Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-17T23:09:07.018Z Has data issue: false hasContentIssue false

Chapter 6 - Volcanoes, hydrothermal venting, and the origin of life

Published online by Cambridge University Press:  14 November 2009

Karl O. Stetter
Affiliation:
Lehrstuhl für Mikrobiologie, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
Joan Marti
Affiliation:
Institut de Ciències de la Terra 'Jaume Almera', Barcelona
Gerald G. J. Ernst
Affiliation:
Universiteit Gent, Belgium
Get access

Summary

Introduction

The first traces of life on Earth date back to the early Archean age. Microfossils of cyanobacteria-like prokaryotes within fossil stromatoliths demonstrate that life already existed 3.5 billion years ago (Awramik et al., 1983; Schopf and Packer, 1987; Schopf, 1993). Life had already originated much earlier, possibly by the end of the major period of meteorite impacts about 3.9 billion years ago (Schopf et al., 1983; Mojzsis et al., 1996). At that time, the Earth is generally assumed to have been much hotter than today (Ernst, 1983). Questions arise about possible physiological properties, modes of energy acquisition, and kinds of carbon sources of the earliest organisms which may have made their living in a world of fire and water.

Today most life forms known are mesophiles adapted to ambient temperatures within a range from 15 to 45 °C. Among bacteria, thermophiles (heat-lovers) have been recognized for some time, which grow optimally (fastest) between 45 and 70 °C. They thrive within Sun-heated soils, self-heated waste dumps, and thermal waters, and are closely related to mesophiles. Since Louis Pasteur's time it has generally been assumed that vegetative (growing) cells of bacteria (including most thermophiles) are quickly killed by temperatures of above 80 °C. In contrast, during recent years, hyperthermophilic bacteria and archaea (formerly the archaebacteria) with unprecedented properties have been isolated mostly from areas of volcanic activity (Stetter, 1986, 1992; Stetter et al., 1990).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Achenbach-Richter, L., Gupta, R., Stetter, K. O., et al. 1987. Were the original eubacteria thermophiles?Systematic and Applied Microbiology, 9, 34–39CrossRefGoogle ScholarPubMed
Appel, P. W. U. 1980. On the early archaean isua iron-formation, West Greenland. Precambrian Research, 11, 73–78CrossRefGoogle Scholar
Ashikin, A., Dziedzic, J. M., and Yamane, T. 1987. Optical trapping and manipulation of single cells using infrared laser beams. Nature, 300, 769–771CrossRefGoogle Scholar
Awramik, S. M., Schopf, J. W., and Walter, M. R. 1983. Filamentous fossil bacteria from the Archaean of Western Australia. Precambrian Research, 20, 357–374CrossRefGoogle Scholar
Balch, W. E., Fox, G. E., Magrum, L. J., et al. 1979. Methanogens: re-evalution of a unique biological group. Microbiology Reviews, 250–296Google Scholar
Barns, S. M., Funyga, R. E., Jeffries, M. W., et al. 1994. Remarkable archaeal diversity detected in a Yellowstone National Park hot spring environment. Proceedings of theNational Academy of Sciences of theUSA, 91, 1609–1613CrossRefGoogle Scholar
Beck, P. and Huber, R. 1997. Detection of cell viability in cultures of hyperthermophiles. FEMS Microbiology Letters, 147, 11–14CrossRefGoogle Scholar
Bernhardt, G., Lüdemann, H.-D., Jaenicke, R., et al. 1984. Biomolecules are unstable under “Black Smoker” conditions. Naturwissenschaften, 71, 583–585CrossRefGoogle Scholar
Blöchl, E., Rachel, R., Burggraf, S., et al. 1997. Pyrolobus fumarii, gen. and sp. nov., represents a novel group of archaea, extending the upper temperature limit for life to 113°C. Extremophiles, 1, 14–21Google ScholarPubMed
