Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-06-30T04:05:49.263Z Has data issue: false hasContentIssue false
This chapter is part of a book that is no longer available to purchase from Cambridge Core

References

S. Mostafa Ghiaasiaan
Affiliation:
Georgia Institute of Technology
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Two-Phase Flow, Boiling, and Condensation
In Conventional and Miniature Systems
, pp. 563 - 600
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdelall, F., Hahn, G., Ghiaasiaan, S. M., Abdel-Khalik, S. I., Jeter, S. M., Yoda, M., and Sadowski, D. L. (2005). Pressure drop caused by abrupt flow area changes in microchannels, Exp. Thermal Fluid Sci., 29, 425–434, 2005.CrossRefGoogle Scholar
Abdollahian, D., Chexal, B., and Norris, D. M. (1983). Prediction of leak rates through intergranular stress corrosion cracks. Proc. CSNI Leak-Before-Break Conf., Nuclear Regulatory Commission Rep. NUREG/CP-00151, pp. 300–326.Google Scholar
Abdollahian, D., Healzer, J., Janssen, E., and Amos, C. (1982). Critical flow data review and analysis. Electric Power Research Institute Rep. EPRI NP-2192, Palo Alto, CA.Google Scholar
Abe, Y., Oka, T., Mori, Y., and Negashima, A. (1994). Pool boiling of a non-azeotropic mixture under microgravity. Int. J. Heat Mass Transfer, 37, 2405–2413.CrossRefGoogle Scholar
Ackerman, G. (1937). Heat transfer and molecular mass transfer in the same field at high temperatures and large partial pressure differences. Forsch. Ing. Wes., VDI, Forschungesheft, 8, 232.Google Scholar
Acosta, R. E., Buller, R. H., and Tobias, C. W. (1985). Transport processes in narrow (capillary) channels. AIChE J., 81, 473–482.CrossRefGoogle Scholar
Adams, T. M., Abdel-Khalik, S. I., Jeter, S. M., and Qureshi, Z. H. (1997). An experimental investigation of single-phase forced convection in microchannels. Int. J. Heat Mass Transfer, 41, 851–857.CrossRefGoogle Scholar
Adams, T. M., Ghiaasiaan, S. M., and Abdel-Khalik, S. I. (1999). Enhancement of liquid forced convection heat transfer in microchannels due to the release of dissolved noncondensables. Int. J. Heat Mass Transfer, 42, 3563–3573.CrossRefGoogle Scholar
Agarwal, A. (2006). Heat transfer and pressure drop during condensation of refrigerants in microchannels. Pressure (N/m2); Legendre polynomialh.D. thesis, Georgia Institute of Technology, Atlanta.Google Scholar
Agostini, B., and Bontemps, A. (2005). Vertical flow boiling of refrigerant R134a in small channels. Int. J. Heat Mass Transfer, 26, 296–306.Google Scholar
Ahmad, S. Y. (1970). Axial distribution of bulk temperature and void fraction in a heated channel with inlet subcooling. Int. J. Heat Mass Transfer, 92, 595–609.Google Scholar
Ahmand, S. Y. (1973). Fluid to fluid modeling of critical heat flux: A compensated distortions model. Int. J. Heat Mass Transfer, 16, 641–662.CrossRefGoogle Scholar
Akbar, M. K., and Ghiaasiaan, S. M. (2006). Simulation of Taylor flow in capillaries based on the volume-of-fluid Technique, Ind. Eng. Chem. Res., 45, 5396–5403, 2006.CrossRefGoogle Scholar
Akbar, M. K., Plummer, D. A., and Ghiaasiaan, S. M. (2003). On gas–liquid two-phase flow regimes in microchannels. Int. J. Multiphase Flow, 29, 855–865.CrossRefGoogle Scholar
Akers, W. W., Deans, H. A., and Crosser, O. K. (1959). Condensation heat transfer within horizontal tube. Chem. Eng. Prog. Symp. Ser., 55, 171–176.Google Scholar
Alamgir, M. D., and Lienhard, J. H. (1981). Correlation of pressure undershoot during hot-water depressurization. J. Heat Transfer, 103, 52–55.CrossRefGoogle Scholar
Al-Diwani, H. K., and Rose, J. W. (1973). Free convection film condensation of steam in the presence of noncondensing gases. Int. J. Heat Mass Transfer, 16, 1359–1369.CrossRefGoogle Scholar
Alekseev, V. P., Poberezkin, A. E., and Gerasimov, P. V. (1972). Determination of flooding rates in regular packings. Heat Transfer Sov. Res., 4(6), 159–163.Google Scholar
Al-Hayes, R. A. M., and Winterton, R. H. S. (1981). Bubble diameter on detachment in flowing liquids. Int. J. Heat Mass Transfer, 24, 223–230.CrossRefGoogle Scholar
Ali, M. I., and Kawaji, M. (1991). The effect of flow channel orientation on two-phase flow in a narrow passage between flat plates. Proc., ASME/JSME Thermal Eng. Conf., 2, 183– 190.Google Scholar
Ali, M. I., Sadatomi, M., and Kawaji, M. (1993). Adiabatic two-phase flow in narrow channels between two flat plates. Can. J. Chem. Eng., 71, 657–666.CrossRefGoogle Scholar
Alopaeus, V., Koshinen, J., and Keskinen, K. I. (1999). Simulation of the population balances for liquid-liquid systems in a nonideal stirred tank. Part 1: Description and qualitative validation of the model. Chem. Eng. Sci., 54, 5887–5899.CrossRefGoogle Scholar
Aly, M. M. (1981). Flow regime boundaries for an interior subchannel of a horizontal 37 element bundle. Can J. Chem. Eng., 59, 158–163.CrossRefGoogle Scholar
Amos, C. N., and Schrock, V. E. (1984). Two-phase critical flow in slits. Nucl. Sci. Eng., 88, 261–274.CrossRefGoogle Scholar
Andresen, U. (2007). Supercritical gas cooling and near-critical-pressure condensation of refrigerant blends in microchannels. Pressure (N/m2); Legendre polynomial Homogeneous Tube or jet diameter (m) Thesis, Georgia Institute of Technology, Atlanta, GA.
Ansari, M. R., and Nariai, H. (1989). Experimental investigation on wave initiation and slugging of air-water stratified flow in horizontal duct. J. Nucl. Sci. Technol., 26, 681–688.CrossRefGoogle Scholar
Antal, S. P., Lahey, R. T. Jr., and Flaherty, J. E. (1991). Analysis of phase distribution in fully developed laminar bubbly two-phase flow. Int. J. Multiphase Flow, 17, 635–652.CrossRefGoogle Scholar
Ardron, K. H. (1978). A two-fluid model for critical vapor-liquid flow. Int. J. Multiphase Flow, 4, 323–327.CrossRefGoogle Scholar
Armand, A. A. (1959). The resistance during the movement of a two-phase system in horizontal pipes. Atomic Energy Research Establishment (AERE) Libr. Trans. 828.Google Scholar
Asali, J. C., Hanratty, T. J., and Andreussi, P. (1985). Interfacial drag and film height for vertical annular flow. AIC Homogeneous E J., 31, 895–902.CrossRefGoogle Scholar
Aussillous, P., and Quéré, D. (2000). Quick deposition of a fluid on the wall of a tube. Phys. Fluids, 12, 2367–2371.CrossRefGoogle Scholar
Azer, N. H., and Said, S. A. (1986). Heat transfer analysis of annular flow condensation inside circular and semi-circular horizontal tubes. ASHRAE Trans., 92, 41–54.Google Scholar
Baker, O. (1954). Simultaneous flow of oil and gas. Oil Gas J., 53, 185–195.Google Scholar
Bailey, N. A. (1971). Film boiling on submerged vertical cylinders. AEEW-M1051.
Baird, J. R., Fletcher, D. F., and Haynes, B. S. (2003). Local condensation heat transfer in fine passages. Int. J. Heat Mass Transfer, 46, 4453–4466.CrossRefGoogle Scholar
Banerjee, S. (1980). Analysis of separated flow models. Electric Power Research Institute Rep. EPRI NP-1442, Palo Alto, CA.Google Scholar
Banerjee, S. B., and Chan, A. M. (1980). Separated flow models – I Analysis of the average and local instantaneous formulations. Int. J. Multiphase Flow, 6, 1–24.CrossRefGoogle Scholar
Bankoff, S. G. (1963). Asymptotic growth of a bubble in a liquid with uniform initial superheat. Appl. Sci. Res., 12A, 567.Google Scholar
Bankoff, S. G., and Lee, S. C. (1986). A critical review of the flooding literature. In Multiphase Science and Technology, Hewitt, G. F., Delhaye, J. M., and Zuber, N., Eds., Hemisphere, New York, Vol. 2, Chapter 2.CrossRefGoogle Scholar
Bankoff, S. G., and Lee, S. C. (1987). Flooding and hysteresis effects in nearly-horizontal countercurrent stratified stead-water flow. Int. J. Heat Mass Transfer, 30, 581–588.CrossRefGoogle Scholar
Bankoff, S. G., Tankin, R. S., Yuen, M. C., and Hsieh, C. L. (1981). Countercurrent flow of air/water and steam/water through a horizontal perforated plate. Int. J. Heat Mass Transfer, 24, 1381–1395.CrossRefGoogle Scholar
Bao, Z.-Y., Bosnich, M. G., and Haynes, B. S. (1994). Estimation of void fraction and pressure drop for two-phase flow in fine passages. Trans. Inst. Chem. Eng., 72A, 625–532.Google Scholar
Bao, Z. Y., Fletcher, D. F., and Haynes, B. S. (2000). Flow boiling heat transfer of Freon R11 and HCFC123 in narrow passages. Int. J. Heat Mass Transfer, 43, 3347–3358.CrossRefGoogle Scholar
Bapat, P. M., and Tavralides, L. L. (1985). Mass transfer in a liquid-liquid CFSTR, AIC Homogeneous E J., 31, 659–666.CrossRefGoogle Scholar
Barajas, A. M., and Panton, R. L. (1993). The effect of contact angle on two-phase flow in capillary tubes. Int. J. Multiphase Flow, 19, 337–346.CrossRefGoogle Scholar
Barnea, D. (1986). Transition from annular and from dispersed bubble flow – Unified models for the whole range of pipe inclination. Int. J. Multiphase Flow, 12, 733–744.CrossRefGoogle Scholar
Barnea, D. (1987). A unified model for predicting flow-pattern transitions for the whole range of pipe inclinations. Int. J. Multiphase Flow, 13, 1–12.CrossRefGoogle Scholar
Barnea, D., Yoseph, Ben N., and Taitel, Y. (1986). Flooding in inclined pipes – Effects of entrance section. Can. J. Chem. Eng., 64, 177–184.CrossRefGoogle Scholar
Barnea, D.Lulinkski, Y., and Taitel, Y. (1983). Flow in small diameter pipes. Can. J. Chem. Eng., 61, 617–620.CrossRefGoogle Scholar
Barnea, D., Shoham, O., and Taitel, Y. (1982). Flow pattern transition for vertical downward two-phase flow. Chem. Eng. Sci., 37, 741–744.CrossRefGoogle Scholar
Barnea, D., Shoham, O., and Taitel, Y. (1985). Gas-liquid flow in inclined tubes: Flow pattern transitions for upward flow. Chem. Eng. Sci., 40, 131–136.CrossRefGoogle Scholar
Baroczy, C. J. (1963). Correlation of liquid fraction in two-phase flow with application to liquid metals. NAA-SR-8171.CrossRef
Basu, N., Warrier, G. R., and Dhir, V. K. (2002). Onset of nucleate boiling and active nucleation site density during subcooled flow boiling. J. Heat Transfer, 124, 717–728.CrossRefGoogle Scholar
Batchelor, G. K. (1970). Theory of Homogeneous Turbulence, Cambridge University Press, Cambridge.Google Scholar
Baumeister, K. J., and Simon, F. F. (1973). Leidenfrost temperature – Its correlation for liquid metals, cryogens, hydrocarbons, and water. J. Heat Transfer, 95, 166–173.CrossRefGoogle Scholar
Beattie, D. R. H. (1973). A note on the calculation of two-phase pressure losses. Nucl. Eng. Design, 25, 395–402.CrossRefGoogle Scholar
Beattie, D. R. H., and Whalley, P. B. (1982). A simple two-phase frictional pressure drop calculation method. Int. J. Multiphase Flow, 8, 83–87.CrossRefGoogle Scholar
Becker, K. M. (1971). Measurement of burnout conditions for flow of boiling water in horizontal round tubes. Rep. No. AERL-1262, Atomenergia-Aktieb, Sweden.Google Scholar
Benedek, S. (1976). Heat transfer at the condensation of steam on turbulent water jet. Int. J. Heat Mass Transfer, 19, 448–450.CrossRefGoogle Scholar
Benjamin, T. B. (1957). Wave formation in laminar flow down an inclined plane. J. Fluid Mech., 2, 554–574.CrossRefGoogle Scholar
Bennett, D. L., and Chen, J. C. (1980). Forced convective boiling in vertical tubes for saturated pure components and binary mixtures. AIC Homogeneous E J., 24, 223–230.Google Scholar
Bennett, M. K., and Rohani, S. (2001). Solution of polulation balance equations with a new combined Lax–Wendroff/Cranck–Nicholson method. Chem. Eng. Sci., 56, 6623–6633.CrossRefGoogle Scholar
Bennett, J. A. R., Collier, J. G., Pratt, H. R. C., and Thornton, D. (1961). Heat transfer to two-phase gas-liquid systems. Steam-water mixtures in the liquid-dispersed region in an annulus. Trans. Inst. Chem. Eng., 39, 113–126.Google Scholar
Bercic, G., and Pintar, A. (1997). The role of gas bubbles and liquid slug lengths on mass transport in the taylor flow through capillaries. Chem. Eng. Sci., 52, 3709–3719.Google Scholar
Berenson, P. J. (1961). Film-boiling heat transfer from a horizontal surface. J. Heat Transfer, 83, 351–358.CrossRefGoogle Scholar
Bergles, A. E. (1962). Subcooled burnout in tubes of small diameter. ASME Paper 63-WA-182.
Bergles, A. E. (1978). Instabilities in two-phase flow. In Two-Phase Flow and Heat Transfer in Power and Process Industries, Bergles, A. E., Collier, J. G., Delhaye, J. M., Hewitt, G. F., and Mayinger, F., Eds., Hemisphere, Washington, Direct-contact.Google Scholar
Bergles, A. E., and Kandlikar, S. G. (2005). On the nature of critical heat flux in microchannels. J. Heat Transfer, 127, 101–107.CrossRefGoogle Scholar
Bergles, A. E., and Rohsenow, W. M. (1964). The determination of forced convection surface boiling heat transfer. Int. J. Heat Mass Transfer, 86, 365–372.Google Scholar
Berman, L. D., and Fuks, S. N. (1958). Mass transfer in condensers with horizontal tubes when the steam contains air. Teploenergetika, 5(8), 66–74.Google Scholar
Bertoletti, S., Gaspari, G. P., Lombardi, C., Peterlongo, G., Silvestri, M., and Tacconi, F. A. (1965). Heat transfer crisis with steam water mixtures. Energia Nucleare, 12, 121–172.Google Scholar
Bharathan, D., and Wallis, G. B. (1983). Air-water countercurrent annular flow. Int. J. Multiphase Flow, 9, 349–366.CrossRefGoogle Scholar
Bharathan, D., Wallis, G. B., and Richter, H. J. (1979). Air-water countercurrent annular flow. Electric Power Research Institute Rep. EPRI NP-1165, Palo Alto, CA.Google Scholar
Bibeau, E. L., and Salcudean, M. (1990). The effect of flow direction on void growth at very low velocities and low pressure. Int. Comm. Heat Mass Transfer, 17, 19–25.CrossRefGoogle Scholar
Bibeau, E. L., and Salcudean, M. (1994a). Subcooled voidage growth mechanisms and prediction at low pressure and low velocity. Int. J. Multiphase Flow, 20, 837–863.CrossRefGoogle Scholar
Bibeau, E. L., and Salcudean, M. (1994b). A study of bubble ebullition in forced-convective subcooled nucleate boiling at low pressure. Int. J. Heat Mass Transfer, 37, 2245–2259.CrossRefGoogle Scholar
Binnie, A. M. (1957). Experiments on the onset of wave formation on a film of water flowing down a vertical plate. J. Fluid Mech., 2, 551–553.CrossRefGoogle Scholar
Bird, R. B., Stewart, W. E., and Lightfoot, E. N. (2002). Transport Phenomena, 2nd ed., Wiley, New York.Google Scholar
Birkhoff, G., Margulies, R. S., and Horning, W. A. (1958). Spherical bubble growth. Phys. Fluids, 1, 201.CrossRefGoogle Scholar
Bjonard, T. A., and Griffith, P. (1977). Pressurized water reactor blowdown heat transfer. In Symposium on Thermal and Hydraulic Aspects of Nuclear Reactor Safety, Jones, O. C., and Bankoff, S. G., Eds., ASME, New York, Vol. 1.Google Scholar
Bjorge, R. W., Hall, G. R., and Rohsenow, W. M. (1982). Correlation of forced convection boiling heat transfer data. Int. J. Heat Mass Transfer, 25, 753–757.CrossRefGoogle Scholar
Blasick, A. M., Dowling, M. F., Abdel-Khalik, S. I., Ghiaasiaan, S. M., and Jeter, S. M. (2002). Onset of flow instability in uniformly-heated thin horizontal annuli. Exp. Thermal Fluid Sci., 26, 1–14.Google Scholar
Blinkov, V. N., Jones, O. C., Jr. and Nigmatulin, B. I. (1993). Nucleation and flashing in nozzles – 2 Comparison with experiments using a five-equation model for vapor void development. Int. J. Multiphase Flow, 19, 965–986.CrossRefGoogle Scholar
Block, J. A., and Crowley, C. J. (1976). Effect of steam upflow and superheated walls on ECC delivery in a simulated multiloop Pressurized water reactor geometry. CREARE Rep. TN-2110, Creare, NH.Google Scholar
Bolstad, M. M., and Jordan, R. C. (1948). Theory and use of the capillary tube expansion device. Refrig. Eng., 56, 519.Google Scholar
Bonjour, J., and Lallemand, M. (1998). Flow patterns during boiling in a narrow space between two vertical surfaces. Int. J. Multiphase Flow, 24, 947–960.CrossRefGoogle Scholar
Borishanskiy, V. M., et al. (1977). Effect of uncondensable gas content on heat transfer in steam condensation in a vertical tube. Heat Transfer Sov. Res., 9(2), 2, 35–42.Google Scholar
Borishanskiy, V. M., et al. (1978). Heat transfer from steam condensing inside vertical pipes and coils. Heat Transfer Sov. Res., 10(4), 44–58.Google Scholar
Bose, F., Ghiaasiaan, S. M., and Heindel, T. J. (1997). Hydrodynamics of dispersed liquid droplets in agitated synthetic fibrous slurries. Ind. Eng. Chem. Res., 36, 5028–5039.CrossRefGoogle Scholar
Bouré, J. A. (1977). The critical flow phenomena with reference to two-phase flow and nuclear reactor systems. Proc., ASME Symp. Thermal-Hydraulic Aspects of Nuclear Reactor Safety, ASME, New York, pp. 195–216.Google Scholar
Bouré, J. A., and Delhaye, J. M. (1981). Chapter 12. In Thermohydraulics of Two-Phase Systems for Industrial Design and Nuclear Engineering, Delhaye, , Giot, M., Riethermuller, M., , L. M., Eds., Hemisphere, Washington, Direct-contact, pp. 353–403.Google Scholar
Bouré, J. A., Bergles, A. E., and Tong, L. S. (1973). Review of two-phase flow instability. Nucl. Eng. Design, 25, 165–192.CrossRefGoogle Scholar
Bousman, W. S., McQuillen, J. B., and Witte, L. C. (1996). Gas-liquid flow patterns in microgravity: Effects of tube diameter, liquid viscosity and surface tension. Int. J. Multiphase Flow, 22, 1035–1053.CrossRefGoogle Scholar
Bowers, M. B., and Mudawar, I. (1994). High flux boiling in low flow rate, low pressure drop mini-channel and micro-channel heat sinks. Int. J. Heat Mass Transfer, 37, 321–332.CrossRefGoogle Scholar
Bowring, R. W. (1972). A simple but accurate round tube, uniform heat flux, dryout correlation over the pressure range 0.7–17 MN/m2 (100–2500 psia). UKAEA Rep. AEEW-R789, Winfrith, England.
Bowring, R. W. (1979). WSC-2: A subcooled dryout correlation for water-cooled clusters over the pressure range 3.4–15.9 MPa (500–2300 PSIA). UKAEA Rep. AEEW–R983, Winfrith, England.
Bowring, R. W. (1962). Physical model of bubble detachment and void volume in subcooled boiling. OECD Halden Reactor Project Rep. HPR-10.
