical Physics, 10(2), 165183.Google Scholar
Yang, D., Horodecki, M., Horodecki, R., and Synak-Radtke, B. 2005. Irreversibility for all bound entangled states. Physical Review Letters, 95(19), 190501.Google Scholar
Yuen, H., Kennedy, R., and Lax, M. 1970. On optimal quantum receivers for digital signal detection. Proceedings of the IEEE, 58(10), 17701773.Google Scholar
Yuen, H., Kennedy, R., and Lax, M. 1975. Optimum testing of multiple hypotheses in quantum detection theory. IEEE Transactions on Information Theory, 21(2), 125134.Google Scholar
Zarikian, V. 2006. Alternating-projection algorithms for operator-theoretic calculation. Linear Algebra and Its Applications, 419(2–3), 710734.Google Scholar
Życzkowski, K., Horodecki, P., Sanpera, A., and Lewenstein, M. 1998. Volume of the set of separable states. Physical Review A, 58(2), 883892.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • John Watrous, University of Waterloo, Ontario
  • Book: The Theory of Quantum Information
  • Online publication: 17 May 2018
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • John Watrous, University of Waterloo, Ontario
  • Book: The Theory of Quantum Information
  • Online publication: 17 May 2018
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • John Watrous, University of Waterloo, Ontario
  • Book: The Theory of Quantum Information
  • Online publication: 17 May 2018
Available formats
×