Bonch-Osmolovskaya, E. A., Miroshnichenko, M. L., Kostrikina, N. A., et al. 1990. Thermoproteus uzoniensis sp. nov., a new extemely thermophilic archaebacterium from Kamchatka continental hot springs. Archives of Microbiology, 154, 556–559CrossRefGoogle Scholar
Bonch-Osmolovskaya, E. A., Slesarev, A. I., Miroshnichenko, M. L., et al. 1985. Characteristics of Desulfurococcus amylolyticus n. sp., a new extreme thermophilic archaebacterium from hot volcanic vents of Kamchatka and Kunashir. Microbiologyia, 57, 78–85. (in Russian)Google Scholar
Bouthier de la Tour, C., Portemer, C., Nadal, M., et al. 1990. Reverse gyrase, a hallmark of the hyperthermophilic archaebacteria. Journal of Bacteriology, 172, 6803–6808CrossRefGoogle ScholarPubMed
Brierley, C. L. and Brierley, J. A. 1973. A chemolithoautotrophic and thermophilic microorganism isolated from an acidic hot spring. Canadian Journal of Microbiology, 19, 183–188CrossRefGoogle Scholar
Brierley, C. L. and Brierley, J. A. 1982. Anaerobic reduction ofSulfolobus species. Zentralblatt für Bakteriologie, Mikrobiologie and Hygiene, I, Abteilung Originale, C3, 289–294CrossRefGoogle Scholar
Brock, T. D. 1978. Thermophilic Microorganisms and Life at High Temperatures. New York, Springer-VerlagCrossRefGoogle Scholar
Brock, T. D., Brock, K. M., Belly, R. T., et al. 1972. Sulfolobus: a new genus of sulfur-oxidizing bacteria living at low pH and high temperature. Archives of Microbiology, 84, 54–68Google Scholar
Bult, C. J., White, W., Olsen, G. J., et al. 1996. Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. Science, 273, 1058–1073CrossRefGoogle ScholarPubMed
Burggraf, S., Fricke, H., Neuner, A., et al. 1990a. Methanococcus igneus sp. nov., a novel hyperthermophilic methanogen from a shallow submarine hydrothermal system. Systematic and Applied Microbiology, 13, 263–269CrossRefGoogle Scholar
Burggraf, S., Huber, H., and Stetter, K. O. 1997. Reclassification of the cranarchaeal orders and families in accordance with 16S rRNA sequence data. International Journal of Systematic Bacteriology, 47, 657–660CrossRefGoogle ScholarPubMed
Burggraf, S., Jannasch, H. W., Nicolaus, B., et al. 1990b. Archaeoglobus profundus sp. nov. represents a new species within the sulfate-reducing archaebacteria. Systematic and Applied Microbiology, 13, 24–28CrossRefGoogle Scholar
Carr, M. H. 1996. Water on early Mars. In G. R. Bock and J. A. Goode (eds.) Evolution of Pydrothermal Ecosystems on Earth (and Mars?), Ciba Foundation Symposium, no. 202. Chichester, UK, John Wiley, pp. 249–267
Castenholz, R. W. 1979. Evolution and ecology of thermophilic microorganisms. In M. Shilo (ed.) Strategies of Microbial Life in Extreme Environments. Berlin, Dahlem Konferenzen, pp. 373–392
Davies, P. C. W. 1996. The transfer of viable microorganisms between planets. In G. R. Bock and J. A. Goode (eds.) Evolution and Pydrothermal Ecosystems on Earth (and Mars?), Ciba Foundation Symposium no. 202. Chichester, UK, John Wiley, pp. 304–317
DeLong, E. F., Wickham, G. S., and Pace, N. R. 1989. Phylogenetic stains: ribosomal RNA-based probes for the identification of single cells. Science, 243, 1360–1363CrossRefGoogle ScholarPubMed
De Rosa, M., Gambacorta, A., Huber, R., et al. 1989. Lipid structures in Thermotoga maritima. In M. S. da Costa, J. C. Duarte, and R. A. D. Williams (eds.) Microbiology of Extreme Environments and its Potential for Biotechnology. London, Elsevier, pp. 167–173
Dirmeier, R., Keller, M., Hafenbradl, D., et al. 1998. Thermococcus acidaminovorans sp. nov., a new hyperthermophilic elkalophilic archaeon growing on amino acids. Extremophiles, 2, 109–114