Boyd, R. D. (1985a). Subcooled flow boiling critical heat flux (Critical heat flux) and its application to fusion energy components. Part I. A review of fundamentals of Critical heat flux and related data base. Fusion Technol. 7, 1–30.CrossRefGoogle Scholar
Boyd, R. D. (1985b). Subcooled flow boiling critical heat flux (Critical heat flux) and its application to fusion energy components. Part II. A review of microconvective, experimental, and correlational aspects. Fusion Technol. 7, 31–52.CrossRefGoogle Scholar
Boyd, R. D. (1988). Subcooled water flow boiling experiments under uniform high heat flux conditions. Fusion Technol. 13, 131–142.CrossRefGoogle Scholar
Boyd, R. D. (1990). Subcooled water flow boiling transition and the L/D effect on Critical heat flux for a horizontal uniformly heated tube. Fusion Technol. 18, 317–324.CrossRefGoogle Scholar
Brauer, H. (1956). Strömung und Wärmeübertragung bei Rieselfilmen. VDI-Verlag, Düsseldorf, p. 457.Google Scholar
Braum, B., Ikier, C., and Klein, H. (1993). Thermocapillary migration of droplets in a binary mixture with miscibility gap during liquid, liquid phase separation under reduced gravity. J. Colloid Interface Sci., 159, 515–516.CrossRef
Brauner, N., and Moalem-Maron, D. (1992). Identification of the range of ‘small diameter’ conduits, regarding two-phase flow pattern transitions. Int. Comm. Heat Mass Transfer, 19, 29–39.CrossRefGoogle Scholar
Brauner, N., and Maron, Molem D. (1982). Characteristics of inclined thin films, waviness and the associated mass transfer. Int. J. Heat Mass Transfer, 25, 99–110.CrossRefGoogle Scholar
Brauner, N., and Maron, Molem D. (1983). Modeling of wavy flow in inclined thin films. Chem. Eng. Sci., 38, 775–788.CrossRefGoogle Scholar
Breber, D., Palen, J. W., and Taborek, J. (1980). Prediction of horizontal tubeside condensation of pure components using flow regime criteria. J. Heat Transfer, 102, 471–476.CrossRefGoogle Scholar
Breen, B. P., and Westwater, J. W. (1962). Effect of diameter of horizontal tubes on film boiling heat transfer. Chem. Eng. Prog., 58(7), 67.Google Scholar
Bretherton, F. B. (1961). The motion of long bubbles in tubes. J. Fluid Mech. 10, Part 2, 166–188.CrossRefGoogle Scholar
Brodkey, R. S. (1967). The Phenomena of Fluid Motion, Addison-Wesley, Reading, MA.Google Scholar
Bromley, L. A. (1950). Heat transfer in stable film boiling. Chem. Eng. Prog. Symp. Ser. 46, 221–227.Google Scholar
Brotz, W. (1954). Uber die vorausberechnung der absorptions geschwindigwert von gasen in stramen der fussigkeitschichten. Chem. Eng. Technol. 26, 470–478.Google Scholar
Brouwers, H. J. H. (1991). An improved tangency condition for fog formation in cooler-condensers. Chem. Eng. Sci., 47, 3023–3036.CrossRefGoogle Scholar
Brouwers, H. J. H. (1992). A film model for heat and mass transfer with fog formation. Int. J. Heat Mass Transfer, 34, 2387–2394.CrossRefGoogle Scholar
Brouwers, H. J. H. (1996). Effect of fog formation on turbulent vapor condensation with noncondensable gases. J. Heat Transfer, 118, 243–245.CrossRefGoogle Scholar
Brutin, D., Topin, F., and Tadris, L. (2003). Experimental study of convective boiling in heated minichannels. Int. J. Heat Mass Transfer, 46, 2957–2965.CrossRefGoogle Scholar
Brutin, D., Topin, F., and Tadris, L. (2004). Pressure drop and heat transfer analysis of flow boiling in a minichannel: Influence of the inlet condition on two-phase flow stability. Int. J. Heat Mass Transfer, 47, 2365–2377.CrossRefGoogle Scholar
Bui, T. D., and Dhir, V. K. (1985). Transition boiling heat transfer on a vertical surface. J. Heat Transfer, 107, 756–763.CrossRefGoogle Scholar
Butterworth, D. (1975). A comparison of some void-fraction relationships for co-current gas-liquid flow. Int. J. Multiphase Flow, 1, 845–850.CrossRefGoogle Scholar
Butterworth, D. (1988). Condensers and their design. In Two-Phase Flow Heat Exchangers, Kakac, S., Bergles, A. E., and Fernandes, Oliveira E., Eds., Kluwer, Dordrecht, pp. 779–828.CrossRefGoogle Scholar
Caira, M., Caruso, G., and Naviglio, A. (1995). A correlation to predict Critical heat flux in subcooled flow boiling. Int. Comm. Heat Mass Transfer, 22, 35–45.CrossRefGoogle Scholar
Calderbank, P. H., and Korchinski, I. J. O. (1956). Circulation in liquid drops. Chem. Eng. Sci., 6, 65–78.CrossRefGoogle Scholar
Cammenga, H. K., Schulze, F. W., and Theuerl, W. (1977). Vapor pressure and evaporation coefficient of water. J. Chem Eng. Data, 22, 131–134.CrossRefGoogle Scholar
Camp, D. W., and Berg, J. C. (1987). The spreading of oil on water in surface-tension regime. J. Fluid Mech., 184, 445–462.CrossRefGoogle Scholar
Carey, V. P. (1992). Liquid–Vapor Phase-Change Phenomena, Hemisphere, Washington, Direct-contact.Google Scholar
Carey, V. P (1999). Statistical Thermodynamics and Microscale Thermophysics, Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Catton, I., Ghiaasiaan, S. M., and Duffey, R. B. (1988). Multi-dimensional thermal-hydraulics and two-phase phenomena during quenching of hot rod bundles. In Transient Phenomena in Multiphase Flow, Afgan, N. H., Ed., Hemisphere, Washington Direct-contact, pp. 491–525.Google Scholar
Cavallini, A., Censi, G., Col, Del D., Doretti, L., Longo, G. A., and Rossetto, L. (2001). Experimental investigation on condensation of new HFC refrigerants (R134a, R125, R32, R410A, R236ea) in a horizontal smooth tube. Int. J. Refrig., 24, 73–87.CrossRefGoogle Scholar
Cavallini, A., Censi, G., Col, Del D., Doretti, L., Longo, G. A., and Rossetto, L. (2002). Condensation of halogenated refrigerants inside smooth tubes. Heating, Ventitation, Air Conditioning and Refrigeration, 8, 429–451.Google Scholar
Cavallini, A., Censi, G., Col, Del D., Doretti, L., Longo, G. A., Rossetto, L., and Zilio, C. (2003). Condensation inside and outside smooth and enhanced tubes – A review of recent research. Int. J. Refrig., 26, 373–392.CrossRefGoogle Scholar
Cavallini, A., Col, Del D., Doretti, L., Matkovic, M., Rossetto, L., and Zilio, C. (2005). Two-phase frictional pressure gradient of R236ea, R134a and R410A inside multi-port mini-channels. Exp. Thermal-Fluid Sci., 29, 861–870.CrossRefGoogle Scholar
Cavallini, A., Doretti, L., Matkovic, M., and Rossetto, L. (2006). Update on condensation heat transfer and pressure drop inside minichannels. Heat Transfer Eng., 27, 74–87.CrossRefGoogle Scholar
Celata, G. P., Cumo, M., Farello, G. E., and Incalcaterra, P. C. (1983). Critical flows of subcooled liquid and jet forces. Presented at ASME – JSME National Heat Transf. Conf., Seattle, Washington.
Celata, G. P. (1993). Recent achievements in the thermal-hydraulics of high heat flux components in fusion reactors. Exp. Thermal. Fluid Sci., 7, 263–278.CrossRefGoogle Scholar
Celata, G. P., Cumo, M., Annibale, D' F., and Farello, G. E. (1988). The influence of noncondensible gas on two-phase critical flow. Int. J. Multiphase Flow, 14, 175–187.CrossRefGoogle Scholar
Celata, G. P., Cumo, M., and Setaro, T. (1992). Flooding in inclined pipes with obstructions. Exp. Heat Transfer, 5, 18–25.Google Scholar
Celata, G. P., Cumo, M., Farello, G. E., and Focardi, G. (1989). A comprehensive analysis of direct contact condensation of saturated steam on subcooled liquid jets. Int. J. Heat Mass Transfer, 32, 639–654.CrossRefGoogle Scholar
Celata, G. P., Cumo, M., Annibale, D' F., and Farello, G. E. (1991). Direct contact condensation of steam on droplets. Int. J. Multiphase Flow, 17, 191–211.CrossRefGoogle Scholar
Celata, G. P., Cumo, M., and Mariani, A. (1993a). Burnout in highly subcooled water flow boiling in small diameter tubes. Int. J. Heat Mass Transfer, 36, 1269–1285.CrossRefGoogle Scholar
Celata, G. P., Cumo, M., and Setaro, T. (1993b). Flooding in inclined pipes with obstructions. Exp. Therm. Fluid Sci., 5, 18–25.CrossRefGoogle Scholar
Celata, G. P., Cumo, M., Mariani, A., Nariai, H., and Inasaka, F. (1993c). Influence of channel diameter on subcooled flow boiling burnout at high heat fluxes. Int. J. Heat Mass Transfer, 36, 3407–3409.Google Scholar
Celata, G. P., Cumo, M., and Mariani, A. (1994a). Assessment of correlations and models for the prediction of Critical heat flux in water subcooled flow boiling. Int. J. Heat Mass Transfer, 37, 237–255.CrossRefGoogle Scholar
Celata, G. P., Cumo, M., Mariani, A., Simoncini, M., and Zummo, G. (1994b). Rationalization of existing mechanistic models for the prediction of water subcooled flow boiling critical heat flux. Int. J. Heat Mass Transfer, 37, Suppl. 1, 347–360.CrossRefGoogle Scholar
Celata, G. P., Mishima, K., and Zummo, G. (2001). Critical heat flux prediction for saturated flow boiling of water in vertical tubes. Int. J. Heat Mass Transfer, 44, 4323–4331.CrossRefGoogle Scholar
Chalfi, T. (2007). Pressure Loss Associated with Flow Area Changes in Microchannels. MS Thesis, Geogia Institute of Technology, Atlanta, GA.Google Scholar
Chandrasekhar, S. (1961). Hydrodynamic and Hydromagnetic Stability, Cambridge Univesrity Press, Cambridge.Google Scholar
Chang, T.-H., and Chung, J. N. (1985). The effects of surfactants on the motion and transport mechanisms of a condensing droplet in a high Reynolds number flow. AIC Homogeneous E J., 31, 1149–1156.CrossRefGoogle Scholar
Chang, J. Y., and You, S. M. (1996). Heater orientation effect on pool boiling of micro-porous-enhanced surface in saturated Forced convection-72. J. Heat Transfer, 118, 937–943.CrossRefGoogle Scholar
Chapman, S., and Cowling, T. G. (1970). The Mathematical Theory of Non-uniform Gases, 3rd ed., Cambridge University Press, Cambridge.Google Scholar
Chedester, R. C., and Ghiaasiaan, S. M. (2002). A proposed mechanism for hydrodynamically-controlled onset of significant void in microchannels. Int. J. Heat Fluid Flow, 23, 769–775.CrossRefGoogle Scholar
Chen, J. C. (1966). Correlation for boiling heat transfer to saturated fluids in convective flow. Ind. Eng. Chem. Res., 5, 322–329.Google Scholar
Chen, J. C., Ozkaynak, F. T., and Sundaram, R. K. (1979). Vapor heat transfer in post-Critical heat flux region including the effect of thermodynamic non-equilibrium. Nucl. Eng. Design, 51, 143–155.CrossRefGoogle Scholar
Chen, S. L., Gerner, F. M., and Tien, C. L. (1987). General film condensation correlations. Exp. Heat Transfer, 1, 93–107.CrossRefGoogle Scholar
Chen, W. C., Klausner, J. F., and Mei, R. (1995). A simplified model for predicting vapor bubble growth rates in heterogeneous boiling. J. Heat Transfer, 117, 976–980.CrossRefGoogle Scholar
Chen, Y., and Cheng, P. (2005). Condensation of steam in silicon microchannels. Int. Comm. Heat Mass Transfer, 32, 175–183.CrossRefGoogle Scholar
Cheng, S. C., Wong, Y. L., and Groeneveld, D.C. (1988). Critical heat flux prediction for horizontal flow. Proc. Int. Symp. on Phase Change Heat Transfer, Chonqing, China, pp. 211–215.Google Scholar
Cheng, X. (2005). Experimental studies on critical heat flux in vertical tight 37-rod bundles using Freon-12. Int. J. Multiphase Flow, 31, 1198–1219.CrossRefGoogle Scholar
Chexal, B., Abdollahian, D., and Norris, D. (1984). Analytical prediction of single-phase and two-phase flow through cracks in pipes and tubes. AIC Homogeneous Eddy diffusivity (m2/s) Symp. Ser., 80(236), 19–23.Google Scholar
Chexal, B., Lelluche, G., Horowitz, J., Healzer, J., and Oh, S. (1991). The Chexal-Lelluche void fration correlation for generalized Applications. Electric Power Research Institute, Rep. NSAC-139, Palo Alto, CA.Google Scholar
Chexal, B., Merilo, M., Maulbetsch, M., Horowitz, J.Harrison, J., Westacott, J., Peterson, C., Kastner, W., and Schmidt, H. (1997). Void fraction technology for design and analysis, Electric Power Research Institute, Palo Alto, CA.Google Scholar
Chisholm, D. (1967). A theoretical basis for the Lockhart–Martinelli correlation for two-phase flow. Int. J. Heat Mass Transfer, 10, 1767–1778.CrossRefGoogle Scholar
Chisholm, D. (1972). An equation for velocity ratio in two-phase flow. NEL Rep. 535. (cited in Whalley, 1996.)
Chisholm, D. (1973). Pressure gradients due to friction during the flow of evaporating two-phase mixture in smooth tubes and channels. Int. J. Heat Mass Transfer, 16, 347–358.CrossRefGoogle Scholar
Chisholm, D. (1980). Two-phase pressure drops in bends. Int. J. Multiphase Flow, 6, 363–367.CrossRefGoogle Scholar
Chisholm, D. (1981). Modern developments in marine condensers: Noncondensable gases: An overview. In Power Condenser Heat Transfer Technology, Marto, P. J., and Nunn, R. H., Eds., Hemisphere, New York, pp. 95–142.Google Scholar
Chisholm, D. (1985). Two-phase flow in heat exchangers and pipelines. Heat Transfer Eng., 6, 48–57.CrossRefGoogle Scholar
Chisholm, D., and Laird, A. D. K. (1958). Two-phase flow in rough tubes. Trans., ASME, 80, 276–283.Google Scholar
Cho, C., Irvine, T. F. Jr., and Karni, J. (1992). Measurement of the diffusion coefficient of naphthalene into air. Int. J. Heat Mass Transfer, 35, 957–966.Google Scholar
Choi, S. B., Barron, R. F., and Warrington, R. O. (1991). Fluid flow and heat transfer in microtubes. Proc. ASME 1991 Winter Annual Meeting, DSC-Vol. 32, pp. 123–134, ASME, New York.Google Scholar
Chun, K. R., and Seban, R. A. (1971). Heat transfer to evaporating liquid films. J. Heat Transfer, 93, 391–396.CrossRefGoogle Scholar
Chung, P.Kawaji, M.-Y., M. (2004). The effect of channel diameter on adiabatic two-phase flow characteristics in microchannels. Int. J. Multiphase Flow, 30, 735–761.CrossRefGoogle Scholar
Chung, P. M.-Y., Kawaji, M., Kawahara, A., and Shibata, Y. (2004). Two-phase flow through square and circular microchannels – Effects of channel geometry. J. Fluids Eng., 126, 546–552.CrossRefGoogle Scholar
Churchill, S. W. (1977). Frictional equation spans all fluid flow regimes. Chem. Eng., 84, 91–92.Google Scholar
Churchill, S. W., and Bernstein, M. (1977). Correlating equation for forced convection from gases and liquids to a circular cylinder in crossflow. J. Heat Transfer, 99, 300–306.CrossRefGoogle Scholar
Cicchitti, A., Lombardi, C., Silvestri, M., Solddaini, G., and Zavalluilli, R., (1960). Two-phase cooling experiments – Pressure drop, heat transfer and burnout measurement. Energia Nucleare, 7, 407–425.Google Scholar
Clift, R., Grace, J. R., and Weber, M. E. (1978). Bubbles, Drops and Particles, Academic Press, New York.Google Scholar
Coddington, P., and Macian, R. (2002). A study of the performance of void fraction correlations used in the context of drift-flux two-phase flow models. Nucl. Eng. Design, 215, 199–216.CrossRefGoogle Scholar
Cole, R., and Shulman, H. L. (1966). Bubble departure diameters at subatmospheric pressures. Chem. Eng. Symp. Ser. 62(64) 6–16.Google Scholar
Colebrook, C. R. (1939). Turbulent flow in pipes with particular reference to the transition region between the smooth and rough pipe laws. J. Inst. Civil Eng., 11, 133–156.CrossRefGoogle Scholar
Coleman, J. W., and Garimella, S. (1999). Characteristics of two-phase flow patterns in small diameter round and rectangular tubes. Int. J. Heat Mass Transfer, 42, 2869–2881.CrossRefGoogle Scholar
Coleman, J. W., and Garimella, S. (2003). Two-phase flow regimes in round, square and rectangular tubes during condensation of refrigerant R134a. Int. J. Refrig., 26, 117–128.CrossRefGoogle Scholar
Collier, J. G. (1981). Forced convection boiling. In Two-Phase Flow and Heat Transfer in Power and Process Industries, Bergles, A. E., Collier, J. G., Delhaye, J. M., Hewitt, G. F., and Mayinger, F., Eds., Hemisphere, Washington, Direct-contact.Google Scholar
Collier, J. G., and Thome, J. R. (1994). Convective Boiling and Condensation, 3rd ed., Clarendon Press, Oxford, England.Google Scholar
Collier, R. P., and Norris, D. M. (1983) Two-phase flow experiments through intergranular stress corrosion cracks. Proc., CSNI Specialist Meeting on Leak-Before Break in Nuclear Reactor Piping, U.S. Nuclear Regulatory Commission Rep. NUREG/CP-005, pp. 273–299.Google Scholar
Collier, R. P., Stuben, F. B., Mayfield, M. E., Pope, D. B., and Scott, P. M. (1984) Two-phase flow through intergranular stress corrosion cracks. Electric Power Research Institute Rep. EPRI-NP-3540-LD, Palo Alto, CA.Google Scholar
Comish, R. J. (1928). Flow in a pipe of rectangular cross-sections. Proc. R. Soc. Ser. A, 120 (A786), 691–695.Google Scholar
Cooper, M. G. (1984). Saturated nucleate pool boiling – A simple correlation. First UK National Heat Transfer Conf., Inst. Chem. Eng. Symp. Ser. 86, 2, 785–793.CrossRefGoogle Scholar
Cooper, M. G., and Lloyd, A. J. P. (1969). The microlayer in nucleate pool boiling, Int. J. Heat Mass Transfer, 12, 895–913.CrossRefGoogle Scholar
Cooper, M. G., Judd, A. M., and Pike, R. A. (1978). Shape and departure of single bubbles growing at a wall. Proc. 6th Int. Heat Transfer Conf., Toronto, 1, 115–120.Google Scholar
Cornish, R. J. (1928). Flow in a pipe of rectangular cross-section. Proc. R. Soc. Ser. A, 120, 691–700.CrossRefGoogle Scholar
Cornwell, K., and Kew, P. A. (1992). Boiling in small parallel channels. Proc. CEC Conference on Energy Efficiency in Process Technology, Athens, October, Paper 22, Elsevier Applied Science, pp. 624–638.Google Scholar
Coulaloglu, C. A., and Tavralides, L. L. (1977). Description of interaction processes in agitated liquid-liquid dispersions. Chem. Eng. Sci., 32, 1289–1297.CrossRefGoogle Scholar
Courtaud, M., Deruaz, R., and Aillon, D' L. G. (1988). The French thermal-hydraulic program addressing the requirements of the future pressurized water reactors. Nucl. Technol., 80, 73–82.CrossRefGoogle Scholar
Cumo, M., et al. (1980). Experimental advanced on boiler heat transfer. Proc., Int. Conf. Boiler Dynamics and Control in Nuclear Power Stations, 2nd, British Nuclear Society, p. 367.Google Scholar
Cussler, E. C. (1997). Diffusion Mass Transfer in Fluid Systems, 2nd ed., Cambridge University Press, Cambridge.Google Scholar
Dagan, R., Elias, E., Wacholder, E., and Olek, S. (1993). A two-fluid model for critical flashing flows in pipes. Int. J. Multiphase Flow, 19, 15–25.CrossRefGoogle Scholar
Dagan, Z. (1984). Spreading of films of adsorption on a liquid surface. PCH PhysicoChem. Hydrodyn., 5, 43–51.Google Scholar
Daleas, R. S., and Bergles, A. E. (1965). Effects of upstream compressibility on subcooled critical heat flux. Paper 65 – HT – 67, ASME, New York.Google Scholar
Daiguji, H., Hihara, E., and Saito, T. (1977). Mechanism of absorption enhancement by surfactants. Int. J. Heat Mass Transfer, 40, 1743–1752.CrossRefGoogle Scholar
Donne, Dalle M., and Hame, W. (1985). Critical heat flux for triangular arrays of rod bundles with tight lattices, including the spiral spacer effects. Nucl. Technol., 71, 111– 124.CrossRefGoogle Scholar
Damianides, C. A., and Westwater, J. W. (1988). Two-phase flow patterns in a compact heat exchanger and in small tubes. Proc. UK National Heat Transfer Cont., 2nd, pp. 1257– 1268.Google Scholar
Das, P. Y., Kumar, R., and Ramkrishna, D. (1987). Coalescence of drops in stirred dispersions, a white noise model for coalescence. Chem. Eng. Sci., 42, 213–220.CrossRefGoogle Scholar
Davidson, J. F., and Harrison, D. (1971). Fluidization, Academic Press, New York.Google Scholar
Davies, J. T., and Rideal, E. K. (1963). Interfacial Phenomena, Academic Press, New York.Google Scholar
Davis, E. J., and Anderson, G. H. (1966). The incipience of nucleate boiling in forced convection flow. AIC Homogeneous E J., 12, 774–780.CrossRefGoogle Scholar
Davis, R. M., and Taylor, G. I. (1950). The mechanism of large bubbles rising through extended liquids and through liquids in tubes. Proc. R. Soc. Ser. A, 200, 375–390.CrossRefGoogle Scholar
Ded, J. S., and Lienhard, J. H. (1972). The peak pool boiling from a sphere. AIC Homogeneous E J., 18, 337–342.CrossRefGoogle Scholar
Deissler, R. G. (1954). Analysis of turbulent heat transfer, mass transfer and friction in smooth tubes at high Prandtl and Schmidt numbers. NACA Tech Rep. 1210.Google Scholar
Delhaye, J. M. (1969). General equations for two-phase systems and their applications to air-water bubble flow and to steam-water flashing flow. ASME-69-HT-63Google Scholar
Delhaye, J. M., and Bricard, P. (1994). Interfacial area in bubbly flow: Experimental data and correlations. Nucl. Eng. Design, 151, 65–77.CrossRefGoogle Scholar
Dengler, C. E., and Addoms, J. N. (1956). Heat transfer mechanism for vaporization of water in a vertical tube. Chem. Eng. Prog. Symp. Ser., 52 (18), 85–103.Google Scholar
Salve, M., Panella, B., and Scorta, G. (1986). Heat and mass transfer by direct condensation of steam on a subcooled turbulent water jet. Proc. 8th Int. Heat Transfer Conf., San Francisco, 4, 1653–1658.Google Scholar
Dey, D., Boulton-Stone, J. M., Emery, A. N., and Blake, J. R. (1997). Experimental comparisons with a numerical model of surfactant effects on the burst of a single bubble. Chem. Eng. Sci., 52, 2769–2783.CrossRefGoogle Scholar
Young, T. L. (1975). Homogeneous equilibrium critical flow model. Aerojet Nuclear Company Internal Rep. TLD-1-75.Google Scholar
Dhir, V. K. (1991). Nucleate and transition boiling heat transfer under pool and external flow conditions. Int. J. Heat Fluid Flow, 12, 290–314.CrossRefGoogle Scholar
Dhir, V. K. (1994). Boiling and two-phase flow in porous media. Annu. Rev. Heat Transfer, 5, 303–350.CrossRefGoogle Scholar
Dhir, V. K. (1998). Boiling heat transfer. Annu. Rev. Fluid Mech., 30, 265–401.CrossRefGoogle Scholar
Dhir, V. K., and Liaw, S. P. (1989). Framework for a unified model for nucleate and transition pool boiling. J. Heat Transfer, 111, 739–746.CrossRefGoogle Scholar
Dhir, V. K., and Lienhard, J. H. (1974). Peak pool boiling heat flux in viscous liquids. J. Heat Transfer, 96, 71–78.CrossRefGoogle Scholar
Dhir, V. K., Castle, J. N., and Catton, I. (1977). Role of Taylor instability on sublimation of a horizontal slab of dry ice. J. Heat Transfer, 99, 411–418.CrossRefGoogle Scholar
Dittus, F. W., and Boelter, L. M. K. (1930). Heat transfer in automobile radiators of the tubular type. University of California Publication on Engineering, Vol. 2, No. 13, Berkeley, California.Google Scholar
Dix, G. E. (1971). Vapor void fractions for forced convection with subcooled boiling at low flow rates. Ph.D. thesis, University of California, Berkeley. Also, General Electric Rep. NEDO-10491.Google Scholar
Dobran, F. (1987). Nonequilibrium modeling of two-phase critical flow in tubes. J. Heat Transfer, 109, 731–738.CrossRefGoogle Scholar
Dobson, M. K., and Chato, J. C. (1998). Condensation in smooth horizontal tubes. J. Heat Transfer, 120, 193–213.CrossRefGoogle Scholar
Dobson, M. K., Chato, J. C., Hinde, D. K., and Wang, S. P. (1994). Experimental evaluation of internal condensation of refrigerants R-12 and R-134a, ASHRAE Trans., 100, 744–754.Google Scholar
Doroschuk, V. E., Levitan, L. L., and Lantzman, F. P. (1975). Investigation into burnout in uniformly heated tubes. ASME Paper 75-WA/HT-22.Google Scholar
Dougall, R. L., and Rohsenow, W. M. (1963). Film boiling on the inside of vertical tubes with upward flow of the fluid at low qualities. Rep. MIT-TR-9070–26, Massachusetts Institute of Technology, Cambridge, MA.Google Scholar
Downar-Zapolski, Z., Bilicki, Z., Bolle, L., and Franco, J. (1996). The non-equilibrium relaxation model for one-dimensional flashing liquid flow. Int. J. Multiphase Flow, 22, 473–483.CrossRefGoogle Scholar
Drew, D. A., and Lahey, R. T. (1987). The virtual mass and lift force on a sphere in rotating and straining inviscid flow. Int. J. Multiphase Flow, 13, 113–121.CrossRefGoogle Scholar
Drew, D. A., Cheng, L. Y., and Lahey, R. T. (1979). The analysis of virtual mass effect in two-phase flow. Int. J. Multiphase Flow, 5, 233–242.CrossRefGoogle Scholar
Dukler, A. E., and Hubbard, M. G. (1975). A model for gas-liquid slug flow in horizontal and near-horizontal tubes. Ind. Eng. Chem. Fundam., 14, 337–347.CrossRefGoogle Scholar
Dukler, A. E., and Smith, L. (1979). Two-phase interactions in countercurrent flow: Studies of the flooding mechanism. NUREG/CR-0617, U.S. Nuclear Regulatory Commission, Washington, Direct-contact.Google Scholar
Dukler, A. E., and Taitel, Y. (1986). Flow pattern transitions in gas-liquid systems: Measurement and modeling. In Multiphase Science and Technology, Hewitt, , , G. F., Delhaye, , , J. M., and Zuber, N., Eds., 2, 1–94.CrossRefGoogle Scholar
Dukler, A. E., Wicks, M., III , and Cleveland, R. G. (1964). Pressure drop and hold-up in two-phase flow. AIC Homogeneous E J., 10, 38–51.CrossRefGoogle Scholar
Dumitrescu, D. T. (1943). Strömung an einer Luftblase in senkrechten Rohr. Z. Agnew Math. Mech., 23, 139–149.CrossRefGoogle Scholar
Duncan, A. B., and Peterson, G. P. (1994). Review of microscale heat transfer. Appl. Mech. Rev., 47, 397–428.CrossRefGoogle Scholar
Eames, I. W., Marr, N. J., and Sabir, H. (1997). The evaporation of water: A review. Int. J. Heat Mass Transfer, 40, 2963–2973.CrossRefGoogle Scholar
Edvinsson, R., and Irandoust, S. (1996). Finite-element analysis of Taylor flow. AIC Homogeneous E J., 42, 1815–1823.CrossRefGoogle Scholar
Edwards, D. K., Denny, V. E., and Mills, A. F. (1979). Transfer Processes, 2nd ed., Hemisphere, Washington, Direct-contact.Google Scholar
Eichhorn, R. (1980). Dimensionless correlation of the hanging film phenomenon. J. Fluids Eng., 102, 372–375.CrossRefGoogle Scholar
Ekberg, N. P., Ghiaasiaan, S. M., Abdel-Khalik, S. I., Yoda, M., and Jeter, S. M. (1999). Gas-liquid two-phase flow in narrow horizontal annuli. Nuel. Eng. Design, 192, 59–80.CrossRefGoogle Scholar
El-Genk, M. S., and Rao, D. V. (1991a). Critical heat flux in rod bundles at low flow and low pressure conditions. ASME Heat Transfer Division, 150, Thermal Hydraulics of Advanced Nuclear Reactors, pp. 25–30.Google Scholar
El-Genk, M. S., and Rao, D. V. (1991b). On the predictions of critical heat flux in rod bundles at low flow and low pressure conditions. Heat Transfer Eng., 12, 48–57.CrossRefGoogle Scholar
El-Genk, M. S., Haynes, S. J., and Kim, S. H. (1988). Critical heat flow of water in vertical annuli. Int. J. Heat Mass Transfer, 31, 2291–2303.CrossRefGoogle Scholar
Hajal, El J., Thome, J. R., and Cavallini, A. (2003). Condensation in horizontal tubes. Part I: Two-phase flow pattern map. Int. J. Heat Mass Transfer, 46, 3349–3363.CrossRefGoogle Scholar
Elias, E., and Chambre, P. L. (1984). A mechanistic nonequilibrium model for two-phase critical flow. Int. J. Multiphase Flow, 10, 21–40.CrossRefGoogle Scholar
Elias, E., and Lelluche, G. S. (1994). Two-phase critical flow. Int. J. Multiphase Flow, 20, Suppl., 91–168.CrossRefGoogle Scholar
Elkassabgi, Y., and Lienhard, J. H. (1988). The peak pool boiling heat fluxes from horizontal cylinders in subcooled liquids. J. Heat Transfer, 110, 479–492.CrossRefGoogle Scholar
Emiliani, E. (1992). Planet Earth, Cambridge University Press, Cambridge.Google Scholar
Emmert, R. E., and Pigford, R. L. (1954). A study of gas absorption in falling liquid films. Chem. Eng. Prog., 50, 87–93.Google Scholar
Epstein, M., and Hauser, G. M. (1991). Simultaneous fog formation and thermophoretic droplet deposition in a turbulent pipe flow. J. Heat Transfer, 113, 224–231.CrossRefGoogle Scholar
Faghri, A., and Zhang, Y. (2006). Transport Phenomena in Multiphase Systems, Elsevier/Academic Press, Amsterdam.Google Scholar
Fairbrother, F., and Stubbs, A. E. (1935). Studies in electroendosmosis. Part VI. The bubble-tube method of measurements. J. Chem. Soc., 1, 527–529.CrossRefGoogle Scholar
Feburie, V., Giot, M.Granger, S., and Seynhaever, J. M. (1993). A model for choked flow through cracks with inlet subcooling. Int. J. Multiphase Flow, 19, 541–562.CrossRefGoogle Scholar
Fiori, M. P., and Bergles, A. E. (1970). Model of Critical heat flux in subcooled boiling. Proc. 4th Int. Heat Transfer Conf., Paris–Versailles, 6, Paper b6.3, Elsevier, Dordrecht.Google Scholar
Fisher, S. A., Harrison, G. S., and Pearce, D. C. (1978). Premature dryout in conventional and nuclear power station evaporators. Proc. 6th Int. Heat Transfer Conf., Toronto, 2, 49– 54.Google Scholar
Fletcher, D. F. (1991). An improved mathematical model of melt/water detonation – I. Model formulation and example results. Int. J. Heat Mass Transfer, 34, 2435–2448.CrossRefGoogle Scholar
Fluent Inc. (2005). Fluent 6.2.16 User's Guide.
