Skip to main content Accessibility help
×
Hostname: page-component-5c6d5d7d68-vt8vv Total loading time: 0.001 Render date: 2024-08-15T12:18:04.597Z Has data issue: false hasContentIssue false

3 - The Many Decoding Algorithms for Reed–Solomon Codes

Published online by Cambridge University Press:  05 October 2009

Richard E. Blahut
Affiliation:
University of Illinois, Urbana-Champaign
Get access

Summary

Decoding large linear codes, in general, is a formidable task. For this reason, the existence of a practical decoding algorithm for a code can be a significant factor in selecting a code. Reed–Solomon codes – and other cyclic codes – have a distance structure that is closely related to the properties of the Fourier transform. Accordingly, many good decoding algorithms for Reed–Solomon codes are based on the Fourier transform.

The algorithms described in this chapter form the class of decoding algorithms known as “locator decoding algorithms”. This is the richest, the most interesting, and the most important class of algebraic decoding algorithms. The algorithms for locator decoding are quite sophisticated and mathematically interesting. The appeal of locator decoding is that a certain seemingly formidable nonlinear problem is decomposed into a linear problem and a well structured and straightforward nonlinear problem. Within the general class of locator decoding algorithms, there are many options, and a variety of algorithms exist.

Locator decoding can be used whenever the defining set of a cyclic code is a set of consecutive zeros. It uses this set of consecutive zeros to decode, and so the behavior of locator decoding is closely related to the BCH bound rather than to the actual minimum distance. Locator decoding, by itself, reaches the BCH radius, which is the largest integer smaller than half of the BCH bound, but reaches the packing radius of the code only if the packing radius is equal to the BCH radius.

Type
Chapter
Information
Algebraic Codes on Lines, Planes, and Curves
An Engineering Approach
, pp. 137 - 189
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×