Drobner, E., Huber, H., Wächtershäuser, G., et al. 1990. Pyrite formation linked with hydrogen evolution under anaerobic conditions. Nature, 346, 742–744CrossRefGoogle Scholar
Edmonds, C. G., Crain, P. F., Gupta, R., et al. 1991. Posttranscriptional modification of tRNA in thermophilic archaea (archaebacteria). Journal of Bacteriology, 173, 3138–3148CrossRefGoogle Scholar
Erauso, G., Reysenbach, A.-L., Godfroy, A., et al. 1993. Pyrococcus abyssi sp. nov., a new hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. Archives of Microbiology, 160, 338–349CrossRefGoogle Scholar
Ernst, W. G. 1983. The early earth and the archaean rock record. In , J. W. Schopf (ed.) Earth's Earliest Biosphere: Its Origin and Evolution. Princeton, NJ, Princeton University Press, pp. 41–52Google Scholar
Ernst, G. G. J., Cave, R. R., German, C. R., et al. 2000. Vertical and lateral splitting of a hydrothermal plume at Steinahóll, Reykjanes Ridge, Iceland. Earth and Planetary Science Letters, 179, 529–537CrossRefGoogle Scholar
Fardeau, M.-L., Ollivier, B., Patel, B. K. C., et al. 1997. Thermotoga hypogea sp. nov., a xylanolytic, thermophilic bacterium from an oil-producing well. International Journal of Systematic Bacteriology, 47, 1013–1019CrossRefGoogle ScholarPubMed
Fiala, G. and Stetter, K. O. 1986. Pyrococcus furiosus sp. nov. represents a novel group of marine heterotrophic archaebacteria growing optimally at 100 °C. Archives of Microbiology, 145, 56–61CrossRefGoogle Scholar
Fiala, G., Stetter, K. O., Jannasch, H. W., et al. 1986. Staphylothermus marinus sp. nov. represents a novel genus of extremely thermophilic submarine heterotropic archaebacteria growing up to 98°C. Systematic andApplied Microbiology, 8, 106–113CrossRefGoogle Scholar
Fischer, F., Zillig, W., Stetter, K. O., et al. 1983 Chemolithoautotrophic metabolism of anaerobic extremely thermophilic archaebacteria. Nature, 301, 511–513CrossRefGoogle ScholarPubMed
Fricke, H., Giere, O., Stetter, K. O., et al. 1989. Hydrothermal vent communities at the shallow subpolar Mid-Atlantic ridge. Marine Biology, 102, 425–429CrossRefGoogle Scholar
Fuchs, T., Huber, H., Burggraf, S., et al. 1996. 16SrDNA-based phylogeny of the archaeal order Sulfolobales and reclassification of Desulfurolobus ambivalens as Acidianus ambivalens comb. nov. Systematic and Applied Microbiology, 19, 56–60CrossRefGoogle Scholar
Fuchs, T., Huber, H., Teiner, K., et al. 1995. Metallosphaera prunae, sp. nov., a novel metal-mobilizing, thermoacidophilic archaeum, isolated from a uranium mine in Germany. Systematic andApplied Microbiology, 18, 560–566CrossRefGoogle Scholar
Godfroy, A., Meunier, J.-R., Guezennec, J., et al. 1996. Thermococcus fumicolans sp. nov., a new hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent in the North Fiji Basin. International Journal of Systematic Bacteriology, 46, 1113–1119CrossRefGoogle ScholarPubMed
Gogarten, J. P., Kibak, H., Dittrich, P., et al. 1989. Evolution of the vacuolar H+-ATPase: implications for the origin of eukaryotes. Proceedings of the National Academy of Sciences of the USA 86, 6661–6665CrossRefGoogle ScholarPubMed
Gonzáles, J. M., Kato, C., and Horikoshi, K. 1995. Thermococcus peptonophilus sp. nov., a fast-growing extremely thermophilic archaebacterium isolated from deep-sea hydrothermal vents. Archives of Microbiology, 164, 159–164CrossRefGoogle Scholar
Grogan, D., Palm, P., and Zillig, W. 1990. Isolate B 12, which harbours a virus-like element, represents a new species of the archaebacterial genus Sulfolobus, Sulfolobus shibatae, sp. nov. Archives of Microbiology, 154, 594–599CrossRefGoogle Scholar
Hafenbradl, D., Keller, M., Dirmeier, R., et al. 1996. Ferroglobus placidus gen. nov., sp. nov., a novel hyperthermophilic archaeum that oxidizes Fe2+ at neutral pH under anoxic conditions. Archives of Microbiology, 199, 308–314CrossRefGoogle Scholar
