Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-m8s7h Total loading time: 0 Render date: 2024-07-19T12:03:02.464Z Has data issue: false hasContentIssue false
This chapter is part of a book that is no longer available to purchase from Cambridge Core

16 - Internal-Flow Condensation and Condensation on Liquid Jets and Droplets

S. Mostafa Ghiaasiaan
Affiliation:
Georgia Institute of Technology
Get access

Summary

Introduction

Internal-flow condensation is encountered in refrigeration and air-conditioning systems and during some accident scenarios in nuclear reactor coolant systems. Internal-flow condensation leads to a two-phase flow with some complex flow patterns. The condensing two-phase flows have some characteristics that are different from other commonly encountered two-phase flows. Empirical correlations are available for pure vapors condensing in some simple basic geometries (e.g., horizontal circular channels). Heat transfer (condensation rate) and hydrodynamics are strongly coupled and are sensitive to the two-phase flow regime. The two-phase flow regimes themselves depend on the orientation of the flow passage with respect to gravity.

Internal–flow condenser passages are usually designed to support vertical downward flow, inclined downward flow, or horizontal flow. Configurations that can lead to unfavorable hydrodynamics (e.g., countercurrent flow limitation and loop seal effect) are avoided in these systems. As a result, most of the published experimental studies and analytical models cover vertical downflow, and horizontal flow. Condensation in unfavorable configurations can be encountered during off–normal and accident conditions of many systems, however.

Shell-side phenomena in shell-and-tube-type condensers will not be discussed in this chapter. Complex three–dimensional flow is encountered in large power plant condensers. In these condensers the condensing fluid (steam) typically flows in the shell side of the shell–and–tube-type heat exchangers, with the secondary coolant flowing inside the tubes. The shell-side flow and condensation processes have certain common features with both internal and external condensing flows. Marto (1984, 1988) has written some useful reviews of these condensers.

Type
Chapter
Information
Two-Phase Flow, Boiling, and Condensation
In Conventional and Miniature Systems
, pp. 462 - 498
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×