Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-vpsfw Total loading time: 0 Render date: 2024-07-21T07:16:29.076Z Has data issue: false hasContentIssue false

Foreword

Published online by Cambridge University Press:  23 November 2009

J. T. Schwartz
Affiliation:
Courant Institute
Get access

Summary

Turing's deep 1937 paper made it clear that Gödel's astonishing earlier results on arithmetic undecidability related in a very natural way to a class of computing automata, nonexistent at the time of Turing's paper, but destined to appear only a few years later, subsequently to proliferate as the ubiquitous stored-program computer of today. The appearance of computers, and the involvement of a large scientific community in elucidation of their properties and limitations, greatly enriched the line of thought opened by Turing. Turing's distinction between computational problems was rawly binary: some were solvable by algorithms, others not. Later work, of which an attractive part is elegantly developed in the present volume, refined this into a multiplicity of scales of computational difficulty, which is still developing as a fundamental theory of information and computation that plays much the same role in computer science that classical thermodynamics plays in physics: by defining the outer limits of the possible, it prevents designers of algorithms from trying to create computational structures which provably do not exist. It is not surprising that such a thermodynamics of information should be as rich in philosophical consequence as thermodynamics itself.

This quantitative theory of description and computation, or Computational Complexity Theory as it has come to be known, studies the various kinds of resources required to describe and execute a computational process. Its most striking conclusion is that there exist computations and classes of computations having innocent-seeming definitions but nevertheless requiring inordinate quantities of some computational resource.

Resources for which results of this kind have been established include:

  1. (a) The mass of text required to describe an object;

  2. (b) The volume of intermediate data which a computational process would need to generate;

  3. (c) The time for which such a process will need to execute, either on a standard "serial" computer or on computational structures unrestricted in the degree of parallelism which they can employ.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×