Hensel, R., Matussek, K., Michalke, K., et al. 1997. Sulfophobococcus zilligii gen. nov., spec. nov. a novel hyperthermophilic Archaeum isolated from hot alkaline springs of Iceland. Systematic and Applied Microbiology, 20, 102–110CrossRefGoogle Scholar
Hoffmann, A. 1993. Reinigung, Charakterisierung und partielle Sequenzierung einer ATPase aus dem hyperthermophilen Archaeon Pyrodictium occultum. Ph.D. thesis, University of Regensburg, Germany
Huber, G. and Stetter, K. O. 1991. Sulfolobus metallicus sp. nov., a novel strictly chemolithoautotrophic thermophilic archaeal species of metal-mobilzers. Systematic and Applied Microbiology, 14, 372–378CrossRefGoogle Scholar
Huber, G. and Stetter, K. O. 1999. Aquiticales. In Encyclopedia of Life Sciences, London, Nature Publishing Group
Huber, G., Spinnler, C., Gambacorta, A., et al. 1989. Metallosphaera sedula, gen. and sp. nov. represents a new genus of aerobic, metal-mobilizing, thermoacidophilic archaebacteria. Systematic and Applied Microbiology, 12, 38–47CrossRefGoogle Scholar
Huber, G., Drobner, E., Huber, H., et al. 1992. Growth by aerobic oxidation of molecular hydrogen in Archaea: a metabolic property so far unknown for this domain. Systematic and Applied Microbiology, 15, 502–504CrossRefGoogle Scholar
Huber, H., Burggraf, S., Mayer, T., et al. 2000. Ignicoccus gen. nov., a novel genus of hyperthermophilic, chemolithoautotrophic Archaea, represented by two new species, Ignicoccus islandicus sp. nov. and Ignicoccus pacificus sp. nov. International Journal of Systematic and Evolutionary Microbiology, 50, 2093–2100CrossRefGoogle ScholarPubMed
Huber, H., Jannasch, H., Rachel, R., et al. 1997. Archaeoglobus veneficus sp. nov., a novel facultative chemolithoautotrophic hyperthermophilic sulfite reducer, isolated from abyssal black smokers. Systematic and Applied Microbiology, 20, 374–380CrossRefGoogle Scholar
Huber, H., Thomm, M., König, H., et al. 1982. Methanococcus thermolithotrophicus, a novel thermophilic lithotrophic methanogen. Archives of Microbiology, 132, 47–50CrossRefGoogle Scholar
Huber, R., Burggraf, S., Mayer, T., et al. 1995a. Isolation of a hyperthermophilic archaeum predicted by in situ RNA analysis. Nature, 376, 57–58CrossRefGoogle Scholar
Huber, R., Dyba, D., Huber, H., et al. 1998. Sulfur-inhibited Thermosphaera aggregans sp. nov., a new genus of hyperthermophilic archaea isolated after its prediction from environmentally derived 16S rRNA sequences. International Journal of Systematic Bacteriology, 48, 31–38CrossRefGoogle ScholarPubMed
Huber, R., Hohn, M., Rachel, R., et al. 2002. A new phylum of Archaea represented by a nanosized symbiont, Nature, 417, 63–67CrossRefGoogle ScholarPubMed
Huber, R., Huber, G., Segerer, A. et al. 1987a. Aerobic and anaerobic extremely thermophilic autotrophs. In H. W. van Verseveld and J. A. Duine (eds.) Microbial Growth on C1 Compounds, Proceedings on the 5th International Symposium. Dordrecht, The Netherlands, Martinus Nijhoff, pp. 44–51
Huber, R., Kristjansson, J. K., and Stetter, K. O. 1987b. Pyrobaculum gen. nov., a new genus of neutrophilic, rod-shaped archaebacteria from continental solfataras growing optimally at 100 °C. Archives of Microbiology, 149, 95–101CrossRefGoogle Scholar
Huber, R., Langworthy, T. A., König, H., et al. 1986. Thermotoga maritima sp. nov. represents a new genus of unique extremely thermophilic eubacteria growing up to 90 °C. Archives of Microbiology, 144, 324–333CrossRefGoogle Scholar