Fluid Dynamics International, Inc., Evanston, IL 60210 (1991).
Foda, M., and Cox, R. G. (1980). The spreading of thin liquid films on a water-air interface. J. Fluid Mech., 101, 33–51.CrossRefGoogle Scholar
Ford, J. D., and Lekic, A. (1973). Rate of growth of drops during condensation. Int. J. Heat Mass Transfer, 16, 61–64.CrossRefGoogle Scholar
Forster, H. K., and Greif, R. (1959). Heat transfer to boiling liquid, mechanism and correlations. J. Heat Transfer, 81, 43–53.Google Scholar
Forster, H. K., and Zuber, N. (1954). Growth of a vapor bubble in a superheated liquid. J. Appl. Phys., 25, 474–478.CrossRefGoogle Scholar
Forster, H. K., and Zuber, N. (1955). Dynamics of vapor bubbles and boiling heat transfer. Chem. Eng. Prog., 1(4), 531–535.Google Scholar
Fourar, M., and Bories, S. (1995). Experimental study of air-water two-phase flow through a fracture (narrow channel). Int. J. Multiphase Flow, 21, 621–637.CrossRefGoogle Scholar
Friedel, L. (1979). Improved pressure drop correlations for horizontal and vertical two-phase pipe flow. 3R Int., 18, 485–492.Google Scholar
Friedlander, S. K. (2000). Smoke, Dust, and Haze, 2nd ed., Oxford University Press, London.Google Scholar
Fritz, W. (1935). Maximum volume of vapor bubbles. Phys. Z., 36, 379–384.Google Scholar
Fu, B. R., and Pan, C. (2005). Flow pattern transition instability in a microchannel with CO2 bubbles produced by chemical reactions. Int. J. Heat Mass Transfer, 48, 4397–4409.CrossRefGoogle Scholar
Fujii, T., Uehara, H., Hirata, K., and Oda, K. (1972). Heat transfer and flow resistance in condensation of low pressure steam flowing through tube banks. Int. J. Heat Mass Transfer, 15, 247–260.CrossRefGoogle Scholar
Fujita, T., and Ueda, T. (1978). Heat transfer to falling liquid films and film breakdown – I Subcooled liquid films. Int. J. Heat Mass Transfer, 21, 97–108.CrossRefGoogle Scholar
Fukano, T., and Kariyasaki, A. (1993). Characteristics of gas-liquid two-phase flow in a capillary. Nucl. Eng. Design, 141, 59–68.CrossRefGoogle Scholar
Fukano, T., Kariyasaki, A., and Kagawa, M. (1989). Flow patterns and pressure drop in isothermal gas-liquid concurrent flow in a horizontal capillary tube. Proc., 1989 National Heat Transfer Conf., Tilmaz, S. B., Ed., American Nuclear Society, pp. 153–161.Google Scholar
Fulford, G. D. (1964). The flow of liquids in thin films. Adv. Chem. Eng., 5, 151–236.CrossRefGoogle Scholar
Gadis, E. S. (1972). The effect of liquid motion induced by phase change and thermocapillary on the thermal equilibrium of a vapor bubble. Int. J. Heat Mass Transfer, 15, 2241–2250.Google Scholar
Gaertner, R. F. (1965). Photographic study of nucleate pool boiling on a horizontal surface. J. Heat Transfer, 87, 17–29.CrossRefGoogle Scholar
Galloway, J. E., and Mudawar, I. (1993). Critical heat flux mechanism in flow boiling from a short heated wall – I. Examination of near-wall conditions with the aid of photomicrography and high-speed video imaging. Int. J. Heat Mass Transfer, 36, 2511–2526.CrossRefGoogle Scholar
Ganchev, B., Zozlov, V., and Lozovetskiy, V. (1972). A study of heat transfer to a falling liquid film at a vertical surface. Heat Transfer Sov. Res., 4 (2), 102–110.Google Scholar
Ganic, E. N., and Mastanaiah, K. (1983). Hydrodynamics and heat transfer in falling film flow. In Low Reynolds Number Flow Heat Exchangers, Kakac, S., Shah, R., and Bergles, A. E., Eds., Hemisphere, Washington, Direct-contact.Google Scholar
Garimella, S., and Bandhauer, T. M. (2001). Measurement of condensation heat transfer coefficients in microchannel tubes. Proc. 2001 IMECE, ASME, New York.Google Scholar
Garimella, S., Killion, J. D., and Coleman, J. W. (2002). An experimentally validated model for two-phase pressure drop in the intermittent flow regime for circular microchannels. J. Fluids Eng., 124, 205–214.CrossRefGoogle Scholar
Garrels, R. M., and Christ, C. L. (1965). Solutions, Minerals and Equilibria, Harper and Rowe, New York.Google Scholar
Geiger, G. E., and Rohrer, W. M. (1966). Sudden contraction losses in two-phase flow. J. Heat Transfer, 88, 1–9.CrossRefGoogle Scholar
Geng, H., and Ghiaasiaan, S. M. (1998). Mechanistic modeling of critical flow of initially subcooled liquid containing dissolved noncondensables through cracks and slits based on the homogeneous-equilibrium mixture method. Nucl. Sci. Eng., 129, 294–304.CrossRefGoogle Scholar
Geng, H., and Ghiaasiaan, H. (2000). Mechanistic nonequilibrium modeling of critical flow of subcooled liquids containing dissolved noncondensables using the dynamic flow regime model. Proc. 8th Int. Conf. on Nuclear Engineering (ICONE-8), Paper No. ICONE-8708, Baltimore, MD.Google Scholar
Ghiaasiaan, S. M. and Abdel-Khalik, S. I. (2001). Two-Phase Flow in Microchannels, Advances in Heat Transfer, Hartnett, J. P. and Irvine, T. F. Jr., Eds., Vol. 34, pp. 145–254, Academic Press.Google Scholar
Ghiaasiaan, S. M., and Catton, I. (1983). Multi-dimensional and two-phase flow effects in Pressurized water reactor core reflooding. Electric Power Research Institute Rep. EPRI NP-3437, Palo Alto, CA.Google Scholar
Ghiaasiaan, S. M., and Chedester, R. C. (2002). Boiling incipience in microchannels. Int. J. Heat Mass Transfer, 45, 4599–4606.CrossRefGoogle Scholar
Ghiaasiaan, S. M., and Eghbali, D. A. (1997). On modeling of turbulent vapor condensation with noncondensables. J. Heat Transfer, 119, 373–376.CrossRefGoogle Scholar
Ghiaasiaan, S. M., and Geng, H. (1997). Mechanistic non-equilibrium modeling of critical flashing flow of subcooled liquids containing dissolved noncondensables. Num. Heat Transfer B, 32, 435–457.CrossRefGoogle Scholar
Ghiaasiaan, S. M., and Laker, T. S. (2001). Turbulent forced convection in microtubes. Int. J. Heat Mass Transfer, 44, 2777–2782.CrossRefGoogle Scholar
Ghiaasiaan, S. M., Catton, I., and Duffey, R. B. (1985). Thermal-hydraulics and two-phase phenomena during reflooding of nuclear reactor cores. J. Fluids Eng., 85, 89–96.Google Scholar
Ghiaasiaan, S. M., Wassel, A. T., and Lin, C. S. (1991). Direct contact condensation in the presence of noncondensables in OC-OTEC condensers, J. Solar Energy Eng., 113, 228–235.CrossRefGoogle Scholar
Ghiaasiaan, S. M., Kamboj, B. K., and Abdel-Khalik, S. I. (1995). Two-fluid modeling of condensation in the presence of noncondensables in two-phase channel flow. Nucl. Sci. Eng., 119, 1–17.CrossRefGoogle Scholar
Ghiaasiaan, S. M., Wu, X., Sadaowski, D. L., and Abdel-Khalik, S. I. (1997a). Hydrodynamic characteristics of counter-current two-phase flow in vertical and inclined channels: Effects of liquid properties. Int. J. Multiphase Flow, 23, 1063–1083.CrossRefGoogle Scholar
Ghiaasiaan, S. M., Muller, J. R., Sadowski, D. L., and Abdel-Khalik, S. I. (1997b). Critical flow of initially highly subcooled water through a short capillary. Nucl. Sci. Eng., 126, 229– 238.CrossRefGoogle Scholar
Giavedoni, M. D., and Saita, F. A. (1997). The axisymmetric and plane cases of a gas phase steadily displacing a Newtonian liquid – A simultaneous solution of the governing equations. Phys. Fluids, 9, 2420–2428.CrossRefGoogle Scholar
Giavedoni, M. D., and Saita, F. A. (1999). The rear meniscus of a long bubble steadily displacing a Newtonian liquid in a capillary tube. Phys. Fluids, 11, 786–794.CrossRefGoogle Scholar
Giot, M., and Fritz, A. (1972). Two-phase two- and one-component critical flow with the variable slip model. Prog. Heat Transfer, 6, 651–670.Google Scholar
Gnielinski, V. (1976). New equations for heat and mass transfer in Turbulent pipe and channel flow. Int. Chem. Eng. 16, 359–368.Google Scholar
Golden, S. (1964) Elements of the Theory of Gases, Addison-Wesley, Reading, MA.Google Scholar
Gombosi, T. I. (1994). Gaskinetic Theory, Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Gorenflo, D. (1993). Pool boiling. In VDI-Heat Atlas (English Version), Schlünder, E. U., Ed., pp. Ha 1–13, VDI-Verlag, Düsseldorf, Germany.Google Scholar
Gorenflo, D., Chandra, U., Kotthoff, S., and Luke, A. (2004). Influence of thermophysical properties on pool boiling heat transfer of refrig. Int. J. Refrige., 27, 392–502.CrossRefGoogle Scholar
Gorenflo, D., Knabe, V., and Bieling, V. (1986). Bubble density on surfaces with nucleate boiling – Its influence on heat transfer and burnout heat flux at elevated saturation pressures. Proc. 8th Int. Heat Transfer Conf., San Francisco, 4, 1995–2000.Google Scholar
Govier, F. W., and Aziz, K. (1972). The Flow of Complex Mixtures in Pipes, Robert E. Krieger, Malabar, FL.Google Scholar
Griffith, P., and Wallis, J. D. (1960). The role of surface conditions in nucleate boiling. Chem. Eng. Symp. Ser. 56, 30, 49–63.Google Scholar
Griffith, P., Clark, J. A., and Rohsenow, W. W. (1958). Void volumes in subcooled boiling systems. ASME Paper 58-HT-19.
Grober, H., Erk, S., and Grigull, U. (1961). Fundamentals of Heat Transfer, McGraw-Hill, New York.Google Scholar
Groeneveld, D. C. (1973). Post-dryout heat transfer at reactor operating conditions. American Nuclear Society Topical Meeting on Water Reactor Safety, Salt Lake City.Google Scholar
Groeneveld, D. C., and Delorme, G. G. J. (1976). Prediction of thermal non-equilibrium in the post-dryout regime. Nucl. Eng. Design, 36, 17–26.CrossRefGoogle Scholar
Groeneveld, D. C., and Snoek, C. W. (1986). A comprehensive examination of heat transfer correlations suitable for reactor safety analysis. In Multiphase Science and Technology, Hewitt, , , G. F., Delhaye, J. M., and Zuber, , , N., Eds., Hemisphere, Washington, Direct-contact, 2, 181–274.CrossRefGoogle Scholar
Groeneveld, D. C., Cheng, S. C., and Doan, T. (1986). AECL-UO critical heat flux look-up table. Heat Transfer Eng., 7, 46–62.CrossRefGoogle Scholar
Groeneveld, D. C., Leung, L. K. H., Kirillov, P. I., Bobkov, V. P., Smogalev, I. P., Vinogradov, V. N., Huang, X. C., and Royer, E. (1996). The 1995 look-up table for critical heat flux in tubes, Nucl. Eng. Design, 163, 1–23.CrossRefGoogle Scholar
Groeneveld, D. C., Leung, L. K. H., Vasic, A. Z., Guo, Y. J., and Cheng, S. C. (2003). A look-up table for fully-developed film boiling heat transfer. Nucl. Eng. Design, 225, 83–97.CrossRefGoogle Scholar
Grohmann, S. (2005). Measurement and modeling of single-phase and flow boiling heat transfer in microtubes. Int. J. Heat Mass Transfer, 48, 4073–4089.CrossRefGoogle Scholar
Guglielmini, G., Lorenzi, A., Muzzio, A., and Sotgia, G. (1986). Two-phase flow pressure drops across sudden area contractions. Proc. 8th Int. Heat Transfer Conf., Vol. 5, pp. 2361–2366, ASME, New York.Google Scholar
Gungor, K. E., and Winterton, R. H. S., 1986. A general correlation for flow boiling in tubes and annuli, Int. J. Heat Mass Transfer, 29, 351–358.CrossRefGoogle Scholar
Gungor, K. E., and Winterton, R. H. S (1987). Simplified general correlation for saturated flow boiling and Comparison of correlations with data. Chem. Eng. Res. Des., 65, 148–156.Google Scholar
Habib, I. S., and Na, T. Y. (1974). Prediction of heat transfer in turbulent pipe flow with constant wall temperature. J. Heat Transfer, 96, 253–254.CrossRefGoogle Scholar
Hadamard, J. (1911). Movement permenant lent d'une sphere liquide et visqueuse dans une liquide visqueux. J. Comp. Rend, 152, 1735.Google Scholar
Hainoun, A., Hicken, E., and Wolters, J. (1996). Modeling of void formation in the subcooled boiling regime in the ATHLET code to simulate flow instability for research reactors. Nucl. Eng. Design, 167, 175–191.CrossRefGoogle Scholar
Hall, D. D., and Mudawar, I. (1997). Evaluation of subcooled Critical heat flux correlations using the PU-BTPFL Critical heat flux database for vertical upflow of water in a uniformly heated round tube. Nucl. Technol., 117, 234–246.CrossRefGoogle Scholar
Hall, D. D., and Mudawar, I. (2000a). Critical heat flux (Critical heat flux) for water flow in tubes – I. Compilation and assessment of world Critical heat flux data. Int. J. Heat Mass Transfer, 43, 2573–2604.CrossRefGoogle Scholar
Hall, D. D., and Mudawar, I. (2000b). Critical heat flux (Critical heat flux) for water flow in tubes – II. Subcooled Critical heat flux correlations. Int. J. Heat Mass Transfer, 43, 2605–2640.CrossRefGoogle Scholar
Hampton, H. (1951). The condensation of steam on a metal surface. Proc. General Discussion of Heat Transfer, Inst. Mech. Eng. and ASME, 84, 58–64.Google Scholar
Han, C. Y., and Griffith, P. (1965). The mechanism of heat transfer in nucleate pool boiling, Part I. Bubble initiation, growth and departure. Int. J. Heat Mass Transfer, 8, 887–904.Google Scholar
Hanratty, T. J., and Hershman, A. (1961). Initiation of roll waves. AIC Homogeneous E J., 7, 488–497.CrossRefGoogle Scholar
Hapke, J., Boye, H., and Schmidt, J. (2000). Onset of nucleate boiling in microchannels. Int. J. Thermal Sci., 39, 505–513.CrossRefGoogle Scholar
Haramura, Y. (1999). Critical heat flux in pool boiling. In Handbook of Phase Change, Kandlikar, S. G., Shoji, M., and Dhir, V. K., Eds, Taylor and Francis, London, Chapter 6.Google Scholar
Haramura, Y., and Katto, Y. (1983). A new hydrodynamic model of critical heat flux, applicable widely to both pool and forced convection boiling on submerged bodies in saturated liquids. Int. J. Heat Mass Transfer, 26, 389–399.CrossRefGoogle Scholar
Hardy, P., and Mali, P. (1983). Validation and development of a model describing subcooled critical flow through long tubes. Energie Primaire, 18, 5–23.Google Scholar
Hari, S., and Hassan, Y. A. (2002). Improvement of the subcooled boiling model for low pressure conditions in thermal-hydraulic codes. Nucl. Eng. Design, 216, 139–152.CrossRefGoogle Scholar
Harmathy, T. Z. (1960). Velocity of large drops and bubbles in media of infinite and restricted extent. AIC Homogeneous E.J., 6, 281–288.CrossRefGoogle Scholar
Harper, M. J., and Rich, J. C. (1993). Radiation-induced nucleation in superheated liquid droplet neutron detectors. Nucl. Instrum. Methods Phys. Res. A, 336, 220–225.CrossRefGoogle Scholar
Hasson, D., Luss, D., and Peck, R. (1964). Theoretical analysis of vapor condensation on laminar liquid jets. Int. J. Heat Mass Transfer, 7, 969–981.CrossRefGoogle Scholar
Hatton, A. P., and Hall, I. S. (1966). Photographic study of boiling on prepared surfaces. Proc. 3rd Int. Heat Transfer Conf., Chicago, 4, 24–37.Google Scholar
Haynes, B. S., and Fletcher, D. F. (2003). Subcooled flow boiling heat transfer in narrow passages. Int. J. Heat Mass Transfer, 46, 3673–3682.CrossRefGoogle Scholar
Hegab, H. E., Bari, A., and Ameel, T. (2002). Friction and convection studies of R-134a in microchannels within transition and turbulent flow regimes. Exp. Thermal Fluid Sci., 15, 245–259.Google Scholar
Heil, M. (2001). Finite Reynolds number effects in the Bretherton problem. Phys. Fluids, 13, 2517–2531.CrossRefGoogle Scholar
Heiszwolf, J. J., Engelvaart, L. B., Eijnden, Vanden M. G., Kreutzer, M. T., Kapteijn, F., and Moulijn, J. A. (2001). Hydrodynamic aspects of the monolith loop reactor. Chem. Eng. Sci., 56, 805–812.CrossRefGoogle Scholar
Henry, R. E. (1970). Two-phase critical flow at low qualities. Nucl. Sci. Eng., 41, 79–98.CrossRefGoogle Scholar
Henry, R. E. (1974). A correlation for the minimum film boiling temperature. Chem. Eng. Prog. Symp. Series, 70, 81–90.Google Scholar
Henry, R. E., and Fauske, H. K. (1971). The two-phase critical flow of one-component mixtures in nozzles, orifices, and short tubes. J. Heat Transfer, 93, 179–187.CrossRefGoogle Scholar
Henstock, W. H., and Hanratty, T. J. (1976). The interfacial drag and height of the wall layer in annular flows. AIC Homogeneous E J., 22, 990–1000.CrossRefGoogle Scholar
Herwig, H., and Hausner, O. (2003). Critical view on ‘New results in micro-fluid mechanics: An example.’ Int. J. Heat Mass Transfer, 46, 935–937.CrossRefGoogle Scholar
Hetsroni, G., Mosyak, A., Segal, Z., and Pogrebnyak, E. (2003). Two-phase flow patterns in parallel micro-channels. Int. J. Multiphase Flow, 29, 341–360.CrossRefGoogle Scholar
Heun, M. K. (1995). Performance and Optimization of microchannel condensers. Pressure (N/m2); Legendre polynomialh.D. thesis, University of Illinois, Urbana-Champagne, IL.Google Scholar
Hewitt, G. F. (1977). Mechanism and prediction of burnout. In Two-Phase Flows and Heat Transfer, Kakac, S., and Veziroglu, T. N., Eds., Hemisphere, Washington, Direct-contact, 2, 721–745.Google Scholar
Hewitt, G. F. (1983). Gas-liquid flow. In Heat Exchanger Design Handbook, Schlünder, E.U., Editor-in-chief, Hemisphere, Washington, Direct-contact, 2, 229–238.Google Scholar
Hewitt, G. F., and Govan, A. H. (1990). Phenomena and prediction in annular two-phase flow. In ASME Advances in Gas-Liquid Flows, ASME, New York, FED- 99, 41–56.Google Scholar
Hewitt, G. F., and Roberts, D. N. (1969). Studies of Two-Phase Flow Pattenrs by Simultaneous X-Ray and Flash Photography. AERE-M 2159.
