Skip to main content Accessibility help
×
  • Cited by 260
Publisher:
Cambridge University Press
Online publication date:
July 2014
Print publication year:
2014
Online ISBN:
9781139017329

Book description

This book gives a comprehensive introduction to numerical methods and analysis of stochastic processes, random fields and stochastic differential equations, and offers graduate students and researchers powerful tools for understanding uncertainty quantification for risk analysis. Coverage includes traditional stochastic ODEs with white noise forcing, strong and weak approximation, and the multi-level Monte Carlo method. Later chapters apply the theory of random fields to the numerical solution of elliptic PDEs with correlated random data, discuss the Monte Carlo method, and introduce stochastic Galerkin finite-element methods. Finally, stochastic parabolic PDEs are developed. Assuming little previous exposure to probability and statistics, theory is developed in tandem with state-of-the-art computational methods through worked examples, exercises, theorems and proofs. The set of MATLAB® codes included (and downloadable) allows readers to perform computations themselves and solve the test problems discussed. Practical examples are drawn from finance, mathematical biology, neuroscience, fluid flow modelling and materials science.

Reviews

'This book gives both accessible and extensive coverage on stochastic partial differential equations and their numerical solutions. It offers a well-elaborated background needed for solving numerically stochastic PDEs, both parabolic and elliptic. For the numerical solutions it presents not only proofs of convergence results of different numerical methods but also actual implementations, here in Matlab, with technical details included … With numerical implementations hard to find elsewhere in the literature, and a nice presentation of new research findings together with rich references, the book is a welcome companion for anyone working on numerical solutions of stochastic PDEs, and may also be suitable for use in a course on computational stochastic PDEs.'