Huber, R., Stöhr, J., Hohenhaus, S., et al. 1995b. Thermococcus chitonophagus sp. nov., a novel, chitin-degrading, hyperthermophilic archaeum from a deep-sea hydrothermal vent environment. Archives of Microbiology, 164, 255–264CrossRefGoogle Scholar
Huber, R., Stoffers, P., Cheminee, J. L., et al. 1990a. Hyperthermophilic archaebacteria within the crater and open-sea plume of erupting Macdonald Seamount. Nature, 345, 179–181CrossRefGoogle Scholar
Huber, R., Wilharm, T., Huber, D., et al. 1992. Aquifex pyrophilus gen. nov. sp. nov., represents a novel group of marine hyperthermophilic hydrogen-oxidizing bacteria. Systematic and Applied Microbiology, 15, 340–351CrossRefGoogle Scholar
Huber, R., Woese, C. R., Langworthy, T. A., et al. 1989. Thermosipho africanus gen. nov., represents a new genus of thermophilic eubacteria within the “Thermogales”. Systematic andApplied Microbiology, 12, 32–37CrossRefGoogle Scholar
Huber, R., Woese, C. R., Langworthy, T. A. 1990b. Fervidobacterium islandicum sp. nov., a new extremely thermophilic eubacterium belonging to the “Thermotogales”. Archives of Microbiology, 154, 105–111CrossRefGoogle Scholar
Iwabe, N., Kuma, K., Hasegawa, M., et al. 1989. Evolutionary relationship of Archaebacteria, Eubacteria, and eukaryotes inferred from phylogenetic trees of duplicated genes. Proceedings of the National Academy of Sciences of the USA, 86, 9355–9359CrossRefGoogle ScholarPubMed
Jannasch, H. W., Huber, R., Belkin, S., et al. 1988. Thermotoga neapolitana, sp. nov. of the extremely thermophilic, eubacterial genus Thermotoga. Archives of Microbiology, 150, 103–104CrossRefGoogle Scholar
Jeanthon, C., Reysenbach, A.-L., Haridon, S. L., et al. 1995. Thermotoga subterranea sp. nov., a new thermophilic bacterium isolated from a continental oil reservoir. Archives of Microbiology, 164, 91–97CrossRefGoogle ScholarPubMed
Jochimsen, B., Peinemann-Simon, S., Völker, H., et al. 1997. Stetteria hydrogenophila, gen. nov. and sp. nov., a novel mixotrophic sulfur-dependent crenarchaeote isolated from Milos, Greece. Extremophiles, 1, 67–73CrossRefGoogle ScholarPubMed
Jones, W. J., Leigh, J. A., Mayer, F., et al. 1983. Methanococcus jannaschii sp. nov., an extremely thermophilic methanogen from a submarine hydrothermal vent. Archives of Microbiology, 136, 254–261CrossRefGoogle Scholar
Kates, M. 1992. Archaebacterial lipids: structure, biosynthesis and function. In , M. J. Danson, , D. W. Hough, and , G. G. Lunt (eds.) The Archaebacteria: Biochemistry and Biotechnology. London, Portland Press, pp. 51–72Google Scholar
Kawai, G., Hushizume, T., Yasuda, M., et al. 1992. Conformational rigidity of N4-acetyl-2′-O-methylcytidine found in tRNA of extremely thermophilic archaebacteria (Archaea). Nucleosides and Nucleotides, 11, 759–771CrossRefGoogle Scholar
Keller, M., Braun, F.-J., Dirmeier, R., et al. 1995. Thermococcus alcaliphilus sp. nov., a new hyperthermophilic archaeum growing on polysulfide at alkaline pH. Archives of Microbiology, 164, 390–395CrossRefGoogle ScholarPubMed
Kikuchi, A. and Asai, K. 1984. Reverse gyrase: a topoisomerase which introduces positive superhelical turns into DNA. Nature, 309, 677–681CrossRefGoogle ScholarPubMed
Klenk, H.-P., Clayton, R. A., Tomb, J. F., et al. 1997. The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus. Nature, 390, 364–370CrossRefGoogle ScholarPubMed
Kobayashi, T., Kwak, Y. S., Akiba, T., et al. 1994. Thermococcus profundus sp. nov., a new hyperthermophilic archaeon isolated from deep-sea hydrothermal vent. Systematic and Applied Microbiology, 17, 232–236CrossRefGoogle Scholar
Koch, R., Zabowski, P., Spreinat, A., et al. 1990. Extremely thermostable aylolytic enzyme from the archaebacterium Pyrococcus furiosus. FEMS Microbiology Letters, 71, 21–26CrossRefGoogle Scholar