Hewitt, G. F., and Wallis, G. B. (1963). Flooding and associated phenomena: Falling film flow in a vertical tube. AERE-R4022, UKAEA, Harwell, England.Google Scholar
Hibiki, T., and Ishii, M. (2001). Interfacial area concentration in steady fully-developed bubbly flow. Int. J. Heat Mass Transfer, 44, 3443–3461.CrossRefGoogle Scholar
Hibiki, T., and Ishii, M. (2002). One-dimensional drift flux model for two-phase flow in a large diameter pipe. Int. J. Heat Mass Transfer, 46, 1773–1790.CrossRefGoogle Scholar
Hibiki, T., and Ishii, M. (2003). One-dimensional drift flux model and constitutive equations for relative motion between phases in various two-phase flow regimes. Int. J. Heat Mass Transfer, 46, 4935–4948.CrossRefGoogle Scholar
Hibiki, T., and Ishii, M. (2005). Erratum to “One-dimensional drift flux model and constitutive equations for relative motion between phases in various two-phase flow regimes.” Int. J. Heat Mass Transfer, 48, 1222–1223.CrossRefGoogle Scholar
Hibiki, T., and Mishima, K. (2001). Flow regime transition criteria for upward two-phase flow in vertical narrow rectangular channels. Nucl. Eng. Design, 203, 117–131.CrossRefGoogle Scholar
Hickox, C. E. (1971). Instability due to viscosity and density stratification in axisymmetric pipe flow. Phys. Fluids, 14, 251–262.CrossRefGoogle Scholar
Hindmarsh, A. C. (1980). LSODE and LSODI, two new initial value ordinary differential equation solvers. ACM Newsl., 15 (5), 10.CrossRefGoogle Scholar
Hino, R., and Ueda, T. (1985). Studies on heat transfer and flow characteristics in subcooled flow boiling – Part I. Boiling characteristics. Int. J. Heat Mass Transfer, 11, 269–281.Google Scholar
Hinze, J. O. (1955). Fundamentals of the hydrodynamic mechanism of splitting in dispersion processes. AIC Homogeneous E J., 1, 289–295.CrossRefGoogle Scholar
Hinze, J. O. (1975). Turbulence, McGraw-Hill, New York.Google Scholar
Hirschfelder, J., Curtiss, C. F., and Bird, R.. (1954). Molecular Theory of Gases and Liquids, Wiley, New York.Google Scholar
Hopkins, N. E. (1950). Rating the restrictor tube. Refrig. Eng., 58, 1087–1095.Google Scholar
Hosaka, S., Hirata, M., and Kasagi, N. (1990). Forced convective subcooled boiling heat transfer and Critical heat flux in small diameter tubes. Proc., Int. Heat Transfer Conf., 9th, 2, 129–134.Google Scholar
Howell, J. R., and Siegel, R. (1967). Activation, growth and detachment of boiling bubbles in water from artificial nucleation sites of known geometry and size. NASA TN-0-4201.
Hsu, Y. Y. (1962). On the size range of active nucleation sites on a heating surface. J. Heat Transfer, 84C, 207–216.CrossRefGoogle Scholar
Hsu, Y. Y. (1981). Boiling heat transfer equations. In Thermohydraulics of Two-Phase Systems for Industrial Design and Nuclear Engineering, Delhaye, J. M., Giot, M., and Riethermuller, M. L., Eds., McGraw-Hill, New York, 255–296.Google Scholar
Hsu, Y. Y., and Graham, R. W. (1961). An analytical and experimental study of the thermal boundary layer and ebullition cycle in nucleate boiling. NASA TND-594.
Hsu, Y. Y., and Graham, R. W. (1986). Transport Processes in Boiling and Two-Phase Systems, American Nuclear Society, La Grange Park, IL.Google Scholar
Hsu, Y. Y., and Westwater, J. W. (1960). Approximate theory for film boiling on vertical surfaces. Chem. Eng. Prog. Symp. Ser. 56, 30, 15–24.Google Scholar
Hu, L.-W., and Pan, C. (1995). Prediction of void fraction in convective subcooled boiling channels using a one-dimensional two-fluid model. J. Heat Transfer, 117, 799–803.CrossRefGoogle Scholar
Huang, W. S., and Kintner, R. C. (1968). Effects of surfactants on mass transfer inside drops. AIC Homogeneous E J. 15, 735–744.CrossRefGoogle Scholar
Hubbard, G. L., Mills, A. F., and Chung, D. K. (1976). Heat transfer across a turbulent falling film with cocurrent vapor flow. J. Heat Transfer, 98, 319–320.CrossRefGoogle Scholar
Huber, J. B., Rewerts, L. E., and Pale, M. B. (1994a). Shell-side condensation heat transfer of R-134a – Part I: Finned-tube performance. ASHRAE Trans., 100(2), 239–247.Google Scholar
Huber, J. B., Rewerts, L. E., and Pale, M. B. (1994b). Shell-side condensation heat transfer of R-134a – Part II: Enhanced tube performance. ASHRAE Trans., 100(2), 248–256.Google Scholar
Huber, J. B., Rewerts, L. E., and Pale, M. B. (1994c). Shell-side condensation heat transfer of R-134a – Part III: Comparison with R-12. ASHRAE Trans., 100(2), 257–264.Google Scholar
Huebsch, W. W., and Pale, M. B. (2004). A comprehensive study of shell-side condensation on integral-fin tubes with R-114 and R-236ea. ASHRAE Trans., 110, Part 1, 40–52.Google Scholar
Hulburt, H. M., and Katz, S. (1964). Some problems in particle technology. A statistical mechanical formulation. Chem. Eng. Sci., 19, 555–574.CrossRefGoogle Scholar
Hwang, J. J., Tseng, F. G., and Pan, C. (2005). Ethanol–CO2 two-phase flow in diverging and converging microchannels. Int. J. Multiphase Flow, 31, 548–570.CrossRefGoogle Scholar
Idelchik, I. E. (1994). Handbook of Hydraulic Resistances, 3rd ed., CRC Press, London.Google Scholar
Inasaka, F., and Nariai, H. (1993). Critical heat flux of subcooled flow boiling with water for high heat flux application. SPIE, High Heat Flux Eng. II, 1997, 328–339.CrossRefGoogle Scholar
Inasaka, F., Nariai, H., and Shimura, T. (1989). Pressure drops in subcooled boiling in narrow tubes. Heat Transfer Jpn. Res., 18, 70–82.Google Scholar
Incropera, F. P., Dewitt, D. P., Bergman, T. L., and Lavine, A. S. (2007). Fundamentals of Heat and Mass Transfer, 6th ed., Wiley, New York.Google Scholar
International Association for the Properties of Water and Steam (1994). IAPWS release on surface tension of ordinary water substance. Available at http:/www.iapws.org/.
Isachenko, V. P., et al. (1971). Investigation of heat transfer with steam condensation on turbulent liquid jets. Teploenergetika, 18(2), 7–10.Google Scholar
Ishii, M. (1971). Thermally-induced flow instabilities in two-phase mixtures in thermal equilibrium. Pressure (N/m2); Legendre polynomialh. Tube or jet diameter (m). thesis, Georgia Institute of Technology, Atlanta, GA.
Ishii, M. (1975). Thermo-Fluid Dymainc Theory of Two-Phase Flow, Eyrolles, Paris.
Ishii, M. (1976). Study of flow instabilities in two-phase mixtures. ANL-76–23, Argonne National Laboratory, IL.CrossRef
Ishii, M. (1977). One-dimensional drift flux model and constitutive equations for relative motion between phases in various two-phase flow regimes. ANL Rep. ANL-77-47.CrossRef
Ishii, M., and Mishima, K. (1984). Two-fluid model and hydrodynamic constitutive relations. Nucl. Eng. Design, 82, 107–126.CrossRefGoogle Scholar
Ishii, M., Kim, S., and Uhle, J. (2002). Interfacial area transport equation: Model development and benchmark experiments. Int. J. Heat Mass Transfer, 45, 3111–3123.CrossRefGoogle Scholar
Ishii, M., Paranjape, S. S., Kim, S., and Sun, X. (2004). Interfacial structures and interfacial area transport in downward two-phase bubbly flow. Int. J. Heat Mass Transfer, 30, 779–801.Google Scholar
Iwamura, T., Watanabe, H., and Murao, Y. (1994). Critical heat flux experiments under steady-state and transient conditions and visualization of Critical heat flux phenomena with neutron radiography. Nucl. Eng. Design, 149, 195–206.CrossRefGoogle Scholar
Jasper, J. J. (1972). The surface tension of pure liquid compounds. J. Phys. Chem. Ref. Data, 1, 841–1010.CrossRefGoogle Scholar
Jaster, H., and Cosky, P. G. (1976). Condensation heat transfer in a mixed flow regime. Int. J. Heat Mass Transfer, 19, 95–99.CrossRefGoogle Scholar
Jayanti, S., and Hewitt, G. F. (1992). Prediction of the slug-to-churn flow transition in vertical two-phase flow. Int. J. Multiphase Flow, 18, 847–860.CrossRefGoogle Scholar
Jayawardena, S. S., Balakotaiah, V., and Witte, L. C. (1997). Flow pattern transition maps for microgravity two-phase flows. AIC Homogeneous E J., 43, 1637–1640.CrossRefGoogle Scholar
Jens, W. H., and Lottes, P. A. (1951). Analysis of heat transfer, burnout, pressure drop and density data for high pressure water. Rep. ANL-4627, US Argonne National Laboratory, Argonne, IL.
Jepsen, D. M., Azzopardi, B. J., and Whalley, P. B. (1989). The effect of gas properties on drops in annular flow. Int. J. Multiphase Flow, 15, 327–339.CrossRefGoogle Scholar
Jiang, L., Wong, M., and Zohar, Y. (1999). Phase change in microchannel heat sinks with integrated temperature sensors. J. Microelectromech. Syst., 8, 358–365.CrossRefGoogle Scholar
Jiang, L., Wong, M., and Zohar, Y. (2001). Forced convection boiling in a microchannel heat sink. J. Microelectromech. Syst., 10, 80–87.CrossRefGoogle Scholar
John, H., Reimann, J., Westphal, F., and Friedel, L. (1988). Critical two-phase flow through rough slits. Int. J. Multiphase Flow, 14, 155–174.CrossRefGoogle Scholar
Jones, O. C. Jr. (1976). An improvement in the calculation of turbulent friction in rectangular ducts, J. Fluid Eng., 98, 173–181.CrossRefGoogle Scholar
Jones, O. C., Jr., and Zuber, N. (1979). Slug-annular transition with particular reference to narrow rectangular ducts. In Two-Phase Momentum, Heat and Mass Transfer in Chemical, Process and Energy Engineering Systems, Durst, , , F., Tsiklauri, , , G. V., and Afgan, , , N., Eds., Hemisphere, Washington, Direct-contact, 1, 345–355.Google Scholar
Joos, P., and Pinters, J, (1977). Spreading kinetics of liquids on liquids. J. Colloid Interface Sci., 60, 507–513.CrossRefGoogle Scholar
Judd, R. L., and Chopra, A. (1993). Interaction of the nucleation process occurring at adjacent nucleation sites. J.Heat Transfer, 115, 955–962.CrossRefGoogle Scholar
Kagayama, T., Peterson, P. F., and Schrock, V. E. (1993). Diffusion layer modeling for condensation in vertical tubes with noncondensable gases. Nucl. Eng. Design, 141, 289–302.CrossRefGoogle Scholar
Kandlikar, S. G. (1990). A general correlation for two-phase flow boiling heat transfer coefficients inside horizontal and vertical tubes. J. Heat Transfer, 112, 219–228.CrossRefGoogle Scholar
Kandlikar, S. G. (1991). Development of a flow boiling map for subcooled and saturated flow boiling of different fluids in circular tubes. J. Heat Transfer, 113, 190–200.CrossRefGoogle Scholar
Kandlikar, S. G. (1997). Further development in subcooled flow boiling heat transfer. Engineering Foundation Conf. on Convective and Pool Boiling, May 18–25, Irsee, Germany.Google Scholar
Kandlikar, S. G. (1998). Heat transfer and flow characteristics in partial boiling, fully developed boiling, and significant void flow regions of subcooled flow boiling. J. Heat Transfer, 120, 395–401.CrossRefGoogle Scholar
Kandlikar, S. G. (2002). Fundamental issues related to flow boiling in minichannels and microchannels. Exp. Thermal Fluid Sci., 26, 389–407.CrossRefGoogle Scholar
Kandlikar, S. G. (2005). High flux heat removal with microchannels – A roadmap of challenges and opportunities. Heat Transfer Eng., 26 (8), 5–14.CrossRefGoogle Scholar
Kandlikar, S. G., and Balasubramanian, P. (2005). An experimental study on the effect of gravitational orientation on flow boiling of water in 1054× 197 μm parallel minichannels. J. Heat Transfer, 127, 820–829.CrossRefGoogle Scholar
Kandlikar, S. G., and Nariai, H. (1999). Flow boiling in circular tubes. In Handbook of Phase Change, Kandlikar, S. G., Shoji, M., and Dhir, V. K., Eds., Taylor & Francis, London, pp. 367–402.Google Scholar
Kandlikar, S. G., and Spiesman, P. H. (1997). Effect of surface characteristics on flow boiling heat transfer. Engineering Foundation Conf. on Convective and Pool Boiling, May 18–25, Irsee, Germany.Google Scholar
Kandlikar, S. G., and Steinke, M. E. (2003). Predicting heat transfer during flow boiling in minichannels and microchannels. ASHRAE Trans., 109, Part 1, 667–676.Google Scholar
Kandlikar, S. G., Mizo, V., Cartwright, M., and Ikenze, E. (1997). Bubble nucleation and growth characteristics in subcooled flow boiling of water. National Heat Transfer Conf., ASME, HTD-342, pp. 11–18.Google Scholar
Kandlikar, S. G., Willistein, D. A., and Borelli, J. (2005). Experimental evaluation of pressure drop elements and fabricated nucleation sites for stabilizing flow boiling in minichannels and microchannels. Proc. 3rd Int. Conf. on Microchannels and Minichannels, Part B, pp. 115–124.CrossRef
Kao, Y. S., and Kenning, D. B. R. (1972). Thermocapillary flow near a hemispherical bubble on a heated wall. J. Fluid Mech., 53, 715–735.CrossRefGoogle Scholar
Kapitza, P. L. (1948). Wave flow of thin layers of a viscous fluid, I. The free flow. Zh. Eksperim. Theor. Fiz., 18, 3.Google Scholar
Kariyasaki, A., Fukano, T., Ousaka, A., and Kagawa, M. (1992). Isothermal air-water two-phase up- and downward flows in vertical capillary tube (1st report, Flow pattern and void fraction). Trans. JSME Ser. B., 58, 2684–2690.CrossRefGoogle Scholar
Karl, J. (2000). Spontaneous condensation in boundary layers. Heat Mass Transfer, 36, 37–44.CrossRefGoogle Scholar
Kataoka, I., and Ishii, M. (1983). Entrainment of and deposition rates of droplets in annular two-phase flow. Proc. ASME/JSMG Thermal Eng. Joint Conf., Vol. 1.Google Scholar
Kataoka, I., and Ishii, M., and Mishima, K. (1983). Generation and size distribution of droplet in annular two-phase flow. J. Fluids Eng., 105, 230–238.CrossRefGoogle Scholar
Kattan, N., Thome, J. R., and Favrat, D. (1998a). Flow boiling in horizontal tubes. Part I: Development of a diabatic two-phase flow pattern map. J. Heat Transfer, 120, 140–147.CrossRef
Kattan, N., Thome, J. R., and Favrat, D. (1998b). Flow boiling in horizontal tubes. Part II: New heat transfer data for five refrigerants. J. Heat Transfer, 120, 148–155.CrossRefGoogle Scholar
Kattan, N., Thome, J. R., and Favrat, D. (1998c). Flow boiling in horizontal tubes. Part III: Development of a new heat transfer model based on flow pattern. J. Heat Transfer, 120, 156–165.CrossRefGoogle Scholar
Katto, Y. (1990). Prediction of critical heat flux of subcooled flow boiling in round tubes. Int. J. Heat Mass Transfer, 33, 1921–1928.CrossRefGoogle Scholar
Katto, Y. (1992). A prediction model of subcooled flow boiling Critical heat flux for pressure in the range 0.1–20.0 MP Speed of sound (m/s). Int. J. Heat Mass Transfer, 35, 1115–1123.CrossRefGoogle Scholar
Katto, Y. (1994). Critical heat flux. Int. J. Multiphase Flow, 20, Suppl., 53–90.CrossRefGoogle Scholar
Katto, Y., and Yokoya, S. (1984). Critical heat flux of liquid helium (I) in forced convective boiling. Int. J. Multiphase Flow, 10, 401–413.CrossRefGoogle Scholar
Kays, W., Crawford, M., and Weigand, B. (2005). Convective Heat and Mass Transfer, 4th ed., McGraw-Hill.Google Scholar
Kefer, V., Kastner, W. and Krätzer, W. (1986). Leckraten bei unterkritischen Rohrleitungsrissen. Jahrestagung, Kerntechnik, Aachen, Germany.
Kefer, V., Kohler, W., and Kastner, W. (1989). Critical heat flux (Critical heat flux) and post-Critical heat flux heat transfer in horizontal and inclined evaporator tubes. Int. J. Multiphase Flow, 15, 385–392.CrossRefGoogle Scholar
Kelessidis, V. C., and Dukler, A. E. (1989). Modeling flow pattern transitions for upward gas-liquid flow in vertical concentric and eccentric annuli. Int. J. Multiphase Flow, 15, 173–191.CrossRefGoogle Scholar
Kelly, J. (1994). VIPRE-02 – A two-fluid thermal-hydraulic code for reactor core and vessel analysis: Mathematical modeling and solution methods. Nucl. Technol., 100, 246–259.CrossRefGoogle Scholar
Kendall, G. E., Griffith, P., Bergles, A. E., and Lienhard, J. V. (2001). Small diameter effects on internal flow boiling. Proc. IMECE-2001, Nov. 11–16, New York.Google Scholar
Kendzierski, M. A., Chato, J. C., and Rabas, T. J. (2003). Condensation. In Bejan, A., and Kraus, A. D., Eds., Heat Transfer Handbook, Wiley, New York, Chapter 10.Google Scholar
Kennedy, J. E., Roach, G. M. Jr., Dowling, M. F., Abdel-Khalik, S. I., Ghiaasiaan, S. M., Jeter, S. M., and Qureshi, Z. H. (2000). The onset of flow instability in uniformly heated horizontal microchannels. J. Heat Transfer, 122, 118–125.CrossRefGoogle Scholar
Kenning, D. B. R. (1989). Wall temperature in nucleate boiling. Proc. 8th Eurotherm Seminar on Advances in Pool Boiling Heat Transfer, Paderborn, Germany, pp. 1–9.Google Scholar
Kew, P. A., and Cornwell, K. (1997). Correlations for the prediction of boiling heat transfer in small-diameter channels. Appl. Therm. Eng., 17, 705–715.CrossRefGoogle Scholar
Kim, D., Ghajar, A. J., and Dougherty, R. L. (2000). Robust heat transfer correlation for turbulent gas-liquid flow in vertical pipes. J. Thermophys. Heat Transfer, 14, 574–578.CrossRefGoogle Scholar
Kim, J., and Ghajar, A. J. (2006). A general heat transfer correlation for non-boiling gas-liquid flow with different flow patterns in horizontal pipes. Int. J. Multiphase Flow, 32, 447–465.CrossRefGoogle Scholar
Kim, M. H., Shin, J. S., Kim, T. J., and Seo, K. W. (2003b). A study of condensation heat transfer in a single mini-tube and review of Korean micro- and mini-channel studies. Proc. 1st Int. Conf. on Microchannesl and Minichannels, Rochester, New York, pp. 47–58.Google Scholar
Kim, N. H., Cho, J. P., Kim, J. O., and Youn, B. (2003a). Condensation heat transfer of R-22 and R-410A in flat aluminum multi-channel tubes with or without micro-fins. Int. J. Refrig., 26, 830–839.CrossRefGoogle Scholar
Kim, S., and Mills, A. F. (1989). Condensation on coherent turbulent liquid jets: Part i – Experimental study. J. Heat Transfer, 111, 1068–1082.CrossRefGoogle Scholar
Kim, S., Sun, X., Ishii, M., Beus, S. G., and Lincoln, F. (2002). Interfacial area transport and evaluation of source and sink terms for confined air-water bubbly flow. Nucl. Eng. Design, 219, 61–75.CrossRefGoogle Scholar
Kirillov, P. L., Bobkov, V. P., Boltanko, E. A., Katan, I. B., Smogalev, I. P., and Vinogradov, V. N. (1991a). New Critical heat flux table for water in round tubes. Rep. IPPE-2225, Obninsk, Russia.
Kirillov, P. L., Bobkov, V. P., Boltanko, E. A., Katan, I. B., Smogalev, I. P., and Vinogradov, V. N. (1991b). Lookup tables of critical heat flux. Atomnaya Energiya, 71, 18–28.Google Scholar
Kirillov, P. L., Smogalev, I. P., Ivacshkevitch, A. A., Vinogradov, V. N., Sudnitsina, M. O., and Mitrofanova, T. V. (1996). The look-up table for heat transfer coefficient in post-dryout region for water flowing in tubes (the 1996 version). Reprint FEI-2525 Institute of Physics and Power Engineering, Obninsk, Russia.
Kistler, S. F., and Scriven, L. E. (1984). Coating flows. In Computational Analysis of Polymer Processing, Pearson, J. K. A. and Richardson, , , S. M., Eds., Applied Science, London, pp. 243–299.Google Scholar
Klausner, J. F., Mei, R., and Zeng, L. Z. (1997). Predicting stochastic features of vapor bubble detachment in flow boiling. Int. J. Heat Mass Transfer, 40, 3547–3552.CrossRefGoogle Scholar
Klimenko, V. V. (1988). A generalized correlation for two-phase forced flow heat transfer. Int. J. Heat Mass Transfer, 31, 541–552.CrossRefGoogle Scholar
Klimenko, V. V. (1990). A generalized correlation for two-phase forced flow heat transfer – Second assessment. Int. J. Heat Mass Transfer, 33, 2073–2088.CrossRefGoogle Scholar
Kocamustafaogullari, G., and Ishii, M. (1983). Interfacial area and nucleation site density in boiling systems. Int. J. Heat Mass Transfer, 26, 1377–1387.CrossRefGoogle Scholar
Kocamustafaogullari, G., and Ishii, M. (1995). Foundations of the interfacial area transport equation and its closure relations. Int. J. Heat Mass Transfer, 38, 481–493.CrossRefGoogle Scholar
Kocamustafaogullari, G., Smits, S. R., and Razi, J. (1994). Maximum and mean droplet sizes in annular two-phase flow. Int. J. Heat Mass Transfer, 37, 955–965.CrossRefGoogle Scholar
Kohl, M. J., Abdel-Khalik, S. I., Jeter, S. M., and Sadowski, D. L. (2005). An experimental investigation of microchannel flow with internal pressure measurements. Int. J. Heat Mass Transfer, 48, 1518–1533.CrossRefGoogle Scholar
Koizumi, H., and Yokohama, K. (1980). Characteristics of refrigerant flow in a capillary tube. ASHRAE Trans., Part 2, 86, 19–27.Google Scholar
Kolb, W. B., and Cerro, R. L. (1993a). The motion of long bubbles in tubes of square cross-section. Phys. Fluids, A5, 1549–1557.CrossRefGoogle Scholar
Kolb, W. B., and Cerro, R. L. (1993b). Film flow in the space between a circular bubble and a square tube. J. Colloid Interphase Sci., 159, 302–311.CrossRefGoogle Scholar
Komaya, S., and Yu, J. (1999). Heat transfer and pressure drop in internal flow condensation. In Handbook of Phase Change, Kandlikar, S. G., Shoji, M., and Dhir, V. K., Eds., Taylor & Francis, London, pp. 621–637.Google Scholar
Konno, M., Aoki, M., and Saito, S. (1983). Scale effect on breakup process in liquid-liquid agitated tanks. J. Chem. Eng. Jpn., 16, 312–319.CrossRefGoogle Scholar
Konno, M., Aoki, M., and Saito, S. (1988). Coalescence of dispersed drops in an agitated tank. J. Chem. Eng. Jpn., 21, 335–338.CrossRefGoogle Scholar
Kordyban, E., and Okleh, A. H. (1995). The effect of surfactants on the wave growth and transition to slug flow. J. Fluids Eng., 117, 389–393.CrossRefGoogle Scholar
Kordyban, E. S., and Ranov, T. (1970). Mechanism of slug formation in horizontal two-phase flow. J. Basic Eng., 92, 857–864.CrossRefGoogle Scholar
Kosar, A., Kuo, C.-J., and Peles, Y. (2006). Suppression of boiling oscillations in parallel microchannels with inlet restrictors. J. Heat Transfer, 128, 251–260.CrossRefGoogle Scholar
Kosar, A., Kuo, C.-J., and Peles, Y. (2005). Boiling heat transfer in rectangular microchannels with reentrant cavities. Int. J. Heat Mass Transfer, 48, 4867–4886.CrossRefGoogle Scholar
Kosky, P. G., and Staub, F. W. (1971). Local condensation heat transfer coefficients in the annular flow regime. AIC Homogeneous E J., 17, 1037–1043.CrossRefGoogle Scholar
Koyama, S., and Yu, J. (1999). Heat transfer and pressure drop in internal flow condensation. In Handbook of Phase Change, Kandlikar, S. G., Shoji, M., and Dhir, V. K., Eds., Taylor & Francis, London, pp. 621–678.Google Scholar
Koyama, S., Kuwahara, K., Nakashita, K., Kudo, S., and Yamamoto, K. (2001). An experimental study on pressure drop and local heat transfer characteristics of refrigerant R-134a condensing in a multi-port extruded tube. IIF-IIR Commission B1, Paderborn, Germany.Google Scholar
Koyama, S., Kuwara, K., and Nakashita, K. (2003). Condensation of refrigerant in a multi-port channel. Proc. 1st Int. Conf. on Micro- and Mini-channels, Rochester, New York, pp. 193–205.Google Scholar
Kreutzer, M. T., Kapteijn, F., Moulijn, J. A., Kleijn, C. R., and Heiszwolf, J. J. (2005). Inertial and interfacial effects on the pressure drop of Taylor flow in capillaries. AIC Homogeneous E J., 51, 2428–2440.CrossRefGoogle Scholar
Krishna, V. S., and Kowalski, J. E. (1984). Stratified-slug flow transition in a horizontal pipe containing a rod bundle. AIChE Symp. Ser., 236, 80, 282–289.Google Scholar
Kroeger, P. G. (1978). Application of a non-equilibrium drift-flux model to two-phase blowdown experiments. Paper presented at OECD/NEA Specialists' Meeting on Transient Two-Phase Flow, Toronto, Canada, August 1998.