Roger Pettersson Source: Mathematical Reviews

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

References
P., Abrahamsen (1997), A Review of Gaussian Random Fields and Correlation Functions Google Scholar, tech. rep. 917, Norwegian Computing Centre.
R., Adams and J., Fournier (2003), Sobolev Spaces, 2nd ed., Pure and Applied Mathematics vol. 140 Google Scholar, Elsevier Science.
R. J., Adler (1981), The Geometry of Random Fields, Chichester Google Scholar: John Wiley & Sons, xi + 280 pp.
E. J., Allen, S. J., Novosel, and Z., Zhang (1998), “Finite element and difference approximation of some linear stochastic partial differential equations”, Stoch. Stoch. Rep. 64 Google Scholar: 1-2, 117-142.
S., Allen and J. W., Cahn (1979), “A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening”, Acta Metallurgica, 27 Google Scholar: 1085–1095.
S., Asmussen and P. W., Glynn (2007), Stochastic Simulation: Algorithms and Analysis, Stochastic Modelling and Applied Probability vol. 57, New York Google Scholar: Springer-Verlag, xiv + 476 pp.
I., Babuška, R., Tempone, and G. E., Zouraris (2004), “Galerkin finite element approximations of stochastic elliptic partial differential equations”, SIAM J. Numer. Anal. 42 Google Scholar: 2, 800-825.
I., Babuška, F., Nobile, and R., Tempone (2007), “A stochastic collocation method for elliptic partial differential equations with random input data”, SIAM J. Numer. Anal. 45 Google Scholar: 3, 1005-1034.
A., Bain and D., Crisan (2009), Fundamentals of Stochastic Filtering, Stochastic Modelling and Applied Probability vol. 60, New York Google Scholar: Springer, xiv + 390 pp.
C. T. H., Baker (1978), The Numerical Treatment of Integral Equations, Oxford Google Scholar: Oxford University Press.
G., Bal, J., Garnier, S., Motsch, and V., Perrier (2008), “Random integrals and correctors in homogenization”, Asymptot. Anal. 59 Google Scholar: 1-2, 1-26.
L., Baňas, Z., Brzeźniak, and A., Prohl (2013), “Computational studies for the stochastic Landau-Lifshitz-Gilbert Equation”, SIAM J. Sci. Comput. 35 Google Scholar: 1, B62-B81.
A., Barth and A., Lang (2012), “Multilevel Monte Carlo method with applications to stochastic partial differential equations”, Int. J. Comput. Math. 89 Google Scholar: 18, 2479-2498.
A., Barth, C., Schwab, and N., Zollinger (2011), “Multi-level Monte Carlo finite element method for elliptic PDEs with stochastic coefficients”, Numer. Math. 119 Google Scholar: 1, 123-161.
A., Barth, A., Lang, and C., Schwab (2013), “Multilevel Monte Carlo method for parabolic stochastic partial differential equations”, BIT, 53 Google Scholar: 1, 3-27.
V., Barthelmann, E., Novak, and K., Ritter (2000), “High dimensional polynomial interpolation on sparse grids”, Adv. Comput. Math. 12 Google Scholar: 4, 273-288.
A., Bespalov, C. E., Powell, and D., Silvester (2012), “A priori error analysis of stochastic Galerkin mixed approximations of elliptic PDEs with random data”, SIAM J. on Numer. Anal. 50 Google Scholar: 4, 2039-2063.
R., Bhattacharya and R. Ranga, Rao (1986), Normal Approximation and Asymptotic Expansions, Reprint of the 1976 original, Melbourne Google Scholar: Robert Krieger, xiv + 291 pp.
M., Bieri, R., Andreev, and C., Schwab (2010), “Sparse tensor discretization of elliptic SPDEs”, SIAAM J. Sci. Comput. 31 Google Scholar:6, 4281-4304.
P., Billingsley (1995), Probability and Measure, 3rd ed., Wiley Series in Probability and Mathematical Statistics, New York Google Scholar: John Wiley & Sons, xiv + 593 pp.
D., Blömker (2007), Amplitude Equations for Stochastic Partial Differential Equations, vol. 3, Interdisciplinary Mathematical Sciences, Singapore Google Scholar: World Scientific.
V. I., Bogachev (2007), Measure Theory, vol. 1, New York Google Scholar: Springer-Verlag, xviii + 500 pp.
F., Bouchet and E., Simonnet (2009), “Random changes of flow topology in two-dimensional and geophysical turbulence”, Phys. Rev. Lett. 102 Google Scholar: 9, 094504.
D., Braess (1997), Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics, Cambridge Google Scholar: Cambridge University Press.
P., Bratley and B. L., Fox (1988), “Algorithm 659: implementing Sobol's quasirandom sequence generator.”, ACM Trans. Math. Software, 14 Google Scholar: 1, 88-100.
L., Breiman (1992), Probability, Classics in Applied Mathematics vol. 7, Corrected reprint of the 1968 original, Philadelphia Google Scholar: Society for Industrial and Applied Mathematics, xiv + 421 pp.
S. C., Brenner and L. R., Scott (2008), The Mathematical Theory of Finite Element Methods, Texts in Applied Mathematics vol. 15, New York Google Scholar: Springer-Verlag.
F., Brezzi and M., Fortin (1991), Mixed and Hybrid Finite Element Methods, Springer Series in Computational Mathematics vol. 15, New York Google Scholar: Springer-Verlag, x + 350 pp.