König, H., Messner, P., and Stetter, K. O. 1998. The fine structure of the fibers of Pyrodictium occultum. FEMS Microbiology Letters, 49, 207–212CrossRefGoogle Scholar
Kurr, M., Huber, R., König, H., et al. 1991. Methanopyrus kandleri, gen. and sp. nov. represents a novel group of hyperthermophilic methanogens, growing at 110 °C. Archives of Microbiology, 156, 239–247CrossRefGoogle Scholar
Lauerer, G., Kristjansson, J. K., Langworthy, T. A., et al. 1986. Methanothermus sociabilis sp. nov., a second species within the Methanothermaceae growing at 97 °C. Systematic and Applied Microbiology, 8, 100–105CrossRefGoogle Scholar
Ludwig, L. and Strunk, O. 1997. ARB: a software environment for sequence data. Available online at: http://www.arb-home.de
Miroshnichenko, M. L., Bonch-Osmolovskaya, E. A., Neuner, A., et al. 1989. Thermococcus stetteri sp. nov. a new extremely thermophilic marine sulfur-metabolizing archaebacterium. Systematic and Applied Microbiology, 12, 257–262CrossRefGoogle Scholar
Mojzsis, S. J., Arrhenius, G., McKeegan, K. D., et al. 1996. Evidence for life on Earth before 3,800 million years ago. Nature, 384, 55–59CrossRefGoogle ScholarPubMed
Neuner, A. 1990. Isolierung, Charakterisierung und taxonomische Einordnung coccoider mariner hyperthermophiler Archaebakterien. Ph.D. thesis, University of Regensburg, Germany
Neuner, A., Jannasch, H. W., Belkin, S., et al. 1990. Thermococcus litoralis sp. nov. a new species of extremely thermophilic marine archaebacteria. Archives of Microbiology, 153, 205–207CrossRefGoogle Scholar
Patel, B. K. C., Morgan, H. W., and Daniel, R. M. 1985. Fervidobacterium nodosum gen. nov. and spec. nov., a new chemoorganotrophic, caldoactive, anaerobic bacterium. Archives of Microbiology, 141, 63–69CrossRefGoogle Scholar
Phipps, B. M., Typke, D., Hegerl, R., et al. 1993. Structure of a molecular chaperone from a thermophilic archaebacterium. Nature, 361, 475–477CrossRefGoogle Scholar
Pley, U., Schipka, J., Gambacorta, A., et al. 1991. Pyrodictium abyssi sp. nov. represents a novel heterotrophic marine archaeal hyperthermophile growing at 110 °C. Systematic and Applied Microbiology, 14, 245–253CrossRefGoogle Scholar
Ravot, G., Magot, M., Fardeau, M. L., et al. 1995. Thermotoga elfii sp. nov., a novel thermophile bacterium from an African oil-producing well. International Journal of Systematic Bacteriology, 45, 308–314CrossRefGoogle Scholar
Reddy, T. and Suryanarayana, T. 1988. Novel histone-like DNA-binding proteins in the nucleoid from the acidothermophilic archaebacterium Sulfolobus acidocaldarius that protect DNA against thermal denaturation. Biochimica Biophysica Acta, 949, 87–96CrossRefGoogle Scholar
Rieger, G., Rachel, R., Herrmann, R., et al. 1995. Ultrastructure of the hyperthermophilic archaeon Pyrodictium abyssi. Journal of Structural Biology, 115, 78–87CrossRefGoogle Scholar
Sako, Y., Nomura, N., Uchida, A., et al. 1996. Aeropyrum pernix gen. nov. sp. nov., a novel aerobic hyperthermophilic Archaeon growing at temperatures up to 100 °C. International Journal of Systematic Bacteriology, 46, 1070–1077CrossRefGoogle ScholarPubMed
Sandman, K., Krzycki, J. A., Dobrinski, B., et al. 1990. DNA binding protein HMf isolated from the hyperthermophilic archaeon Methanothermus fervidus, is most closely related to histones. Proceedings of the National Academy of Sciences of the USA, 87, 5788–5791CrossRefGoogle ScholarPubMed
Schäfer, T. and Schönheit, P. 1992. Maltose fermentation to acetate, CO2 and H2 in the anaerobic hyperthermophilic archaeon Pyrococcus furiosus: evidence for the operation of a novel sugar fermentation pathway. Archives of Microbiology, 158, 188–202CrossRefGoogle Scholar