Kronig, R., and Brink, J. C. (1950). On the theory of extraction from falling droplets. Appl. Sci. Res., A2, 142–154.Google Scholar
Kutateladze, S. S. (1952). Heat Transfer in Condensation and Boiling, Moscow. English translation in U.S. Atomic Energy Commission AEC-tr-3770, 2nd ed.Google Scholar
Kutateladze, S. S. (1961). Boiling heat transfer. Int. J. Heat Mass Transfer, 4, 31–45.CrossRefGoogle Scholar
Kutateladze, S. S. (1972). Elements of hydrodynamics of gas-liquid systems. Fluid Mech. Sov. Res., 1, 29–50.Google Scholar
Kuwahara, A., Chung, P. M.-Y., and Kawaji, M. (2002). Investigation of two-phase flow patterns, void fraction and pressure drop in a microchannel. Int. J. Multiphase Flow, 28, 1411–1435.CrossRefGoogle Scholar
Kuwahara, K., Koyama, S., and Hashimoto, Y. (2000). Characteristics of evaporation heat transfer and flow pattern of pure refrigerant HFC134a in a horizontal capillary tube, Proc. 4th JSME-KSME Conf., pp. 385–390.Google Scholar
Laborie, S., Cabassud, C., Durand-Bourlier, L., and Laine, J. M. (1999). Characterization of gas-liquid two-phase flow inside capillaries. Chem. Eng. Sci., 54, 5723–5835.CrossRefGoogle Scholar
Lackme, C. (1979). Incompleteness of the flashing of supersaturated liquid and sonic ejection of the produced phases. Intl. J. Multiphase Flow, 5, 131–141.CrossRefGoogle Scholar
Lahey, R. T., Jr., and Drew, D. A. (1988). The three-dimensional time and volume averaged conservation equations of two-phase flow. In Advances in Nuclear Science and Technology., Lewis, J. and Becker, M., Eds., Plenum Press, New York, 20, 1–69.Google Scholar
Lahey, T. R. Jr., and Moody, F. J. (1993). The Thermal-Hydraulics of Boiling Water Nuclear Reactors, 2nd ed., American Nuclear Society, LaGrange Park, IL.Google Scholar
Lamb, H. Sir (1932). Hydrodynamics, 6th ed., Cambridge University Press, Cambridge.Google Scholar
Lazarek, G. M., and Black, H. S. (1982). Evaporative heat transfer, pressure drop and critical heat flux in a small vertical tube with R-113. Int. J. Heat Mass Transfer, 25, 945–960.CrossRefGoogle Scholar
Ledinegg, M. (1938). Instabilität der strömung bei natürlichen und zwangumlauf. Warme, 61, 891–898.Google Scholar
Lee, C. H., and Mudawar, I. (1988). A mechanistic critical heat flux model for subcooled flow boiling based on local bulk flow conditions. Int. J. Multiphase Flow, 14, 711–728.CrossRefGoogle Scholar
Lee, H. J., and Lee, S. Y. (2001). Heat transfer correlation for boiling flows in small rectangular horizontal channels with low aspect ratios. Int. J. Multiphase Flow, 27, 2043–2062.CrossRefGoogle Scholar
Lee, H. J., and Lee, S. Y. (2001a). Pressure drop correlations for two-phase flow within horizontal rectangular channels with small heights. Int. J. Multiphase Flow, 27, 783–796.CrossRefGoogle Scholar
Lee, J., and Mudawar, I. (2005a). Two-phase flow in high-heat-flux micro-channel heat sink for refrigeration cooling applications: Part I – Pressure drop characteristics. Int. J. Heat Mass Transfer, 48, 928–940.CrossRefGoogle Scholar
Lee, J., and Mudawar, I. (2005b). Two-phase flow in high-heat-flux micro-channel heat sink for refrigeration cooling applications: Part II – Heat transfer characteristics. Int. J. Heat Mass Transfer, 48, 941–955.CrossRefGoogle Scholar
Lee, R. C., and Nydahl, J. E. (1989). Numerical calculation of bubble growth in nucleate boiling from inception through departure. J. Heat Transfer, 111, 474–479.CrossRefGoogle Scholar
Lee, S. C., and Bankoff, S. G. (1983). Stability of steady-water countercurrent flow in an inclined channel: Flooding. J. Heat Transfer, 105, 713–718.CrossRefGoogle Scholar
Lee, S. Y., and Schrock, V. E. (1988). Homogeneous non-equilibrium critical flow model for liquid stagnation states. Proc., National Heat Transfer Conf., 7th, ASME, New York, HTD-Vol. 96, pp. 507–513.Google Scholar
Lee, W. C., and Rose, J. W. (1984). Forced convection film condensation on a horizontal tube with and without noncondensing gases. Int. J. Heat Mass Transfer, 27, 519–528.CrossRefGoogle Scholar
Leonard, J. E., Sun, K. H., Anderson, J. G. M., Dix, G. E., and Yuoh, T. (1978). Calculation of low flow boiling heat transfer for BWR LOCA analysis. Rep. NEDO-20566-1 Rev. 1, General Electric Company, San Jose, CA.
Leung, J. C. (1986). A generalized correlation for one-component homogeneous equilibrium flashing flow. AIC Homogeneous E J., 32, 1743–1746.CrossRefGoogle Scholar
Leung, J. C., and Grolmes, M. A. (1988). A generalized correlation for flashing choked flow of initially subcooled liquid. AIC Homogeneous E J., 34, 688–691.CrossRefGoogle Scholar
Leung, L. K. H., Hammouda, N., and Groeneveld, D. C. (1997). A look-up table for film boiling heat transfer coefficients in tubes with vertical upward flow. Proc. 8th Int. Topical Meeting on Nuclear Reator Thermal Hydraulics (NURETH-8), Kyoto, Japan, Sept 30–Oct 4.Google Scholar
Levich, V. G. (1962). Physiochemical Hydrodynamics, Prentice Hall, Englewood Cliffs, NJ.Google Scholar
Levy, S. (1967). Forced convection subcooled boiling: Prediction of vapor volumetric fraction. Int. J. Heat Mass Transfer, 10, 951–965.CrossRefGoogle Scholar
Levy, S. (1999). Two-Phase Flow in Complex Systems, Wiley, New York.Google Scholar
Levy, S., Healzer, J. M., and Abdollahian, D. (1981). Prediction of critical heat flux in vertical pipe flow. Nucl. Eng. Design, 65, 131–140.CrossRefGoogle Scholar
Lezzi, A. M., Niro, A., and Beretta, G. P. (1994). Experimental data of Critical heat flux for forced convection water boiling in long horizontal capillary tubes. In Heat Transfer 1994: Proceedings of the Tenth International Heat Transfer Conference, Hewitt, G. W., Ed., Rugby, UK, 7, 491–496.Google Scholar
Li, J., and Peterson, G. P. (2005a). Microscale heterogeneous boiling on smooth surfaces – From bubble nucleation to bubble dynamics. Int. J. Heat Mass Transfer, 48, 4316–4332.CrossRefGoogle Scholar
Li, J., and Peterson, G. P. (2005b). Boiling nucleation and two-phase flow patterns in forced liquid flow in microchannels. Int. J. Heat Mass Transfer, 48, 4797–4810.CrossRefGoogle Scholar
Liaw, S. P., and Dhir, V. K. (1986). Effect of surface wettability on transition boiling heat transfer from a vertical surface. Proc. 8th Int. Heat Transfer Conf., San Francisco, 4, 2031–2036.Google Scholar
Lie, Y. M., Su, F. Q., Lai, R. L., and Lin, T. F. (2006). Experimental study of evaporation heat transfer characteristics of refrigerants R-134a and R-407C in horizontal small tubes. Int. J. Heat Mass Transfer, 49, 207–218.CrossRefGoogle Scholar
Lienhard, J. H. (1976). Correlation of the limiting liquid superheat. Chem. Eng. Sci., 31, 847–849.CrossRefGoogle Scholar
Lienhard, J. H., and Dhir, (1973). Hydrdrodynamic prediction of peak pool-boiling heat fluxes from finite bodies. J. Heat Transfer, 95, 152–158.CrossRefGoogle Scholar
Lienhard, J. H., and Karimi, A. (1981). Homogeneous nucleation and the spinodal line. J. Heat Transfer, 103, 61–64.CrossRefGoogle Scholar
Lienhard, J. H., and Witte, L. C. (1985). An historical review of the hydrodynamic theory of boiling. Annu. Rev. Chem. Eng., 2, 197–280.Google Scholar
Lienhard, J. H. IV, and Lienhard, J. H. Virtual mass force. (2005). A Heat Transfer Textbook, 3rd ed., Phlogiston Press, Cambridge, MA.Google Scholar
Lin, L., Udell, K. S., and Pisano, A. P. (1993). Vapor bubble formation on a micro heater in confined and unconfined micro channels. ASME, Heat Transfer on the Microscale, HTD- Vol. 253, 85–93.Google Scholar
Lin, S., Kew, P. A., and Cornwell, K. (2001a). Two-phase heat transfer to a refrigerant in a 1 mm diameter tube. Int. J. Refrig., 24, 51–56.CrossRefGoogle Scholar
Lin, S., Kew, P. A., and Cornwell, K. (2001b). Flow boiling of refrigerant R141b in small tubes. Trans. Inst. Chem. Eng., 79-A, 417–424.CrossRefGoogle Scholar
Lin, S., Kwok, C. C. K., Li, R.-Y., Chen, Z.-H., and Chen, Z.-Y. (1991). Local frictional pressure drop during vaporization of R-12 through capillary tubes. Int. J. Multiphase Flow, 17, 95–102.CrossRefGoogle Scholar
Liu, D., Lee, P.-S., and Garimella, S. V. (2005). Prediction of the onset of nucleate boiling in microchannel flow. Int. J. Heat Mass Transfer, 48, 5234–5149.CrossRefGoogle Scholar
Liu, H., Vandu, C. O., and Krishna, R. (2005). Hydrodynamics of Taylor flow in vertical capillaries: Flow regimes, bubble rise velocity, liquid slug length, and pressure drop. Ind. Eng. Chem. Res., 44, 4884–4897.CrossRefGoogle Scholar
Liu, Z., and Winterton, R. H. S. (1991). A general correlation for saturated and subcooled flow boiling in tubes and annuli, based on a nucleate pool boiling equation. Int. J. Heat Mass Transfer, 34, 2759–2766.CrossRefGoogle Scholar
Lockhart, R. W., and Martinelli, R. C. (1949). Proposed correlations of data for isothermal two-phase, two-component flow in a pipe. Chem. Eng. Prog., 45, 39–48.Google Scholar
Loomsmore, C. S., and Skinner, B. C. (1965). Subcooled critical heat flux for water in round tubes. M. S. thesis, MIT, Cambridge, MA.Google Scholar
Lowdermilk, W. H., Lanzo, C. D., and Siegel, B. L. (1958). Investigation of boiling burnout and flow stability for water flowing in tubes. NACA TN 4382.Google Scholar
Lowry, B., and Kawaji, M. (1988). Adiabatic vertical two-phase flow in narrow flow channels. AIChE Symp. Ser., 48, 133–139.Google Scholar
Maa, J. R. (1967). Evaporation coefficient of liquids. Ind. Eng. Chem. Fundam., 6, 504–518.CrossRefGoogle Scholar
Mahafy, J. H. (1982). A stability enhancing two-step method for fluid flow calculations. J. Comput. Phys., 46, 329–341.CrossRefGoogle Scholar
Mahoney, A. W., and Ramkrishna, D. (2002). Efficient solution of population balance equations with discontinuities by finite elements. Chem. Eng. Sci., 57, 1107–1119.CrossRefGoogle Scholar
Mala, G. M., and Li, D. (1999). Flow characteristics of water in microtubes. Int. J. Heat Fluid Flow, 20, 142–148.CrossRefGoogle Scholar
Mandhane, J. M., Gregory, G. A., and Aziz, K. (1974). A flow pattern map for gas-liquid flow in horizontal pipes. Int. J. Multiphase Flow, 1, 537–553.CrossRefGoogle Scholar
Maracy, M., and Winterton, R. H. S. (1988). Hysteresis and contact angle effects in transition pool boiling of water. Int. J. Heat Mass Transfer, 31, 1443–1449.CrossRefGoogle Scholar
Marchessault, R. N., and Mason, S. G. (1960). Flow of entrapped bubbles through a capillary. Ind. Eng. Chem. 52, 79–84.CrossRefGoogle Scholar
Marcy, G. P. (1949). Pressure drop with change of phase in a capillary tube. Refrig. Eng., 57, 53–57.Google Scholar
Marek, R., and Straub, J. (2001). The origin of thermocapillary convection in subcooled nucleate pool boiling. Int. J. Heat Mass Transfer, 44, 619–632.CrossRefGoogle Scholar
Marsh, W. J., and Mudawar, I. (1989). Predicting the onset of nucleate boiling in wavy free-falling turbulent liquid films. Int. J. Heat Mass Transfer, 32, 361–378.CrossRefGoogle Scholar
Martinelli, R. C. (1947). Heat transfer to molten metals. Trans. ASME, 69, 947–951.Google Scholar
Martinelli, R. C., and Nelson, D. B. (1948). Prediction of pressure drop during forced circulation boiling of water. Trans. ASME, 70, 695–702.Google Scholar
Marto, P. J. (1984). Heat transfer and two-phase flow during shell-side condensation. Heat Transfer Eng., 5, 31–60.CrossRefGoogle Scholar
Marto, P. J. (1988). Fundamentals of condensation. In Two-Phase Flow Heat Exchangers, Kakac, S., Bergles, A. E., and Fernandes, Oliveira E., Eds., Kluwer Academic, Dordrecht, pp. 221–291.CrossRefGoogle Scholar
Matsumoto, K., Nakamura, S., Gotoh, N., Nabarayashi, T., Tanaka, Y., and Horimizu, Y. (1989). Study on coolant leak rates through pipe cracks: Part 2 – Pipe test. Proc. ASME Pressure Vessels and Piping Conf., JSME Co-sponsorship, ASME, New York, ASME PVP-Vol. 165, pp. 113–120.Google Scholar
McAdams, W. H. (1954). Heat Transmission, 3rd ed., McGraw-Hill, New York.Google Scholar
McAdams, W. H., Minden, C. S., Carl, R., Picornell, D. M., and Dew, J. E. (1949). Heat transfer at high rates to water with surface boiling. Ind. Eng. Chem., 41, 1945–1963.CrossRefGoogle Scholar
McAdams, W. H., Woods, W. K., and Heroman, L. C.. (1942). Vaporization inside horizontal tubes – II – Benzene – oil mixtures. Trans. ASME, 64, 193–200.Google Scholar
McBeth, R. V. (1965–66). An appraisal of forced convection burnout data. Proc. Inst. Mech. Eng., 180, 47–48.Google Scholar
McBeth, R. V., and Thompson, B. (1964). Boiling water heat transfer burnout in uniformly heated round tubes: A compilation of world data with accurate correlations. UKAEA Rep. AEEW-R356, Winfrith, England.
McFadden, J. H., et al. (1992). RETRAN-03. A Program for transient thermal-hydraulic analysis of complex fluid systems. Electric Power Research Institute Rep. EPRI NP-7450, Vol. 1, Palo Alto, CA.
McQuillan, K. W., and Whalley, P. B. (1985a). Flow patterns in vertical two-phase flow. Int. J. Multiphase Flow, 11, 161–175.CrossRefGoogle Scholar
McQuillan, K. W., and Whalley, P. B. (1985b). A comparison between flooding correlations and experimental flooding data for gas-liquid flow in vertical circular tubes. Chem. Eng. Sci., 40, 1425–1440.CrossRefGoogle Scholar
Meisenburg, S. J., Boarts, R. M., and Badger, W. L. (1935). The influence of small concentrations of air in steam on the steam film coefficient of heat transfer. Trans. Am. Inst. Chem. Eng., 31, 622–631.Google Scholar
Merilo, M. (1977). Critical heat flux experiments in a vertical and horizontal tube with Freon-12 and water as coolant. Nucl. Eng. Design, 44, 1–16.CrossRefGoogle Scholar
Merilo, M. (1979). Fluid-to-fluid modeling and correlation of flow boiling crisis in horizontal tubes. Int. J. Multiphase Flow, 5, 313–325.CrossRefGoogle Scholar
Merte, J. Jr., and Clark, J. A. (1964). Boiling heat transfer with cryogenic fluids at standard and near-zero gravity. J. Heat Transfer, 86, 351–359.CrossRefGoogle Scholar
Michaelides, E. E. (1997). Review – The transient equation of motion for particles, bubbles, and droplets. J. Fluids Eng., 119, 233–247.CrossRefGoogle Scholar
Michiyoshi, I. (1978). Two-phase two-component heat transfer. Proc. Int. Heat Transfer Conf., 6th, 1978, 6, 219–233.Google Scholar
Mikic, B. B., Rohsenow, W. M., and Griffith, P. (1970). On bubble growth rates, Int. J. Heat Mass Transfer, 13, 647–666.CrossRefGoogle Scholar
Mikol, E. P. (1963). Adiabatic single and two-phase flow in small bore tubes. ASHRAE J., 5, 75–86.Google Scholar
Millies, M., Drew, D. A., and Lahey, R. T. Jr. (1996). A first order relaxation model for the prediction of the local interfacial area density in two-phase flows. Int. J. Multiphase Flow, 22, 1073–1104.CrossRefGoogle Scholar
Mills, A. F. (2001). Mass Transfer, Prentice Hall, Upper Saddle River, NJ.Google Scholar
Mills, A. F., and Chung, D. K. (1973). Heat transfer across turbulent falling films. Int. J. Heat Mass Transfer, 16, 694–696.CrossRefGoogle Scholar
Mills, A. F., and Seban, R. A. (1967). The condensation coefficient of water. Int. J. Heat Mass Transfer, 10, 1815–1827.CrossRefGoogle Scholar
Mishima, K. (1984). Boiling burnout at low flow rate and low pressure conditions. Pressure (N/m2); Legendre polynomial Homogeneous Tube or jet diameter (m) Thesis, Research Reactor Inst., Kyoto University, Japan.
Mishima, K., and Hibiki, T. (1996). Some characteristics of air-water two-phase flow in small diameter vertical tubes. Int. J. Multiphase Flow, 22, 703–712.CrossRefGoogle Scholar
Mishima, K., and Ishii, M. (1980). Theoretical prediction of onset of horizontal slug flow. J. Fluids Eng., 102, 441–445.CrossRefGoogle Scholar
Mishima, K., and Ishii, M. (1984). Flow regime transition criteria for two-phase flow in vertical tubes. Int. J. Heat Mass Transfer, 27, 723–737.Google Scholar
Mishima, K., Hibiki, T., and Nishihara, H. (1993). Some characteristics of gas-liquid flow in narrow rectangular ducts. Int. J. Multiphase Flow, 19, 115–124.CrossRefGoogle Scholar
Mizukami, K. (1977). Entrapment of vapor in re-entrant cavities. Lett. Heat Mass Transfer, 2, 279–284.CrossRefGoogle Scholar
Moin, P. (2001). Fundamentals of Engineering Numerical Analysis, Cambridge University Press, Cambridge.Google Scholar
Moissis, R., and Berenson, P. J. (1963). On the hydrodynamic transitions in nucleate boiling. J. Heat Transfer, 85, 221–229.CrossRefGoogle Scholar
Montes, F. J., Galan, M. A., and Cerro, R. L. (1999). Mass transfer from oscillating bubbles in bioreactors. Chem. Eng. Sci., 54, 3127–3136.CrossRefGoogle Scholar
Montes, F. J., Galan, M. A., and Cerro, R. L. (2002). Comparison of theoretical and experimental characteristics of oscillating bubbles. Ind. Eng. Chem. Res., 41, 6235–6245.CrossRefGoogle Scholar
Moody, F. J. (1965). Maximum flow rate of a single-component two-phase mixture. J. Heat Transfer, 87, 134–142.CrossRefGoogle Scholar
Moody, F. J. (1966). Maximum two-phase vessel blowdown from pipes. J. Heat Transfer, 88, 285–295.CrossRefGoogle Scholar
Moody, F. J. (1975). Maximum discharge rate of liquid/vapor mixtures from vessels. In Non-Equilibrium Two-Phase Flow, ASME Special Publication, ASME, New York.Google Scholar
Moody, F. J. (1979). Maximum discharge rate of liquid-vapor mixtures from vessels. General Electric Co. Rep. NEDO-21052-A, San Jose, CA.
Moody, F. J. (1990). Introduction to Unsteady Thermofluid Mechanics, Wiley Interscience, New York.Google Scholar
Moore, F. D., and Mesler, R. B. (1961). The measurement of rapid surface temperature fluctuations during nucleate boiling of water. AICHE J., 7, 620–624.CrossRefGoogle Scholar
Morel, C., Goreaud, N., and Delhaye, J.-M. (1999). The local volumetric interfacial area transport equation: Derivation and physical significance. Int. J. Multiphase Flow, 25, 1099–1128.CrossRefGoogle Scholar
Morgan, C. D., and Rush, G. C. (1983). Experimental measurements of condensation heat transfer with noncondensible gases present in a vertical tube at high pressure. Presented in 21st National Heat Transfer Conf., Seattle, Washington, July 24–28, ASME-HTD-Vol. 27.
