Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-19T11:56:28.414Z Has data issue: false hasContentIssue false

9 - Perturbations in hierarchical systems

Published online by Cambridge University Press:  04 December 2009

Mauri Valtonen
Affiliation:
University of Turku, Finland
Hannu Karttunen
Affiliation:
University of Turku, Finland
Get access

Summary

Complete analytical solutions are not available for systems with more than two bodies. However, it is possible to describe three-body orbits by approximate methods when the system is hierarchical, i.e. if there is a clearly defined binary and a third body which stays separate from the binary. These methods may be validated by comparison with numerical orbit integrations. Then we may take exact two-body orbits as a first approximation, and the effects of other bodies and other disturbances are taken into account as small forces which make the true trajectory deviate from this reference orbit.

Whenanalysing perturbations we have to make some approximations that depend on the form of the perturbing force. Thus perturbation theory is a collection of various methods applicable in different situations rather than a single theory. In this chapter we will study a classical method that applies to the usual orbital elements. Another method will be discussed in the next chapter.

The problem which we consider by using this method is the long term evolution of a binary orbit when it is perturbed by a distant companion. This applies especially to triple stars and to the stability of planetary orbits around binary members.

Osculating elements

Consider the motion of a planet in a heliocentric xyz-frame. At the moment t = t0 the planet is at (x0, y0, z0).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×