Schopf, J. W. 1993. Microfossils of the Early Archaean Apex Chert: new evidence of the antiquity of life. Science, 260, 640–646CrossRefGoogle Scholar
Schopf, J. W. and Packer, B. M. 1987. Early Archaean (3.3.-billion to 3.5-billion-year-old) microfossils from Warrawoona Group, Australia. Science, 237, 70–73CrossRefGoogle Scholar
Schopf, J. W., Hayes, J. M., and Walter, M. R. 1983. Evolution of Earth's earliest ecosystems: recent progress and unsolved problems. In , J. W. Schopf (ed.) Earth's Earliest Biosphere: Its Origin and Evolution. Princeton NJ, Princeton University Press, pp. 361–384Google Scholar
Segerer, A. H., , Neuner A., Kristjansson, J. K., et al. 1986. Acidianus infernus gen. nov., sp. nov., and Acidianus brierleyi comb. nov.: Facultatively aerobic, extremely acidophilic thermophilic sulfur-metabolizing archaebacteria. International Journal of Systematic Bacteriology, 36, 559–564CrossRefGoogle Scholar
Segerer, A. H., Trincone, A., Gahrtz, M., et al. 1991. Stygiolobus azoricus gen. nov., sp. nov. represents a novel genus of anaerobic, extremely thermoacidophilic archaebacteria of the order Sulfolobales. International Journal of Systematic Bacteriology, 41, 495–501CrossRefGoogle Scholar
Stetter, K. O. 1982. Ultrathin mycelia-forming organisms from submarine volcanic areas having an optimum growth temperature of 105 °C. Nature, 300, 258–260CrossRefGoogle Scholar
Stetter, K. O. 1986. Diversity of extremely thermophilic archaebacteria. In T. D. Brock (ed.) Thermophiles: General, Molecular and Applied Microbiology, New York, John Wiley, pp. 39–74
Stetter, K. O. 1988. Archaeoglobus fulgidus gen. nov., sp. nov.: a new taxon of extremely thermophilic archaebacteria. Systematic and Applied Microbiology, 10, 172–173CrossRefGoogle Scholar
Stetter, K. O. 1992. Life at the upper temperature border. In J. and K. Trân Thanh Vân, J. C. Mounolou, et al. (eds.) Colloque Interdisciplinaire du Comité National de la Recherche Scientifique. Gif-sur-Yvette, France, Editions Frontières, pp. 195–219
Stetter, K. O., Fiala, G., Huber, G., et al. 1990. Hyperthermophilic microorganisms. FEMS Microbiology Reviews, 75, 117–124CrossRefGoogle Scholar
Stetter, K. O., Huber, R., Blöchl, E., et al. 1993. Hyperthermophilic archaea are thriving in deep North Sea and Alaskan oil reservoirs. Nature, 365, 743–745CrossRefGoogle Scholar
Stetter, K. O., König, H., and Stackebrandt, E. 1983. Pyrodictium gen. nov., a new genus of submarine disc-shaped sulphur reducing archaebacteria growing optimally at 105 °C. Systematic and Applied Microbiology, 4, 535–551CrossRefGoogle ScholarPubMed
Stetter, K. O., Lauerer, G., Thomm, M., et al. 1987. Isolation of extremely thermophilic sulfate reducers: evidence for a novel branch of archaebacteria. Science, 236, 822–824CrossRefGoogle ScholarPubMed
Stetter, K. O., Thomm, M., Winter, J., et al. 1981. Methanothermus fervidus, sp. nov., a novel extremely thermophilic methanogen isolated from an Icelandic hot spring. Zbl. Bakt. Hyg., I. Abt. Orig. C2, 166–178Google Scholar
Thauer, R. K., Jungermann, K., and Decker, K. 1977. Energy conservation in chemotrophic anaerobic bacteria. Bacteriology Reviews, 41, 100–180Google ScholarPubMed
Thomm, M., Stetter, K. O., and Zillig, W. 1982. Histone-like proteins in eu- and archaebacteria. Zbl. Bakt. Hyg. I. Abt. Orig. C3, 128–139Google Scholar
Trent, J. D., Chastain, R. A., and Yayanos, A. A. 1984. Possible artfictural basis for apparent bacterial growth at 250 °C. Nature, 207, 737–740CrossRefGoogle Scholar
Vossenberg, J. L. C. M., Driessen, A. J. M., and Konings, W. N. 1998. The essence of being extremophilic: the role of the unique archaeal membrane lipids. Extremophiles, 2, 163–170CrossRefGoogle ScholarPubMed