Moser, K. W., Webb, R. L., and Na, B. (1998). A new equivalent Reynolds number model for condensation in smooth tubes. J. Heat Transfer, 120, 410–417.CrossRefGoogle Scholar
Mudawwar, I., and El-Masri, M. A. (1986). Momentum and heat transfer across freely-falling turbulent liquid films. Int. J. Heat Mass Transfer, 12, 771–790.Google Scholar
Munoz-Cobo, J. L., Herranz, L., Sancho, J., Tkachenko, I., and Verdu, G. (1996). Turbulent vapor condensation with noncondensable gases in vertical tubes. Int. J. Heat Mass Transfer, 39, 3249–3260.CrossRefGoogle Scholar
Munson, B. R., Young, D. F., and Okishii, T. H. (1998). Fundamentals of Fluid Mechanics, 3rd ed., Wiley, New York.Google Scholar
Muralidhar, R., Ramkrishna, D., and Kumar, R. (1988). Coalescence of rigid droplets in a stirred dispersion – II. Band-limited force fluctuations. Chem. Eng. Sci., 43, 1559–1568.CrossRefGoogle Scholar
Nabarayashi, T., Ishiyama, T., Fujii, M., Matsumoto, K., Harimizu, Y., and Tanaka, Y. (1989). Study on coolant leak rates through pipe cracks: Part 1 – Fundamental tests. Proc., ASME Pressure Vessels and Piping Conf., JSME Co-sponsorship, ASME, New York, ASME PVP-Vol. 165, pp. 121–127.Google Scholar
Nariai, H., and Inasaka, F. (1992). Critical heat flux and flow characteristics of subcooled flow boiling with water in narrow tubes. In Dynamics of Two-Phase Flow, Jones, O. C., and Michiyoshi, I., Eds., CRC Press, Boca Raton, FL, pp. 689–708.Google Scholar
Nariai, H., Inasaka, F., and Shimuara, T. (1987). Critical heat flux of subcooled flow boiling in narrow tube. Proc., ASME/JSME Thermal Energy Joint Conf., 1987, 5, 455–462.Google Scholar
Nariai, H., Inasaka, F., and Uehara, K. (1989). Critical heat flux in narrow tubes with uniform heating. Heating Transfer Jpn. Res., 18, 21–30.Google Scholar
Narrow, T. L., Ghiaasiaan, S. M., Abdel-Khalik, S. I., and Sadowski, D. L. (2000). Gas-liquid two-phase flow patterns and pressure drop in a horizontal micro-rod bundle. Int. J. Multiphase Flow, 26, 1281–1294.CrossRefGoogle Scholar
Narsimhan, G., Gupta, J. P., and Ramkrishna, D. (1979). A model for transitional breakage probability of droplets in agitated lean liquid-liquid dispersions. Chem. Eng. Sci., 34, 257–265.CrossRefGoogle Scholar
Narsimhan, G., Ramkrishna, D., and Gupta, J. P. (1980). Analysis of drop size distributions in lean liquid-liquid dispersions. AIC Homogeneous E J., 26, 991.CrossRefGoogle Scholar
Narsimhan, G., Nejfelt, G., and Ramkrishna, D. (1984). Breakage functions of droplets in agitated liquid-liquid dispersions. AIC Homogeneous E J., 30, 457.CrossRefGoogle Scholar
Nichols, B. D., Hirt, C. W., and Hotchkiss, R. S. (1980). SOLA-VOF: A solution algorithm for transient fluid flow with multiple free boundaries. Rep. LA-8355, Los Alamos National Laboratory, Los Alamos, NM.
Nicklin, D. J., Wilkes, J. O., and Wilkes, F. F. (1962). Two-phase flow in vertical tubes, Trans. Inst. Chem. Engrs., 40, 61–68.Google Scholar
Nigmatulin, R. I. (1979). Spatial averaging in the mechanics of heterogeneous and dispersed systems. Int. J. Multiphase Flow, 5, 353–385.CrossRefGoogle Scholar
Nijhawan, S., Chen, J. C., Sundaram, R. K., and London, E. J. (1980). Measurement of vapor superheat in post-critical-heat-flux boiling. J. Heat Transfer, 102, 465–470.CrossRefGoogle Scholar
Nijhuis, T. A., Kreutzer, M. T., Romijn, A. C. J., Kapteijn, F., and Moulijn, J. A. (2001). Monolithic catalysts as efficient three-phase reactors. Chem. Eng. Sci., 56, 823–829.CrossRefGoogle Scholar
Nishikawa, K., Fujita, Y., Yuchida, S., and Ohta, H. (1983). Effect of heating surface orientation on nucleate boiling heat transfer. Proc. ASME/JSME Thermal Eng. Joint Conf., Vol. 1, pp. 129–136, ASME, New York.Google Scholar
Nukiyama, S. (1934). The maximum and minimum values of heat Volumetric flow rate (m3/s); dimensionless wall heat flux transmitted from metal to boiling water under atmospheric pressure. J. Jpn. Soc. Mech. Eng., 37, 367–374.Google Scholar
Nusselt, W. (1916). Die oberflachenkondensation des wasser dampfes. Z. Ver. Dtsch. Ininuere, 60, 541–575.Google Scholar
Ogg, D. G. (1991). Vertical downflow condensation heat Transfer in gas-steam mixtures. M.S. thesis, University of California, Berkeley.
Oh, C. H., and Englert, S. B. (1993). Critical heat flux for low flow boiling in vertical uniformly heated thin rectangular channels. Int. J. Heat Mass Transfer, 36, 325–335.CrossRefGoogle Scholar
Oh, H. K., Katsuta, M., and Shibata, K. (1998). Heat transfer characteristics of R-134a in a capillary tube heat exchanger. Proc. 11th Int. Heat Transfer Conf., 6, 131–136.Google Scholar
Ohnuki, A. (1986). Experimental study of counter-current two-phase flow in horizontal tube connected to inclined riser. J. Nucl. Sci. Technol., 23(3), 219–232.CrossRefGoogle Scholar
Olson, C. O., and Sunden, B. (1994). Pressure drop characteristics of small-sized tubes. ASME Paper 94-WA/HT-1.
Ormiston, S. J., Raithby, G. D., and Carlucci, L. N. (1995a). Numerical modeling of power station steam condensers – Part 1: Convergence behavior of finite-volume model. Num. Heat Transfer, 27B, 81–102.CrossRefGoogle Scholar
Ormiston, S. J., Raithby, G. D., and Carlucci, L. N. (1995b). Numerical modeling of power station steam condensers – Part 2: Improvement of solution behavior. Num. Heat Transfer, 27B, 103–125.CrossRefGoogle Scholar
Ornatskiy, A. P. (1960). The influence of length and tube diameter on critical heat flux for water with forced convection and subcooling. Teploenergetika, 4, 67–69.Google Scholar
Ornatskiy, A. P., and Kichigan, A. M. (1962). Critical thermal loads during the boiling of subcooled water in small diameter tubes. Teploenergetika, 6, 75–79.Google Scholar
Ornatskiy, A. P., and Vinyarskiy, L. S. (1964). Heat transfer crisis in a forced flow of under heated water in small bore tubes. Teplofizika Vysokikh Temperatur, 3, 444–451.Google Scholar
Osakabe, M., and Kawasaki, K. (1989). Top flooding in thin rectangular and annular passages. Int. J. Multiphase Flow, 15, 747–754.CrossRefGoogle Scholar
Osamusali, S. E., Groeneveld, D. C., and Cheng, S. C. (1992). Two-phase flow regimes and onset of flow instability in horizontal 37-rod bundles. Heat Technol., 10, 46–74.Google Scholar
Osamusali, S. I., and Chang, J. S. (1988). Two-phase flow regime transition in a horizontal pipe and annulus flow under gas-liquid two-phase flow. ASME, New York, ASME FED-Vol. 72, pp. 63–69.
Osher, S., and Fedkiw, R. P. (2003). Level Set Methods and Dynamic Implicit Surfaces, Springer, New York.CrossRefGoogle Scholar
Othmer, D. F. (1929). The condensation of steam. Ind. Eng. Chem., 21, 576–583.CrossRefGoogle Scholar
Owens, W. L., and Schrock, V. E. (1960). Local pressure gradients for subcooled boiling of water in vertical tubes. Paper 60-WA-249, ASME, New York.
Oya, T. (1971). Upward liquid flow in small tube into which air streams (Second report, pressure drop at the confluence). Bull. JSME, 14, 1330–1339.CrossRefGoogle Scholar
Palen, J. W., Breber, D., and Taborek, J. (1979). Prediction of flow regimes in horizontal tubeside condensation. Heat Transfer Eng., 1(2), 47–57.CrossRefGoogle Scholar
Panday, P. K. (2003). Two-dimensional turbulent film condensation of vapours flowing inside a vertical tube and between parallel plates: A numerical approach. Int. J. Refrig., 26, 492–503.CrossRefGoogle Scholar
Park, K., and Lee, K. S. (2003). Flow and heat transfer characteristics of the evaporating extended meniscus in capillary tubes. Int. J. Heat Mass Transfer, 46, 4587–4594.CrossRefGoogle Scholar
Pasamehmetoglu, K. O., and Nelson, R. A. (1987). Transient direct contact condensation on liquid droplets. Presented at the ASME-ANE-AIChE National Heat Transfer Conf., Pittsburgh, PA.Google Scholar
Pauken, M. T., and Abdel-Khalik, S. I. (1995). Evaporation suppression from spent-fuel storage basins with monolayer films. Trans. ANS, 72, 308–309.Google Scholar
Peles, Y. P., Yarin, L. P., and Hetsroni, G. (2000). Thermodynamic characteristics of two-phase flow in a heated capillary. Int. J. Multiphase Flow, 26, 1063–1093.CrossRefGoogle Scholar
Peng, X. F., and Wang, B.-X. (1993). Forced convection and flow boiling heat transfer for liquid flowing through microchannels. Int. J. Heat Mass Transfer, 36, 3421–3427.CrossRefGoogle Scholar
Peng, X. F., and Wang, B. X. (1994). Liquid flow and heat transfer in microchannels with/without phase change. Heat Transfer 1994, Proc. Int. Heat Transfer Conf., 10th, 5, 159–177.Google Scholar
Peng, X. F., and Wang, B. X. (1998). Forced-convection and boiling characteristics in microchannels. Proc. 11th Int. Heat Transfer Conf., pp. 371–390.Google Scholar
Peng, X. F., Hu, H. Y., and Wang, B.-X. (1994a). Boiling nucleation during liquid flow in microchannels. Int. J. Heat Mass Transfer, 41, 101–106.CrossRefGoogle Scholar
Peng, X. F., and Peterson, G. P. (1995). The effect of thermofluid and geometrical parameters on convection of liquids through rectangular microchannels. Int. J. Heat Mass Transfer, 38, 755–758.CrossRefGoogle Scholar
Peng, X. F., Peterson, G. P., and Wang, B. X. (1994b). Frictional flow characteristics of water flowing through rectangular microchannels. Exp. Thermal-Fluid Sci., 7, 249–264.Google Scholar
Peng, X. F., Wang, B.-X., Peterson, G. P., and Ma, H. P. (1995). Experimental investigation of heat transfer in flat plates with rectangular microchannels. Int. J. Heat Mass Transfer, 38, 127–137.CrossRefGoogle Scholar
Peterson, P. F. (1996). Theoretical basis for the Uchida correlation for condensation in reactor containments. Nucl. Eng. Design, 162, 301–306.CrossRefGoogle Scholar
Peterson, P. F., Schrock, V. E., and Kagayama, T. (1993). Diffusion layer theory for turbulent vapor condensation with noncondensable gases. J. Heat Transfer, 115, 998–1003.CrossRefGoogle Scholar
Pettersen, J. (2004). Flow vaporization of CO2 in microchannel tubes. Exp. Thermal Fluid Sci., 28, 111–121.CrossRefGoogle Scholar
Petukhov, B. S. (1970). Heat transfer and friction in turbulent pipe flow with variable physical properties. Adv. Heat Transfer, 6, 503–565.CrossRefGoogle Scholar
Petukhov, B. S., and Popov, V. N. (1963). Theoretical calculation of heat exchange in turbulent flow in tubes of an incompressible fluid with variable physical properties. High Temp., 1, 69–83.Google Scholar
Plesko, C., and Leutheusser, H. J. (1982). Dynamic effects of bubble motion. Chem. Eng. Commun., 17, 195–218.CrossRefGoogle Scholar
Plesset, M. S., and Zwick, S. A. (1954). Growth of vapor bubbles in superheated liquids. J. Appl. Phys., 25, 493–500.CrossRefGoogle Scholar
Pokhalov, Y. E., , G. H., Kronin, G. H., and Kurganova, I. V. (1966). Correlation of experimental data on heat transfer with nucleate boiling of subcooled liquids in tubes. Teploenergetika, 13, 63–68.Google Scholar
Premoli, A., Francesco, D., and Prina, A. (1970). An empirical correlation for evaluating two-phase mixture density under adiabatic conditions. European Two-Phase Flow Group Meeting, Milan.
Premoli, A., Francesco, D., and Prina, A. (1971). A dimensionless correlation for determining the density of two-phase mixtures. Lo Termotecnica, 25, 17–26.Google Scholar
Press, H. W., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. (1992). Numerical Recipes for FORTRAN 77, Vol. 1, Cambridge University Press, Cambridge.Google Scholar
Probstein, R. F. (2003). Physicohcemical Hydrodynamics, 2nd ed., Wiley, New York.Google Scholar
Prodanovic, V., Fraser, D., and Salcudean, M. (2002a). Bubble behavior in subcooled flow boiling of water at low pressures and low flow rates. Int. J. Multiphase Flow, 28, 1–19.CrossRefGoogle Scholar
Prodanovic, V., Fraser, D., and Salcudean, M. (2002b). On transition from partial to fully developed subcooled flow boiling. Int. J. Heat Mass Transfer, 45, 4727–4738.CrossRefGoogle Scholar
Pushkina, O. L., and Sorokin, Y. L. (1969). Breakdown of liquid film motion in vertical tubes. Heat Transfer Sov. Res., 1, 56–64.Google Scholar
Qu, W., and Mudawar, I. (2002). Prediction and measurement of incipient boiling heat flux in micro channel heat sinks. Int. J. Heat Mass Transfer, 45, 3933–3945.CrossRefGoogle Scholar
Qu, W., and Mudawar, I. (2003a). Measurement and prediction of pressure drop in two-phase micro channel heat sinks. Int. J. Heat Mass Transfer, 46, 2737–2753.CrossRefGoogle Scholar
Qu, W., and Mudawar, I. (2003b). Flow boiling heat transfer in two-phase micro-channel heat sinks – I. Experimental investigation and assessment of correlation method. Int. J. Heat Mass Transfer, 46, 2755–2771.CrossRefGoogle Scholar
Qu, W., and Mudawar, I. (2004a). Transport phenomena in two-phase micro-channel heat sinks. J. Electronic Packaging, 126, 213–224.CrossRefGoogle Scholar
Qu, W., and Mudawar, I. (2004b). Measurement and correlation critical heat flux in microchannel heat sinks. Int. J. Heat Mass Transfer, 47, 2045–2059.CrossRefGoogle Scholar
Qu, W., Mala, G. M., and Li, D. (2000). Heat transfer for water in trapezoidal silicon microchannels. Int. J. Heat Mass Transfer, 43, 3925–3936.CrossRefGoogle Scholar
Ramu, K., and Weisman, J. (1974). A method for the correlation of transition boiling heat transfer data. Proc. Fifth Int. Heat Transfer Conf., Tokyo, Vol. IV, B4.4.Google Scholar
Ranz, W. E., and Marshall, W. R. Jr. (1952). Evaporation from drops. Parts I and II. Chem. Eng. Prog., 48, 141–146 and 173–180.Google Scholar
Reddy, D. G., and Fighetti, C. F. (1983). A generalized subchannel Critical heat flux correlation for Pressurized water reactor and Boiling water reactor fuel assemblies. Electric Power Research Institute, Rep. EPRI NP-2609-Vol. 2, Palo Alto, CA.
Reichardt, H. (1951). Vollstandige darstellung der turbulenten geschwindigkeitsverteilung in glatten leitungen. Z. Angew. Math. Mech., 31, 208–219.CrossRefGoogle Scholar
Reichardt, H. (1951). Die grundlagen des turbulent warmeuberganges. Arch. Ges. Warmetech, 2, 129–142.Google Scholar
Reid, R. C., Prausnitz, J. M., and Sherwood, T. K. (1977). The Properties of Gases and Liquids, 3rd ed., McGraw-Hill, New York.Google Scholar
RELAP5-3D Code Development Team (2005). RELAP5-3D Code Manuals, Version 2.3, Vols. 1–5, INEEL-EXT-98-00834.
Ren, W. M., Ghiaasiaan, S. M., and Abdel-Khalik, S. I. (1994a). GT3F: An implicit finite-difference computer code for transient three-dimensional three-phase flow. Part I: Governing equations and solution scheme. Num. Heat Transfer B: Fundam., 25, 1–20.CrossRefGoogle Scholar
Ren, W. M., Ghiaasiaan, S. M., and Abdel-Khalik, S. I. (1994b). GT3F: An implicit finite-difference computer code for transient three-dimensional three-phase flow. Part II: Applications. Num. Heat Transfert B: Fundam., 25, 21–38.CrossRefGoogle Scholar
Revankar, S. T., and Ishii, M. (1992). Local interfacial area measurement in bubbly flow. Int. J. Heat Mass Transfer, 35, 913–925.CrossRefGoogle Scholar
Rezkallah, K. S. (1996). Weber number based flow-pattern maps for liquid-gas flows at microgravity. Int. J. Multiphase Flow, 22, 1265–1270.CrossRefGoogle Scholar
Richter, H. J. (1981). Flooding in tubes and annuli. Int. J. Multiphase Flow, 7, 647–658.CrossRefGoogle Scholar
Richter, H. J. (1983). Separated two-phase flow model: Application to critical two-phase flow. Int. J. Multiphase Flow, 9, 511–530.CrossRefGoogle Scholar
Richter, H. J., Wallis, G. B., and Speers, M. S. (1979). Effect of scale on two-phase countercurrent flow flooding. NUREG/CR-0312, U.S. Nuclear Regulatory Commission, Washington, Direct-contact.Google Scholar
Rivard, W. C., and Travis, J. R. (1980). A nonequilibrium vapor production model for critical flow. Nucl. Sci. Eng., 74, 40–48.CrossRefGoogle Scholar
Riznic, J., Kojasoy, G., and Zuber, N. (1999). On spherically phase change problem. Int. J. Fluid Mech. Res., 26, 110–145.CrossRefGoogle Scholar
Roach, G. M. Jr., Abdel-Khalik, S. I., Ghiaasiaan, S. M., and Jeter, S. M. (1999a). Low-flow onset of flow instability in heated microchannels. Nucl. Sci. Eng., 133, 106–117.CrossRefGoogle Scholar
Roach, G. M. Jr., Abdel-Khalik, S. I., Ghiaasiaan, S. M., and Jeter, S. M. (1999b). Low-flow critical heat flux in heated microchannels. Nucl. Sci. Eng., 131, 411–425.CrossRefGoogle Scholar
Rogers, J. T., and Li, J.-H. (1992). Prediction of the onset of significant void in flow boiling of water. ASME, Fundamentals of Subcooled Flow Boiling, HTD-Vol. 217, 41– 52.Google Scholar
Rogers, T. J., Salcudean, M., Abdullah, Z., McLeond, D., and Poirier, D. (1987). The onset of significant void in up-flow boiling of water at low pressure and velocities. Int. J. Heat Mass Transfer, 30, 2247–2260.CrossRefGoogle Scholar
Rohsenow, W. H. (1973). Boiling, in Handbook of Heat Transfer, Rohsenow, W. H., and Hartnett, J. P., Eds., McGraw-Hill, New York, Chapter 13.Google Scholar
Rohsenow, W. M. (1952). A method of correlating heat transfer data for surface boiling of liquids. Trans. ASME, 74, 969–975.Google Scholar
Rohsenow, W. M. (1956). Heat transfer and temperature distribution in laminar film condensation. Trans. ASME, 78, 1645–1648.Google Scholar
Rohsenow, W. M., Wber, J. H., and Ling, T. (1956). Effect of vapor velocity on laminar and turbulent film condensation. Trans. ASME, 78, 1637–1643.Google Scholar
Rose, J., Uehara, H., Koyama, S., and Fujii, T. (1999). Film condensation. In Handbook of Phase Change, Kandlikar, S. G., Shoji, M., and Dhir, V. K., Eds., Taylor & Francis, London, pp. 523–580.Google Scholar
Rose, J. W. (1984). Effect of pressure gradient in forced convection film condensation on a horizontal tube. Int. J. Heat Mass Transfer, 27, 39–47.CrossRefGoogle Scholar
Rouhani, Z., and Axelsson, E. (1970). Calculation of void volume fraction in the subcooled and quality boiling regions. Int. J. Heat Mass Transfer, 13, 383–393.CrossRefGoogle Scholar
Rowley, R. L. (1994). Statistical Mechanics for Thermophysical Property Calculations, Prentice Hall, Englewood Cliffs, NJ.Google Scholar
Rudman, M. (1997). Volume-tracking methods for interfacial flow calculations. Int. J. Num. Methods Fluids, 24, 671–691.3.0.CO;2-9>CrossRefGoogle Scholar
Sadatomi, Y., Sato, Y., and Saruwatari, S. (1982). Two-phase flow in vertical noncircular channels. Int. J. Multiphase Flow, 8, 641–655.CrossRefGoogle Scholar
Saffman, P. G., and Turner, J. J. (1956). On the collision of drops in turbulent clouds. J. Fluid Mech., 1, 16–30.CrossRefGoogle Scholar
Saha, P., and Zuber, N. (1974). Point of net vapor generation and vapor void fraction in subcooled boiling. Proc., Int. Heat Transfer Conf., 5th, 4, 175–179.Google Scholar
Saito, T., Hughes, E. D., and Carbon, M. W. (1978). Multi-fluid modeling of annular two-phase flow. Nucl. Eng. Design, 50, 225–271.CrossRefGoogle Scholar
Saitoh, S., Daiguji, H., and Hihara, E. (2005). Effect of tube diameter on boiling heat transfer of R-134a in horizontal small-diameter tubes. Int. J. Heat Mass Transfer, 48, 4973–4984.CrossRefGoogle Scholar
Sakata, E. K. (1969). Surface diffusion in monolayers. Ind. Eng. Chem. Res., 8, 570–575.Google Scholar
Sam, R. G., and Patel, B. R. (1984). An experimental investigation of OC-OTEC direct-contact condensation and evaporation processes. J. Solar Energy, 106, 120–127.CrossRefGoogle Scholar
Samokhin, G. I., and Yagov, V. V. (1988). Heat transfer and critical heat flux with liquids boiling in the region of low reduced pressures. Thermal Eng., 35, 115–118.Google Scholar
Sandal, O. C. (1974). Gas absorption into turbulent liquids at intermediate contact times. Int. J. Heat Mass Transfer, 17, 459–461.CrossRefGoogle Scholar
Sato, T., and Matsumura, H. (1963). On the conditions of incipient subcooled boiling and forced-convection. Bull. JSME, 7, 392–398.CrossRefGoogle Scholar
Schlichting, H. (1968). Boundary Layer Theory, 6th ed., McGraw-Hill, New York.Google Scholar
Schmidt, J., and Friedel, L. (1997). Two-phase pressure drop across sudden contractions in duct areas. Int. J. Multiphase Flow, 23, 283–299.CrossRefGoogle Scholar
Schrage, R. W. (1953). A Theoretical Study of Interphase Mass Transfer, Columbia University Press, New York.Google Scholar
Schrock, V. E., Wang, C.-H., Revankar, S., Wei, L.-H., Lee, S. Y., and Squarer, D. (1984). Flooding in partice beds and its role in dryout heat fluxes. Proc. 6th Information Exchange Meeting on Debris Coolability, UCLA, Los Angeles, CA.Google Scholar
Schrock, V. E., Revankar, S. T., and Lee, S. Y. (1988). Critical flow through pipe cracks. In Particulate Phenomena and Multiphase Transport, Veziroglu, N., Ed., Hemisphere, Washington, Direct-contact, 1, 3–17.Google Scholar
Schultze, H. D. (1984). Physico-Chemical Elementary Processes in Flotation, Elsevier, Amsterdam, pp. 123–129.Google Scholar
Schwartz, A. M., and Tejada, S. B. (1972). Studies of dynamic contact angle on solids, J. Colloid Interface Sci., 38, 359–375.CrossRefGoogle Scholar
Schwellnus, C. F., and Shoukri, M. (1991). A two-fluid model for non-equilibrium two-phase critical discharge. Can. J. Chem. Eng., 69, 187–197.CrossRefGoogle Scholar
Scriven, L. E. (1959). On the dynamics of phase growth. Chem. Eng. Sci., 10, 1–13.CrossRefGoogle Scholar
Scriven, L. E., and Sterling, C. V. (1964). On cellular convection driven by surface tension gradients – Effect of mean surface tension and surface viscosity. J. Fluid Mech., 19, 321–340.CrossRefGoogle Scholar
Seban, R. A. (1954). Remarks on film condensation with turbulent flow. Trans. ASME, 76, 299–302.Google Scholar
Seban, R. A., and Faghri, A. (1976). Evaporation and heating with turbulent falling liquid films. J. Heat Transfer, 98, 315–318.CrossRefGoogle Scholar
Seban, R. A., and Hodgson, J. A. (1982). Laminar film condensation in a tube with upward vapor flow. Int. J. Heat Mass Transfer, 25, 1291–1300.CrossRefGoogle Scholar
Sepold, L., Hofmann, P., Leiling, W., Miassoedov, A., Piel, D., Schmidt, L., and Steinbruck, M. (2001). Reflooding experiments with LWR-type fuel rod simulators in the QUENCH facility. Nucl. Eng. Design, 204, 205–220.CrossRefGoogle Scholar
Serizawa, A., Feng, Z., and Kawara, Z. (2002). Two-phase flow in microchannels. Exp. Thermal Fluid Sci., 26, 703–714.CrossRefGoogle Scholar
Shah, M. (1977). A general correlation for heat transfer during subcooled boiling in pipes and annuli. ASHRAE Trans., 83, Part 1, 205–215.Google Scholar
Shah, M. M. (1979). A general correlation for heat transfer during film condensation inside pipes. Int. J. Heat Mass Transfer, 22, 547–556.CrossRefGoogle Scholar
Shah, M. M. (1987). Improved general correlation for critical heat flux during upflow in uniformly heated vertical tubes. Int. J. Heat Fluid Flow, 8, 326–335.CrossRefGoogle Scholar
Sharp, K. V., and Adrian, R. J. (2004). Transition from laminar flow to turbulent flow in liquid filled microtubes. Exp. Fluids, 36, 741–747.CrossRefGoogle Scholar
Shatto, D. P., and Peterson, G. P. (1999). Pool boiling critical heat flux in reduced gravity. J. Heat Transfer, 121, 865–873.CrossRefGoogle Scholar
Shekriladze, I. G., and Gomelauri, V. I. (1966). Theoretical study of laminar film condensation of flowing vapor. Int. J. Heat Mass Transfer, 9, 581–591.CrossRefGoogle Scholar
Shima, A. (1970). The natural frequency of a bubble oscillating in a viscous compressible liquid. J. Basic Eng., 92, 555–562.CrossRefGoogle Scholar
Shin, T. S., and Jones, O. C. (1993). Nucleation and flashing in nozzles – 1: A distributed nucleation model. Int. J. Multiphase Flow, 19, 943–964.CrossRefGoogle Scholar
Shinnar, R. (1961). On the behavior of liquid dispersions in mixing vessels. J. Fluid Mech., 10, 259–275.CrossRefGoogle Scholar
Shmerler, J. A., and Mudawwar, I. (1988). Local evaporative heat transfer coefficient in turbulent free-falling liquid films. Int. J. Heat Mass Transfer, 31, 731–742.CrossRefGoogle Scholar
Shoji, M. (2004). Studies of boiling chaos: A review. Int. J. Heat Mass Transfer, 47, 1105–1128.CrossRefGoogle Scholar
Siddique, M. (1992). The effects of noncondensable gases on steam condensation under forced convection conditions. Pressure (N/m2); Legendre polynomialh. Tube or jet diameter (m). thesis, Massachusetts Institute of Technology, Cambridge, MA.
