Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-06-30T01:32:27.807Z Has data issue: false hasContentIssue false

8 - Climate change

Published online by Cambridge University Press:  05 June 2012

David G. Andrews
Affiliation:
University of Oxford
Get access

Summary

This chapter presents a selection of topics on the physics of climate change. By way of introduction, in Section 8.1 we briefly discuss greenhouse gases and the radiative forcing associated with several drivers of climate change. Then in Sections 8.2 and 8.3 we introduce a very simple time-dependent, ‘energy balance’, climate model. This model illustrates some key concepts that arise in the study of the physics of the Earth's climate and its response to external forcing, and in the diagnosis of the highly complex models that are used to simulate the climate of the past and present and to predict future climate. In Section 8.4 we examine some elementary aspects of the important topic of climate feedbacks. Finally, in Section 8.5 we use another simple model to examine the basic physics of the process by which the radiative forcing due to carbon dioxide increases with its concentration.

Our emphasis in this chapter is on the underlying physical principles of climate change; we shall not discuss in any detail the climate-change projections by the current range of complex general circulation models. Comprehensive information on these projections is provided for example by the Assessment Reports of the Intergovernmental Panel on Climate Change (IPCC). The most recent such report is that of Solomon et al. (2007), which includes useful summaries for non-specialists and a glossary of technical terms.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Climate change
  • David G. Andrews, University of Oxford
  • Book: An Introduction to Atmospheric Physics
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511800788.009
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Climate change
  • David G. Andrews, University of Oxford
  • Book: An Introduction to Atmospheric Physics
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511800788.009
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Climate change
  • David G. Andrews, University of Oxford
  • Book: An Introduction to Atmospheric Physics
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511800788.009
Available formats
×