Völkl, P., Huber, R., Drobner, E., et al. 1993. Pyrobaculum aerophilum sp. nov., a novel nitrate-reducing hyperthermophilic archaeum. Applied and Environmental Microbiology, 59, 2918–2926Google ScholarPubMed
White, R. H. 1984. Hydrolytic stability of biomolecules at high temperatures and its implication for life at 250 °C. Nature, 310, 430–431CrossRefGoogle ScholarPubMed
Windberger, E., Huber, R., Trincone, A., et al. 1989. Thermotoga thermarum sp. nov. and Thermotoga neapolitana occuring in African continental solfataric springs. Archives of Microbiology, 151, 506–512CrossRefGoogle Scholar
Woese, C. R. and Fox, G. E. 1977. Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proceedings of the National Academy of Sciences of the USA, 74, 5088–5090CrossRefGoogle ScholarPubMed
Woese, C. R., Achenbach, L., Rouviere, P., et al. 1991. Archaeal phylogeny: re-examination of the phylogenetic position of Archaeoglobus fulgidus in light of certain composition-induced artifacts. Systematic and Applied Microbiology, 14, 364–371CrossRefGoogle Scholar
Woese, C. R., Gutell, R., Gupta, R., et al. 1983. Detailed analysis of the higher-order structure of 16S-like ribosomal ribonucleic acids. Microbiological Reviews, 47, 621–669Google ScholarPubMed
Woese, C. R., Kandler, O., and Wheelis, M. L. 1990. Towards a natural system of organisms: proposal for the domain Archaea, Bacteria, and Eucarya. Proceedings of the National Academy of Sciences of the USA, 87, 4576–4579CrossRefGoogle ScholarPubMed
Woese, C. R., Sogin, M., Stahl, D. A., et al. 1976. A comparison of the 16S ribosomal RNAs from mesophilic and thermophilic bacilli. Journal of Molecular Evolution, 7, 197–213CrossRefGoogle ScholarPubMed
Zillig, W., Gierl, A., Schreiber, G., et al. 1983a. The archaebacterium Thermofilum pendens represents a novel genus of the thermophilic, anaerobic sulfur respiring Thermoproteales. Systematic and Applied Microbiology, 4, 79–87CrossRefGoogle Scholar
Zillig, W., Holz, I., Janecovic, D., et al. 1983b. The archaebacterium Thermococcus celer represents a novel genus within the thermophilic branch of the Archaebacteria. Systematic andApplied Microbiology, 4, 88–94CrossRefGoogle Scholar
Zillig, W., Holz, I., Janecovic, D. 1990. Hyperthermus butylicus, a hyperthermophilic sulfur-reducing archaebacterium that ferments peptides. Journal of Bacteriology, 172, 3959–3965CrossRefGoogle ScholarPubMed
Zillig, W., Holz, I., Klenk, H. P., et al. 1987a. Pyrococcus woesei sp. nov., an ultra-thermophilic marine archaebacterium, represents a novel order, Thermococcales. Systematic and Applied Microbiology, 9, 62–70CrossRefGoogle Scholar
Zillig, W., Stetter, K. O., Prangishvilli, D., et al. 1982. Desulfurococcaceae, the second family of the extremely thermophilic, anaerobic, sulfur-respiring Thermoproteales. Zbl. Bakt. Hyg., I. Abt. Orig. C3, 304–317Google Scholar
Zillig, W., Stetter, K. O., Schäfer, W., et al. 1981. Thermoproteales: a novel type of extremely thermoacidophilic anaerobic archaebacteria isolated from Icelandic solfataras. Zbl. Bakt. Hyg., I. Abt. Orig. C2, 205–227Google Scholar
Zillig, W., Stetter, K. O., Wunderl, S., et al. 1980. The Sulfolobus–Caldariella group: taxonomy on the basis of the structure of DNA-dependent RNA polymerases. Archives of Microbiology, 125, 259–269CrossRefGoogle Scholar
Zillig, W., Yeates, S., Holz, I., et al. 1987b. Desulfurolobus ambivalens, gen. nov. sp. nov., an autotrophic archaebacterium facultatively oxidizing or reducing sulfur. Systematic and Applied Microbiology, 8, 197–203CrossRefGoogle Scholar
Zuckerkandl, E. and Pauling, L. 1965. Molecules as documents of evolutionary history. Journal of Theoretical Biology, 8, 357–366CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×