Siddique, M., Golay, M. W., and Kazimi, M. S. (1994). Theoretical modeling of forced convection of steam in the presence of a noncondensable gas. Nucl. Technol., 106, 202–215.CrossRefGoogle Scholar
Skelland, A. H. P. (1974). Diffusional Mass Transfer, Krieger, Malabar, FL.Google Scholar
Skinner, L. A., and Bankoff, S. G. (1964). Dynamics of vapor bubbles in binary liquids with spherically symmetric initial conditions. Phys. Fluids, 7, 643–648.CrossRefGoogle Scholar
Sklover, G. G., and Rodivilin, M. D. (1975). Heat and mass transfer with condensation of steam on water jet. Teploenergetika, 22(11), 65–68.Google Scholar
Smedley, G. (1990). Preliminary drop-tower experiments on liquid-interface geometry in partially filled containers at zero gravity. Exp. Fluids, 8, 312–318.CrossRefGoogle Scholar
Smith, S. L. (1969–1970). Void fraction in two-phase flow: A correlation based upon an equal velocity head model. Inst. Mech. Eng., 184, 647–657.CrossRefGoogle Scholar
Snyder, N. R., and Edwards, D. K. (1956). Summary of Conference on Bubble Dynamics and Boiling Heat Transfer. Memo 20–137, Jet Propulsion Laboratory, Pasadena, CA, pp. 14– 15.
Sobajima, M. (1985). Experimental modeling of steam-water countercurrent flow limit for perforated plates. J. Nucl. Sci. Technol., 22, 723–732.CrossRefGoogle Scholar
Sohn, H. Y., Johnson, S. H., and Hindmarsh, A. C. (1985). Application of the method of lines to the analysis of single fluid-solid reactions in porous media. Chem. Eng. Sci., 40, 2185–2190.CrossRefGoogle Scholar
Soliman, H. M. (1982). On the annular-to-wavy flow pattern transition during condensation inside horizontal tubes. Can. J. Chem. Eng., 60, 475–481.CrossRefGoogle Scholar
Soliman, H. M. (1986). The mist-annular transition during condensation and its influence on heat transfer mechanism. Int. J. Multiphase Flow, 12, 277–288.CrossRefGoogle Scholar
Soliman, H. M., Schuster, J. R., and Berenson, P. J. (1968). A general heat transfer correlation for annular flow condensation, J. Heat Transfer, 90, 267–276.CrossRefGoogle Scholar
Song, A., Steiff, A., and Weinspach, P.-M. (1997). Very efficient new method to solve the population balance equation with particle-size growth. Chem. Eng. Sci., 52, 3493–3498.CrossRefGoogle Scholar
Sovova, H., and Prochazka, J. (1981). Breakage and coalescence of drops in a batch stirred vessel – I Comparison of continuous and discrete models. Chem. Eng. Sci., 36, 163–171.CrossRefGoogle Scholar
Spalding, D. B. (1980). Numerical calculation of multiphase fluid flow and heat transfer. In Recent Advances in Numerical Methods in Fluids, Taylor, C., and Morgan, K., Eds., Pineridge Press, Swansea, UK.Google Scholar
Spalding, D. B. (1983). Development of the IPSA procedure for numerical computation of multiphase flow phenomena with interphase slip, unequal temperatures, etc. In Numerical Methods and Methodologies in Heat Transfer, Shih, T. M., Ed., Hemisphere, Washington, Direct-contact.Google Scholar
Spedding, P. L., and Spence, D. R. (1993). Flow regimes in two-phase gas-liquid flow. Int. J. Multiphase Flow, 19, 245–280.CrossRefGoogle Scholar
Springer, T. G., and Pigford, R. L. (1970). Influence of surface turbulence and surfactants on gas transport through liquid surfaces. Ind. Eng. Chem. Fundam., 9, 458–465.CrossRefGoogle Scholar
Srivastoa, R. P. S. (1973). Liquid film thickness in annular flows. Chem. Eng. Sci., 28, 819–824.CrossRefGoogle Scholar
Staniszewski, B. E. (1959). Nucleate boiling bubble growth and departure. MIT Tech Rep. No. 16, Div. Sponsored Research, Cambridge, MA.
Stanley, R. S., Barron, R. F., Ameel, T. A. (1997). Two-phase flow in microchannels. In ASME Microelectromechanical Systems, ASME, New York, DSC-Vol. 62/HTD-Vol. 354, pp. 143–152.Google Scholar
Staub, F. W. (1968). The void fraction in subcooled boiling: Prediction of the initial point of net vapor generation. J. Heat Transfer, 90, 151–157.CrossRefGoogle Scholar
Steinbruck, M. (2001). Reflooding experiments with LWR-type fuel rod simulators in the QUENCH facility. Nucl. Eng. Design, 204, 205–220.Google Scholar
Steiner, D., and Taborek, J. (1992). Flow boiling heat transfer in vertical tubes correlated by an asymptotic model. Heat Transfer Eng., 13, 43–89.CrossRefGoogle Scholar
Stephan, K., and Abdelsalam, M. (1980). Heat-transfer correlations for natural convection boiling. Int. J. Heat Mass Transfer, 23, 73–87.CrossRefGoogle Scholar
Straub, J., Betz, J., and Marek, R. (1994). Enhancement of heat transfer by thermocapillary convection around bubbles – A numerical study. Num. Heat Transfer A, 25, 501–518.CrossRefGoogle Scholar
Stuhmiller, J. H. (1986). A dynamic flow regime model of two-phase flow. EPRI Rep. RP888-1, Electric Power Research Institute, Palo Alto, CA.Google Scholar
, J. H. (1987). Implementation of the dynamic flow regime model in thermal-hydraulic codes. EPRI Report RP2806-1, Electric Power Research Institute, Palo Alto, CA.Google Scholar
Subbotin, V. I., Deev, V. I., and Arkhipov, V. V. (1982). Critical heat flux in flow boiling of helium. Proc. Int. Heat Transfer Conf., 7th, 4, 357–361.Google Scholar
Subramanian, R. S. (1975). Gas absorption into a turbulent liquid film. Int. J. Heat Mass Transfer, 18, 334–336.CrossRefGoogle Scholar
Sudo, Y., Usui, T., and Kaminaga, M. (1991). Experimental study of falling water limitation under a counter-current flow in a vertical rectangular channel (First report, Effect of flow channel configuration and introduction of CCFL correlation). JSME Int. J., 34, 169–174.Google Scholar
Sugawara, S. (1990a). Analytical prediction of Critical heat flux by FIDAS code based on three-fluid and film dryout model. J. Nucl. Sci. Technol., 27, 12–29.CrossRefGoogle Scholar
Sugawara, S. (1990b). Droplet deposition and entrainment modeling based on the three-fluid model. Nucl. Eng. Design, 122, 67–84.CrossRefGoogle Scholar
Sumith, B., Kaminaga, F., and Matsumura, K. (2003). Saturated flow boiling of water in a vertical small diameter tube. Exp. Thermal Fluid Sci., 27, 789–801.CrossRefGoogle Scholar
Sun, K. H., and Lienhard, J. H. (1970). The peak pool boiling heat fluxes on horizontal cylinders. Int. J. Heat Mass Transfer, 13, 1425–1439.CrossRefGoogle Scholar
Sun, X., Kim, S., Ishii, M., and Beus, S. G. (2004a). Modeling of bubble coalescence and disintegration in confined upward two-phase flow. Nucl. Eng. Design, 230, 3–26.CrossRefGoogle Scholar
Sun, X., Kim, S., Ishii, M., and Beus, S. G. (2004b). Model evaluation of two-group interfacial area transport equation for confined upward flow. Nucl. Eng. Design, 230, 27–47.CrossRefGoogle Scholar
Suo, M., and Griffith, P. (1964). Two-phase flow in capillary tubes. J. Basic Eng., 86, 576–582.CrossRefGoogle Scholar
Sussman, M., and Fatemi, E. (2003). A second-order coupled level set and volume-of-fluid method for computing growth and collapse of vapor bubbles. J. Comput. Phys., 187, 110–136.CrossRefGoogle Scholar
Svehla, R. A. (1962). Estimated viscosities and thermal conductivities of gases at high temperatures. NASA Technical Rep. R-132.
Taghavi-Tafreshi, K., Dhir, V. K., and Catton, I. (1979). Thermal and hydrodynamic phenomena associated with melting of a horizontal substrate placed beneath a heavier immiscible liquid. J. Heat Transfer, 101, 318–325.CrossRefGoogle Scholar
Taha, T., and Cui, Z. F. (2006). Computational fluid dynamics modeling of slug flow in vertical tubes, Chem. Eng. Sci., 61, 676–687.CrossRefGoogle Scholar
Taitel, Y. (1990). Flow pattern transition in two-phase flow. Proc. Int. Heat Transfer Cont., 9th,Hemisphere, New York, pp. 237–254.Google Scholar
Taitel, Y., and Dukler, A. E. (1976a). A theoretical approach to the Lockhart–Martinelli correlation for stratified flow. Int. J. Multiphase Flow, 2, 591–595.CrossRefGoogle Scholar
Taitel, Y., and Dukler, A. E. (1976b). A model for predicting flow regime transitions in horizontal and near horizontal gas-liquid flow. AIChE J. 22, 47–55.CrossRefGoogle Scholar
Taitel, Y.Bornea, D., and Dukler, A. E. (1980). Modeling flow pattern transitions for steady upward gas-liquid flow in vertical tubes. AIC Homogeneous E J., 26, 345–354.CrossRefGoogle Scholar
Taitel, Y., Lee, N., and Dukler, A. E. (1978). Transient gas-liquid flow in horizontal pipes: Modeling the flow pattern transitions. AIC Homogeneous E J., 24, 920–924.CrossRefGoogle Scholar
Takaeuchi, K., Young, M. Y., and Hochreiter, L. M. (1992). Generalized drift flux correlation for vertical flow. Nucl. Eng. Design, 112, 170–180.Google Scholar
Takahama, H., and Kato, S. (1980). Longitudinal flow characteristics of vertically falling liquid films without concurrent gas flow. Int. J. Multiphase Flow, 6, 203–215.CrossRefGoogle Scholar
Tandon, T. N., Varma, H. K., and Gupta, G. P. (1982). A new flow regimes map for condensation inside horizontal tubes. J. Heat Transfer, 104, 763–768.CrossRefGoogle Scholar
Tandon, T. N., Varma, H. K., and Gupta, C. P. (1995). Heat transfer during forced convection condensation inside horizontal tube. Int. J. Refrig., 18, 210–214.CrossRefGoogle Scholar
Tangren, R. F., Dodge, C. H., and Seifert, H. S. (1949). Compressibility effects in two-phase flow, J. Appl. Phys., 20, 736.CrossRefGoogle Scholar
Tarasova, N. Y., Leontiev, A. I., Hlopushin, V. I., and Orlov, V. M. (1966). Pressure drop of boiling subcooled water and steam-water mixture flowing in heated channels. Proc. 3rd Int. Heat Transfer Conf., Chicago, 4, 178–183.Google Scholar
Taylor, D. D., et al. (1984). TRAC/BD1-MOD1: An advanced best estimate computer program for boiling water reactor transients. NUREG/CR-3633, U.S. Nuclear Regulatory Commission, Washington, Direct-contact.
Taylor, G. I. (1961). Deposition of a viscous fluid on the wall of a tube. J. Fluid Mech, 10, 161–165.CrossRefGoogle Scholar
Theofanous, T. G., Tu, J. P., Dinh, A. T., and Dinh, T. N. (2002a). The boiling crisis phenomenon. Part I: Nucleation and nucleate boiling heat transfer. Exp. Thermal Fluid Sci., 26, 775–792.CrossRefGoogle Scholar
Theofanous, T. G., Dinh, T. N., Tu, J. P., and Dinh, A. T. (2002b). The boiling crisis phenomenon. Part II: Dryout dynamics and burnout. Exp. Thermal Fluid Sci., 26, 793–810.CrossRefGoogle Scholar
Thom, J. R. S. (1964). Prediction of pressure drop during forced circulation boiling water. Int. J. Heat Mass Transfer, 7, 709–724.CrossRefGoogle Scholar
Thom, J. R. S., Walker, W. M., Fallon, T. A., and Reising, G. F. S. (1965). Boiling in subcooled water during flow in tubes and annuli. Paper 6, Symp. Boiling Heat Transfer in Steam Generating Units and Heat Exchangers, Sept. 15–16, Manchester, UK.
Thome, J. R. (2003). Boiling. In Heat Transfer Handbook, Bejan, A., and Kraus, A. D., eds., Wiley, New York, Chapter 12.Google Scholar
Thome, J. R., Hajal, El J., and Cavallini, A. (2003). Condensation in horizontal tubes. Part II: New heat transfer model based on flow regimes. Int. J. Heat Mass Transfer, 46, 3365–3387.CrossRefGoogle Scholar
Thulasidas, M. A., Abraham, M. A., and Cerro, R. L. (1995). Bubble-train flow in capillaries of circular and square cross-section. Chem. Eng. Sci., 50, 183–199.CrossRefGoogle Scholar
Thulasidas, T. C., Abraham, M. A., and Cerro, R. L. (1997). Flow patterns in liquid slugs during bubble-train flow inside capillaries. Chem. Eng. Sci., 52, 2947–2962.CrossRefGoogle Scholar
Thulasidas, T. C., Abraham, M. A., and Cerro, R. I. (1999). Dispersion during bubble train flow in capillaries. Chem. Eng. Sci., 54, 61–76.CrossRefGoogle Scholar
Tian, Y., Liu, J.-T., and Peng, X.-F. (2005). Characteristics of nucleation and bubble growth during microscale boiling. ASME 2005 Summer Heat Transfer Conf., July 17–22, San Francisco.Google Scholar
Tien, C. L. (1977). A simple analytical model for countercurrent flow limiting phenomena with condensation. Lett. Heat Mass Transfer, 4, 231–237.CrossRefGoogle Scholar
Tien, C. L., and Liu, C. P. (1979). Survey of vertical two-phase countercurrent flooding. Electric Power Research Institute Rep. EPRI NP-984, Hillview, CA.Google Scholar
Tien, C. L., Qin, T. Q., and Norris, P. M. (1994). Microscale thermal phenomena in contemporary technology. Thermal Sci. Technol., 2, 1–11.Google Scholar
Tiselj, I., Hetsroni, G., Mavko, B., Mosyak, A., Pogrebnyak, E., and Segal, Z. (2004). Effect of axial conduction on the heat transfer in micro-channels. Int. J. Heat Mass Transfer, 47, 2551–2565.CrossRefGoogle Scholar
Tobin, T., Muralidhar, R., Wright, H., and Ramkrishna, D. (1990). Determination of coalescence frequencies in liquid-liquid dispersions: Effect of drop size dependence. Chem. Eng. Sci., 45, 3491–3504.CrossRefGoogle Scholar
Todreas, N. E., and Kazimi, M. S. (1990). Nuclear Systems I: Thermal-Hydraulic Fundamentals, Hemisphere, Washington, Direct-contact.Google Scholar
Tong, L. S. (1967). Heat transfer in water cooled reactors. Nucl. Eng. Design, 6, 301.CrossRefGoogle Scholar
Tong, L. S. (1969). Boundary layer analysis of the flow boiling crisis. Int. J. Heat Mass Transfer, 11, 1208–1211.CrossRefGoogle Scholar
Tong, L. S. (1972). Boiling Crisis and Critical Heat Flux, AEC Critical Review Series, USAEC, Washington, Direct-contact.Google Scholar
Tong, L. S. (1975). A phenomenological study of critical heat flux. ASME Paper 75-HT-68, National Heat Transfer Conference, San Francisco.
Tong, W., Bar-Cohen, A., Simon, T. W., and You, S. M. (1990). Contact angle effects on boiling incipience of highly-wetting liquids. Int. J. Heat Mass Transfer, 33, 91–103.CrossRefGoogle Scholar
Tong, L. S., Currin, H. B., Larsen, P. S., and Smith, O. G. (1965). Influence of axially nonuniform heat flux on Departure from nucleate boiling. Chem. Eng. Symp. Series 62(64), 35–40.Google Scholar
Tong, L. S., and Tang, Y. S. (1997). Boiling Heat Transfer and Two-Phase Flow, Taylor & Francis, London.Google Scholar
Tong, L. S., and Young, J. D. (1974). A phenomenological transition boiling and film boiling correlation. Proc. Fifth Int. Heat Transfer Conf., Tokyo, Vol. IV, B3.9.Google Scholar
Tong, W., Bergles, A. E., and Jensen, M. K. (1997). Pressure drop with highly subcooled flow boiling in small-diameter tubes. Exp. Thermal Fluid Sci., 15, 202–212.CrossRefGoogle Scholar
Tran, T. N., Wambsganss, M. W., France, D. M., and Jendrzejczyk, J. A. (1993). Boiling heat transfer in small, horizontal, rectangular channels. AICHomogeneous Eddy diffusivity (m2/s) Symp. Ser., 89, 253–261.Google Scholar
Tran, T. N., Chyu, M.-C., Wamsganss, M. W., and France, D. M. (2000). Two-phase pressure drop of refrigerants during flow boiling in small channels: An experimental investigation and correlation development. Int. J. Multiphase Flow, 26, 1739–1754.CrossRefGoogle Scholar
Traviss, D. P., Rohsenow, W. M., and Baron, A. B. (1973). Forced convective condensation in tubes: A heat transfer correlation for condenser design. ASHRAE Trans., 79(1), 157–165.Google Scholar
Triplett, K. A., Ghiaasiaan, S. M., Abdel-Khalik, S. I., and Sadowski, D. L. (1999a). Gas-liquid two-phase flow in microchannels. Part I: Two-phase flow patterns. Int. J. Multiphase Flow, 25, 377–394.CrossRefGoogle Scholar
Triplett, K. A., Ghiaasiaan, S. M., Abdel-Khalik, S. I., LeMouel, A., and McCord, B. N. (1999b). Gas-liquid two-phase flow in microchannels. Part II: Void fraction and pressure drop. Int. J. Multiphase Flow, 25, 395–410.CrossRefGoogle Scholar
Troniewski, L., and Ulbrich, R. (1984). Two-phase gas-liquid flow in rectangular channels. Chem. Eng. Sci., 39, 751–765.CrossRefGoogle Scholar
Tryggvason, G., Bunner, B., Esmaeeli, A., Juric, D., Al-Rawahi, A., Tauber, W., Han, J., Nas, S., and Jan, Y. J. (2001). A front-tracking method for the computations of multiphase flow. J. Comput. Phys., 169, 708–759.CrossRefGoogle Scholar
Tsouris, C., and Tavralides, L. L. (1994). Breakage and coalescence models for drops in turbulent dispersions. AICHomogeneous E J., 40, 395–406.CrossRefGoogle Scholar
Tu, J. Y., and Yeoh, G. H. (2002). On numerical modeling of low-pressure subcooled boiling flows. Int. J. Heat Mass Transfer, 45, 1197–1209.CrossRefGoogle Scholar
Tuckermann, D. B., and Peasa, R. F. (1981). High performance heat sinking for VLSI. IEEE Electr. Device Lett., EDL-2, 126–129.CrossRefGoogle Scholar
Turner, J. M., and Wallis, G. B. (1965). The separate-cylinders model for two-phase flow. Paper No. NYO-3114-6, Thayer School of Eng., Darthmouth College, NH (cited in Butterworth, 1975).
Uehara, H., and Kinoshita, E. (1994). Wave and turbulent film condensation on a vertical surface (correlation for local heat transfer coefficient). Trans. JSME, 60, 3109–3116.CrossRefGoogle Scholar
Uehara, H., and Kinoshita, E. (1997). Wave and turbulent film condensation on a vertical surface (correlation for average heat transfer coefficient). Trans. JSME, 63, 4013–4020.CrossRefGoogle Scholar
Unal, H. C. (1975). Determination of the initial point of net vapor generation in flow boiling systems. Int. J. Heat Mass Transfer, 18, 1095–1099.CrossRefGoogle Scholar
Unal, H. C. (1976). Maximum bubble diameter, maximum bubble-growth time and bubble-growth rate during the subcooled nucleate flow boiling of water up to 17.7 MN/m2. Int. J. Heat Mass Transfer, 19, 643–649.CrossRefGoogle Scholar
Ungar, K. E., and Cornwell, J. D. (1992). Two-phase pressure drop of ammonia in small diameter horizontal tubes. Paper presented at AIAA 17th Aerospace Ground Testing Conf., Nashville, TN, July 6–8, 1992.CrossRef
Vachon, R. I., Nix, G. H., and Tanger, G. E. (1967). Evaluation of constants for the rohsenow pool boiling correlation. 67-HT-33, XX National Heat Transfer Conference (cited in Thome, 2003).
Vafai, K., and Sözen, M. (1990). A comparative analysis of multiphase transport in porous media. Annu. Rev. Heat Transfer, 3, 145–162.CrossRefGoogle Scholar
Baten, J. M., and Krishna, R. (2004). Computational fluid dynamics Simulations of mass transfer from Taylor bubbles rising in circular capillaries. Chem. Eng. Sci., 59, 2535–2545.CrossRefGoogle Scholar
Baten, J. M., and Krishna, R. (2005). Computational fluid dynamics Simulations of wall mass transfer for Taylor flow in circular capillaries. Chem. Eng. Sci., 60, 1117–1126.CrossRefGoogle Scholar
Driest, E. R. (1956). On turbulent flow near a wall. J. Aeronautical Sci., 23, 1007–1011.CrossRefGoogle Scholar
Stralen, S., and Cole, R. (1979). Boiling Phenomena: Physicochemical and Engineering Fundamentals and Applications (2 volumes), Hemisphere, Washington, Direct-contact.Google Scholar
Wijngaarden, L. (1976). Hydrodynamic interaction between gas bubbles in liquid. J. Fluid Mech., 77, 27–44.CrossRefGoogle Scholar
Vandervort, C. L., Bergles, A. E., and Jensen, M. K. (1992). Heat transfer mechanisms in very high heat flux subcooled boiling. ASME, Fundamentals of Subcooled Flow Boiling, HTD-Vol. 217, pp. 1–9.Google Scholar
Vandervort, C. L., Bergles, A. E., and Jensen, M. K. (1994). An experimental study of critical heat flux in very high heat flux subcooled boiling. Int. J. Heat Mass Transfer, 37 Suppl. 1, 161–173.CrossRefGoogle Scholar
Vandu, C. O., Liu, H., and Krishna, R. (2005). Mass transfer from Taylor bubbles rising in single capillaries. Chem. Eng. Sci., 60, 6430–6437.CrossRefGoogle Scholar
Vardhan, A., and Dunn, E. E. (1997). Heat transfer and pressure drop characteristics of R-22, R-134a, and R-407C in microchannel tubes. ACRC TR-133, University of Illinois at Urbana-Champaign.Google Scholar
Venkateswararao, P., Semiat, R., and Dukler, A. E. (1982). Flow pattern transition for gas-liquid flow in a vertical rod bundle. Int. J. Multiphase Flow, 8, 509–524.CrossRefGoogle Scholar
Vierow, K. M. (1990). Behavior of steam-water condensing in cocurrent vertical downflow. M.S. thesis, University of California, Berkeley.
Vijaykumar, R., and Dhir, V. K. (1992a). An experimental study of subcooled film boiling on a vertical surface – Hydrodynamic aspects. J. Heat Transfer, 114, 161–168.CrossRefGoogle Scholar
Vijaykumar, R., and Dhir, V. K. (1992b). An experimental study of subcooled film boiling on a vertical surface – Thermal aspects. J. Heat Transfer, 114, 169–178.CrossRefGoogle Scholar
Wallis, G. B. (1961). Flooding velocities for air and water in vertical tubes. AAEW-R123, UKAEA, Harwell, England.
, G. B. (1969). One-Dimensional Two-Phase Flow, McGraw-Hill, New York.Google Scholar
Wallis, G. B. (1990). Inertial coupling in two-phase flow: Macroscopic properties of suspension in an inviscid fluid. In Multiphase Science and Technology, Hewitt, G. F., Delhaye, J. M., and Zuber, N., Eds., Hemisphere, New York, Vol. 5, Chapter 4.Google Scholar
Wallis, G. B., and Makkenchery, S. (1974). The hanging film phenomenon in vertical annular two-phase flow. J. Heat Transfer, 96, 297–298.Google Scholar
Wallis, G. B., Steen, D. A., and Brenner, S. N. (1963). AEC Rep. NYO-10487, EURAEC 890.
Wambsganss, M. W., Jendrzejczyk, J. A., and France, D. M. (1991). Two-phase flow patterns and transitions in a small, horizontal, rectangular channel. Int. J. Multiphase Flow, 7, 327–342.CrossRefGoogle Scholar
Wambsganss, M. W., France, D. M., Jendrzejczyk, J. A., and Tran, T. N. (1993). Boiling heat transfer in a horizontal small-diameter tube. J. Heat Transfer, 115, 963–972.CrossRefGoogle Scholar
Wang, B.-X, and Peng, X. F. (1994). Experimental investigation of liquid forced-convection heat transfer through microchannels. Int. J. Heat Mass Transfer, 37, 73–82.CrossRefGoogle Scholar
Wang, C. H., and Dhir, V. K. (1993). Effect of surface wettability on active nucleation site density during pool boiling of water on a vertical surface. J. Heat Transfer, 115, 659–669.CrossRefGoogle Scholar
Wang, C. Y., and Cheng, P. (1997). Multiphase flow and heat transfer in porous media. Adv. Heat Transfer, 30, 93–196.CrossRefGoogle Scholar
Wang, S. K., Lee, S. J., Jones, O. C. Jr., and Lahey, R. T. Jr. (1987). 3-D turbulence structure and phase distribution measurements in bubbly two-phase flows. Int. J. Multiphase Flow, 13, 327–343.CrossRefGoogle Scholar
Wang, W. C., Ma, X. H., Wei, Z. D., and Yu, P. (1998). Two-phase flow patterns and transition characteristics for in-tube condensation with different surface inclinations. Int. J. Heat Mass Transfer, 41, 4341–4349.CrossRefGoogle Scholar
Wang, W. W. (1999). Condensation and single-phase heat transfer coefficient and flow regime visualization in microchannel tubes for HCFC-134a. Pressure (N/m2); Legendre polynomialh.D. thesis, Ohio State University.
Wang, W.-W., Radcliff, T. D., and Christensen, R. N. (2002). A condensation heat transfer correlation for millimeter-scale tubing with flow regime transition. Exp. Thermal Fluid Sci., 26, 473–485.CrossRefGoogle Scholar
Warrier, G. R., Dhir, V. K., and Momoda, L. A. (2002). Heat transfer and pressure drop in narrow rectangular channels, Exp. Therm. Fluid Sci., 26, 53–64.CrossRefGoogle Scholar
Watanabe, T., Hirano, M., Tanabe, F., and Kamo, H. (1990). The effect of virtual mass on the numerical stability and efficiency of system calculations. Nucl. Eng. Design, 120, 181–192.CrossRefGoogle Scholar
Wattel, B. (2003). Review of saturated flow boiling in small passages of compact heat-exchangers. Int. J. Thermal Sci., 42, 107–140.CrossRefGoogle Scholar
Weatherhead, R. J. (1963). Heat transfer, flow instability, and critical heat flux for water in a small tube at 200 psia. Rep. ANL-6715, Argonne National Laboratory, Argonne, IL.CrossRef
Webb, R. L., and Ermis, K. (2001). Effect of hydraulic diameter on condensation of R-134a in flat, extruded aluminum tubes. Enhanced Heat Transfer, 8, 77–90.CrossRefGoogle Scholar
Webb, R. L., and Zhang, M. (1998). Heat transfer and friction in small diameter channels. Microscale Thermophys. Eng., 2, 189–202.Google Scholar
Weisman, J. (1992). The current status of theoretically based approaches to the prediction of the critical heat flux in flow boiling. Nucl. Technol., 99, 1–121.CrossRefGoogle Scholar
Weisman, J., and Ileslamlou, S. (1988). A phenomenological model for prediction of critical heat flux under highly subcooled conditions. Fusion Technol., 13, 654–659.CrossRefGoogle Scholar
Weisman, J., and Kang, S. Y. (1981). Flow pattern transitions in vertical and upwardly inclined lines. Int. J. Multiphase Flow, 7, 271–291.CrossRefGoogle Scholar
Weisman, J., and Pei, B. S. (1983). Prediction of critical heat flux in flow boiling at low qualities. Int. J. Heat Mass Transfer, 26, 1463–1477.CrossRefGoogle Scholar
Weisman, J., Duncan, D., Gibson, J., and Crawford, T. (1979). Effects of fluid properties and pipe diameter on two-phase flow patterns in horizontal lines. Int. J. Multiphase Flow, 5, 437–462.CrossRefGoogle Scholar
Welsh, S. A., Ghiaasiaan, S. M., and Abdel-Khalik, S. I. (1999). Countercurrent gas-pseudoplastic liquid two-phase flow, Ind. Eng. Chem. Res., 38, 1083–1093.CrossRefGoogle Scholar
Whalley, P. B. (1977). The calculation of dryout in a rod bundle. Int. J. Multiphase Flow, 3, 501–515.CrossRefGoogle Scholar
Whalley, P. B. (1987). Boiling, Condensation and Gas-Liquid Flow, Oxford Scientific Publications, Clarendon Press, Oxford, UK.Google Scholar
Whalley, P. B. (1996). Two-Phase Flow and Heat Transfer, Oxford University Press, Oxford.Google Scholar
Whalley, P. B., Hutchinson, P., and Hewitt, G. F. (1974). The calculation of critical heat flux in forced convection boiling. Proc. 5th Int. Heat Transfer Conf., Tokyo, Paper B.6, pp. 290–2904.Google Scholar
White, F. M. (1999). Fluid Mechanics, 3rd ed., McGraw-Hill.Google Scholar
Wilke, C. R. (1950). A viscosity equation for gas mixtures, J. Chem. Phys., 18, 517–519.CrossRefGoogle Scholar
Wilke, C. R., and Chang, P. (1954). Correlation of diffusion coefficients in dilute solutions, AIC Homogeneous E J., 1, 264–270.CrossRefGoogle Scholar
Wilmarth, T., and Ishii, M. (1994). Two-phase flow regimes in narrow rectangular vertical and horizontal channels. Int. J. Multiphase Flow, 37, 1749–1758.Google Scholar
Wilmarth, T., and Ishii, M. (1997). Interfacial area concentration and void fraction of two-phase flow in narrow rectangular vertical channels. J. Fluids Eng., 119, 916–922.CrossRefGoogle Scholar
Wilson, M. J., Newell, T. A., Chato, T. A., and Ferreira, Infante C. A. (2001). Refrigerant charge, pressure drop, and condensation heat transfer in flattened tubes. IIF-IIR-Commission B1, Paderborn, Germany.Google Scholar
Woldesemayat, M. A., and Ghajar, A. J. (2007). Comparison of void fraction correlations for different flow patterns in horizontal and upward inclined pipes. Int. J. Multiphase Flow, 33, 347–370.CrossRefGoogle Scholar
Wojtan, L., Ursenbacher, T., and Thome, J. R. (2005a). Investigation of flow boiling in horizontal tubes: Part I – A new diabatic two-phase flow pattern map. Int. J. Heat Mass Transfer, 48, 2955–2969.CrossRefGoogle Scholar
Wojtan, L., Ursenbacher, T., and Thome, J. R. (2005b). Investigation of flow boiling in horizontal tubes: Part II – Development of a new heat transfer model for stratified-wavy, dryout, and mist flow regimes. Int. J. Heat Mass Transfer, 48, 2970–2985.CrossRefGoogle Scholar
Won, Y. S., and Mills, A. F. (1982). Correlation of the effects of viscosity and surface tension on gas absorption rates into freely falling turbulent liquid films. Int. J. Heat Mass Transfer, 25, 223–229.CrossRefGoogle Scholar
Wong, S., and Hochreiter, L. E. (1981). Analysis of the FLECHT SEASET unblocked bundle steam cooling and boiloff tests. NUREG/CR-1533, U.S. Nuclear Regulatory Commission, Washington, Direct-contact.
Wong, Y. L., Groeneveld, D. C., and Cheng, S. C. (1990). Critical heat flux prediction for horizontal tubes. Int. J. Multiphase Flow, 16, 123–138.CrossRefGoogle Scholar
World Watch Institute (2006). Vital Signs 2006–2007. Norton, New York.
Wozniak, G. (1991). On the thermocapillary motion of droplets under reduced gravity. J. Colloid Interface Sci., 141, 245–254.CrossRefGoogle Scholar
Wu, H. Y., and Cheng, P. (2003). Visualization and measurements of periodic boiling in silicon microchannels. Int. J. Heat Mass Transfer, 46, 2603–2614.CrossRefGoogle Scholar
Wu, H. Y., and Cheng, P. (2004). Boiling instability in parallel silicon microchannels at different heat flux. Int. J. Heat Mass Transfer, 47, 3631–3641.CrossRefGoogle Scholar
Wu, H. Y., and Cheng, P. (2005).Condensation flow patterns in silicon microchannels. Int. J. Heat Mass Transfer, 48, 2186–2197.CrossRefGoogle Scholar
Wu, P., and Little, W. A. (1983). Measurement of friction factors for the flow of gases in very fine channels used for microminiature Joule–Thompson refrigerators. Cryogenics, 23, 273–277.Google Scholar
Wu, Q., Kim, S., Ishii, M., and Beus, S. G. (1998). One-group interfacial area transport in vertical bubbly flow. Int. J. Heat Mass Transfer, 31, 1103–1112.CrossRefGoogle Scholar
Wu, X. (1996). Hydrodynamic characteristics of countercurrent two-phase flows involving highly viscous liquids, M.S. thesis, Georgia Institute of Technology, Atlanta.Google Scholar
Wulff, W. (1990). Computational methods for multiphase flow. In Multiphase Science and Technology, Hewitt, G. F., Delhaye, J. M., and Zuber, N., Eds., Hemisphere, New York, 5, 85–238.Google Scholar
Xie, J. C., Lin, H., Han, J. H., Dong, X. Q., and Hu, W. R. (1998). Experimental investigation on Marangoni drop migrations using drop shaft facility. Int. J. Heat Mass Transfer, 41, 2077–2081.CrossRefGoogle Scholar
Xie, T. (2004). Hydrodynamic characteristics of gas/liquid/fiber three-phase flows based on objective and minimally-intrusive pressure fluctuation measurements. Pressure (N/m2); Legendre polynomialh.D. thesis, Georgia Institute of Technology, Atlanta.Google Scholar
Xiong, R., and Chung, J. N. (2006). An experimental study on the size effect of adiabatic gas-liquid two-phase flow patterns and void fraction in micro-channels. Phys. Fluids, 19, 033301–1–033301–8.Google Scholar
Xu, J. L., Cheng, P., and Zhao, T. S. (1999). Gas-liquid two-phase flow regimes in rectangular channels with mini/micro gaps. Int. J. Multiphase Flow, 25, 411–432.CrossRefGoogle Scholar
Xu, J. L., Wong, T. N., and Huang, X. Y. (2006). Two-fluid modeling for low-pressure subcooled flow boiling. Int. J. Heat Mass Transfer, 49, 377–386.CrossRefGoogle Scholar
Yadigaroglu, G. (1981a). Regime transitions in boiling heat transfer. In Thermohydraulics of Two-Phase Systems for Industrial Design and Nuclear Engineering, Delhaye, , Giot, M., Riethermuller, M., , L. M., Eds., Hemisphere, Washington, Direct-contact, pp. 353–403.Google Scholar
Yadigaroglu, G. (1981b). Two-phase flow instabilities and propagation phenomena. In Thermohydraulics of Two-Phase Systems for Industrial Design and Nuclear Engineering, Delhaye, , Giot, M., Riethermuller, M., , L. M., Eds., Hemisphere, Washington, Direct-contact, pp. 307–351.Google Scholar
Yadigaroglu, G., and Lahey, R. T. Jr. (1976). On the various forms of the conservation equations in two-phase flow. Int. J. Multiphase Flow, 2, 477–494.CrossRefGoogle Scholar
Yamaguchi, K., and Yamazaki, Y. (1982). Characteristics of countercurrent gas-liquid two-phase flow in vertical tubes. J. Nucl. Sci. Eng., 19, 985–996.Google Scholar
Yan, Y.-Y., and Lin, T.-F. (1998). Evaporation heat transfer and pressure drop of refrigerant R-134a in a small pipe. Int. J. Heat Mass Transfer, 41, 4183–4194.CrossRefGoogle Scholar
Yan, Y.-Y., and Lin, T.-F. (1999). Condensation heat transfer and pressure drop of refrigerant R-134a in a small pipe. Int. J. Heat Mass Transfer, 42, 697–708.CrossRefGoogle Scholar
Yang, C., Li, D., and Masliyah, J. H. (1998). Modeling forced liquid convection in rectangular microchannels with electrokinetic effects. Int. J. Heat Mass Transfer, 41, 4229–4249.CrossRefGoogle Scholar
Yang, C.-Y., and Shieh, C.-C. (2001). Flow patterns of air-water and two-phase R-134a in small circular tubes. Int. J. Multiphase Flow, 27, 1163–1177.CrossRefGoogle Scholar
Yang, C.-Y., and Webb, R. L. (1996). Friction pressure drop of R-12 in small hydraulic diameter extruded aluminum tubes with and without micro-fins. Int. J. Heat Mass Transfer, 39, 801–809.CrossRefGoogle Scholar
Yang, S. R., and Kim, P. H. (1988). A mathematical model of the pool boiling nucleation site density in terms of the surface characteristics, Int. J. Heat Mass Transfer, 31, 1127–1135.CrossRefGoogle Scholar
Yao, G., and Ghiaasiaan, S. M. (1996a). Wall friction in annular-dispersed two-phase flow. Nucl. Eng. Design, 163, 149–161.CrossRefGoogle Scholar
Yao, G. F., and Ghiaasiaan, S. M. (1996b). Numerical modeling of condensing two-phase flows. Num. Heat Transfer. B: Fundam., 30, 137–159.CrossRefGoogle Scholar
Yao, G. F., Ghiaasiaan, S. M., and Eghbali, D. A. (1996). Semi-implicit modeling of condensation in the presence of noncondensables in the RELAP5/MOD3 computer code. Nucl. Eng. Design, 166, 277–291.CrossRefGoogle Scholar
Yen, T.-H., Kasagi, N., and Suzuki, Y. (2003). Forced convective boiling heat transfer in microtubes at low mass and heat fluxes. Int. J. Multiphase Flow, 29, 1771–1792.CrossRefGoogle Scholar
Yin, S. T., and Abdelmessih, A. H. (1974). Prediction of incipient flow boiling from a uniformly heated surface. AIC Homogeneous Eddy diffusivity (m2/s) Symp. Ser., 164, 236–243.Google Scholar
Yoder, G. L., Morris, D. G., Mullins, C. B., Ott, L. J., and Reed, D. A. (1982). Dispersed flow film boiling in rod bundle geometry – Steady state heat transfer data and correlation comparisons. NUREC/CR-2435, U.S. Nuclear Regulatory Commission, Washington, Direct-contact.CrossRef
Yoshimoto, Y., Bessho, Y., Yamashita, J., Masuhara, Y., Yokomizo, O., Nishida, K., Isoda, K., and Yoshida, H. (1993). Critical power experiments of tight fuel rod lattice for light water reactors. J. Nucl. Sci. Technol., 30, 1120–1130.CrossRefGoogle Scholar
You, S. M., Simon, T. W., Bar-Cohen, A., and Tong, W. (1990). Experimental investigation of nucleate boiling with a highly-wetting dielectric fluids (R-113). Int. J. Heat Mass Transfer, 33, 105–117.CrossRefGoogle Scholar
Young, N. D., Goldstein, J. S., and Block, M. J. (1959). The motion of bubbles in a vertical temperature gradient. J. Fluid Mech., 6, 350–356.CrossRefGoogle Scholar
Yu, D., Warrington, R., Barron, R., and Ameal, T. (1995). An experimental and theoretical investigation of fluid flow and heat transfer in microtubes. Proc. ASME/JSME Thermal Eng. Conf., 1, 523–530.Google Scholar
Yu, W., France, D. M., Wambsganss, M. W., and Hull, J. R. (2002). Two-phase pressure drop, boiling heat transfer, and critical heat flux to water in a small-diameter horizontal tube. Int. J. Multiphase Flow, 28, 927–941.CrossRefGoogle Scholar
Yun, R., Heo, H., and Kim, Y. (2006). Evaporative heat transfer and pressure drop of R410a in microchannels. Int. J. Refrig., 29, 92–100.CrossRefGoogle Scholar
Zeggel, W., Erbacher, F. J., Cheng, X., and Bethke, S. (1990). Critical heat flux in Freon-cooled tight 7-rod bundles (P/D = 1.15). ASME, New York, ASME HTD-Vol. 150, pp. 61–72.
Zeitoun, O., and Shoukri, M. (1996). Bubble behavior and mean diameter in subcooled flow boiling. J. Heat Transfer, 118, 110–116.CrossRefGoogle Scholar
Zeitoun, O., and Shoukri, M. (1997). Axial void fraction profile in low pressure subcooled flow boiling. Int. J. Heat Mass Transfer, 40, 869–879.CrossRefGoogle Scholar
Zeitoun, O., Shoukri, M., and Chatoorgoon, V. (1995). Interfacial heat transfer between steam bubbles and subcooled water in vertical upward flow. J. Heat Transfer, 117, 402–407.CrossRefGoogle Scholar
Zeng, L. Z., Klausner, J. F., and Mei, R. (1993a). A unified model for the prediction of bubble detachment diameter in boiling systems – I. Pooling boiling. Int. J. Heat Mass Transfer, 36, 2261–2270.CrossRefGoogle Scholar
Zeng, L. Z., Klausner, J. F., Bernhard, D. M., and Mei, R. (1993b). A unified model for the prediction of bubble detachment diameter in boiling systems – II. Flow boiling. Int. J. Heat Mass Transfer, 36, 2271–2279.CrossRefGoogle Scholar
Zhang, C. (1994). Numerical modeling using a quasi-three-dimensional procedure for large power plant condensers. J. Heat Transfer, 116, 180–188.CrossRefGoogle Scholar
Zhang, M. (1998). A new equivalent Reynolds number model for vapor shear-controlled condensation inside smooth and micro-fin tubes. PhD Thesis, Pennsylvania State University, University Park, PA.Google Scholar
Zhang, L., Wang, E. N., Goodson, K. E., and Kenny, T. W. (2005). Phase change phenomena in silicon microchannels. Int. J. Heat Mass Transfer, 48, 1572–1582.CrossRefGoogle Scholar
Zhang, M., and Webb, R. L. (1998). Condensation heat transfer in small diameter tubes. Proc. 11th Heat Transfer Conf., Seoul, South Korea, August 1998.Google Scholar
Zhang, M., and Webb, R. L. (2001). Correlation of two-phase friction for refrigerants in small-diameter tubes. Exp. Therm. Fluid Sci., 25, 131–139.CrossRefGoogle Scholar
Zhao, L., and Rezkallah, K. S. (1993). Gas-liquid flow patterns at microgravity conditions. Int. J. Multiphase Flow, 19, 751–763.CrossRefGoogle Scholar
Zhao, T. S., and Bi, Q. C. (2001). Co-current air-water two-phase flow patterns in vertical triangular microchannels. Int. J. Multiphase Flow, 27, 765–782.CrossRefGoogle Scholar
Zijl, W., Ramakers, F. J. M., and Stralen, S. J. D. (1979). Global numerical solutions of growth and departure of a vapor bubble at a horizontal superheated wall in a pure liquid and a binary mixture. Int. J. Heat Mass Transfer, 22, 401–420.CrossRefGoogle Scholar
Zivi, S. M. (1964). Estimation of steady-state steam void-fraction by means of the principle of minimum entropy production. J. Heat Transfer, 68, 247–252.CrossRefGoogle Scholar
Zuber, N. (1959). Hydrodynamic aspects of boiling heat transfer. USAEC Rep. AECU-4439.CrossRef
Zuber, N. (1964). On the dispersed two-phase flow in laminar flow regime. Chem. Eng. Sci., 19, 897.CrossRefGoogle Scholar
Zuber, N., and Findlay, J. (1965). Average volumetric concentration in two-phase flow systems. J. Heat Transfer, 87, 453–468.CrossRefGoogle Scholar
Zuber, N., Tribus, M., and Westwater, J. W. (1963). The hydrodynamic crisis in pool boiling of saturated and subcooled liquids. In International Developments in Heat Transfer, ASME, New York, Part II, pp. 230–236.Google Scholar
Zuber, N., Staub, F. W., Bijwaard, G., and Kroeger, P. G. (1967). Steady state and transient void fraction in two-phase flow systems. DEAP-5417, General Electric Company.
Zurcher, O., Thome, R. J., and Favrat, D. (1999). Evaporation of ammonia in a smooth horizontal tube: Heat transfer measurements and predictions. J. Heat Transfer, 121, 89–101.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • S. Mostafa Ghiaasiaan, Georgia Institute of Technology
  • Book: Two-Phase Flow, Boiling, and Condensation
  • Online publication: 09 January 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511619410.032
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • S. Mostafa Ghiaasiaan, Georgia Institute of Technology
  • Book: Two-Phase Flow, Boiling, and Condensation
  • Online publication: 09 January 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511619410.032
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • S. Mostafa Ghiaasiaan, Georgia Institute of Technology
  • Book: Two-Phase Flow, Boiling, and Condensation
  • Online publication: 09 January 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511619410.032
Available formats
×