E. O., Brigham (1988), Fast Fourier Transform and Its Applications, Englewood Cliffs, NJ Google Scholar: Prentice Hall.
R. G., Brown and P. Y. C., Hwang (1992), Introduction to Random Signals and Applied Kalman Filtering, 2nd ed., New York Google Scholar: John Wiley & Sons.
Z., Brzeźniak, J. M. A. M., van Neerven, M. C., Veraar, and L., Weis (2008), “Itô's formula in UMD Banach spaces and regularity of solutions of the Zakai equation”, J. Differential Equations, 245 Google Scholar: 1, 30-58.
Z., Brzeźniak and T., Zastawniak (1999), Basic Stochastic Processes, Springer Undergraduate Mathematics Series, London Google Scholar: Springer-Verlag, x + 225 pp.
E., Buckwar and T., Sickenberger (2011), “A comparative linear mean-square stability analysis of Maruyama- and Milstein-type methods”, Math. Comput. Simulat. 81 Google Scholar: 6, 1110-1127.
E., Buckwar and R., Winkler (2006), “Multistep methods for SDEs and their application to problems with small noise”, SIAM J. Numer Anal. 44 Google Scholar: 2, 779-803.
H.-J., Bungartz and M., Griebel (2004), “Sparse grids”, Acta Numer 13 Google Scholar: 147-269.
K., Burrage, P., Burrage, and T., Mitsui (2000), “Numerical solutions of stochastic differential equations”, J. Comput. Appl. Math. 125 Google Scholar: 1-2, 171-182.
R. E., Caflisch (1998), “Monte Carlo and quasi-Monte Carlo methods”, in: Acta Numerica vol. 7, pp. 1-49, Cambridge Google Scholar: Cambridge University Press.
R. H., Cameron and W. T., Martin (1947), “The orthogonal development of non-linear functionals in series of Fourier-Hermite functionals”, Ann. Math. 48 Google Scholar: 2, 385-392.
C., Canuto, M. Y., Hussaini, A., Quarteroni, and T. A., Zang (1988), Spectral Methods in Fluid Dynamics, Springer Series in Computational Physics, New York Google Scholar: Springer-Verlag, xiv + 557 pp.
F., Chatelin (1983), Spectral Approximation of Linear Operators, Computer Science and Applied Mathematics, New York Google Scholar: Academic Press, xix + 458 pp.
A. J., Chorin and O. H., Hald (2006), Stochastic Tools in Mathematics and Science, Surveys and Tutorials in the Applied Mathematical Sciences vol. 1, New York Google Scholar: Springer-Verlag, viii + 147 pp.
P.-L., Chow (2007), Stochastic Partial Differential Equations, Boca Raton, FL Google Scholar: Chapman & Hall CRC, x + 281 pp.
G., Christakos (2005), Random Field Models in Earth Sciences, Mineola, NY Google Scholar: Dover Publications, xxv + 512 pp.
P. G., Ciarlet (1978), The Finite Element Method for Elliptic Problems, Studies in Mathematics and its Applications vol. 4, Amsterdam Google Scholar: North-Holland, xix + 530 pp.
C. W., Clenshaw and A. R., Curtis (1960), “A method for numerical integration on an automatic computer”, Numer. Math. 2 Google Scholar: 197-205.
K. A., Cliffe, M. B., Giles, R., Scheichl, and A. L., Teckentrup (2011), “Multilevel Monte Carlo methods and applications to elliptic PDEs with random coefficients”, Comput. Vis. Sci. 14 Google Scholar: 1, 3-15.
S., Cox and J., van Neerven (2010), “Convergence rates of the splitting scheme for parabolic linear stochastic Cauchy problems”, SIAM J. Numer Anal. 48 Google Scholar: 2, 428-151.
H., Cramér and M. R., Leadbetter (2004), Stationary and Related Stochastic Processes, Reprint of the 1967 original, Mineola, NY Google Scholar: Dover Publications, xiv + 348 pp.
D., Crisan and B., Rozovskiĭ (2011), The Oxford Handbook of Nonlinear Filtering, Oxford: Oxford Google Scholar: Oxford University Press.
G., Da Prato, A., Jentzen, and M., Röckner (2010), A mild Ito formula for SPDEs Google Scholar, eprint: arXiv: 1009.3526.
G., Da Prato and J., Zabczyk (1992), Stochastic Equations in Infinite Dimensions, Encyclopedia of Mathematics and its Applications vol. 44, Cambridge Google Scholar: Cambridge University Press, xviii + 454 pp.
R. C., Dalang, D., Khoshnevisan, and F., Rassoul-Agha (2009), A Minicourse on Stochastic Partial Differential Equations, Lecture Notes in Mathematics vol. 1962, New York Google Scholar: Springer-Verlag.
A. M., Davie (2007), “Differential equations driven by rough paths: an approach via discrete approximation”, Appl. Math. Res. Express. 2 Google Scholar: 1-40.
R. B., Davies and D. S., Harte (1987), “Tests for Hurst effect”, Biometrika, 74 Google Scholar: 95–102.
P. J., Davis (1979), Circulant Matrices, New York Google Scholar: John Wiley & Sons, xv + 250 pp.
A., de Bouard and A., Debussche (1999), “A stochastic nonlinear Schrödinger equation with multiplicative noise”, Commun. Math. Phys. 205 Google Scholar: 1, 161-181.
A., de Bouard and A., Debussche (2006), “Weak and strong order of convergence of a semidiscrete scheme for the stochastic nonlinear Schrodinger equation”, Appl. Math. Optim. 54 Google Scholar: 3, 369-399.
M. K., Deb, I. M., Babuska, and J. T., Oden (2001), “Solution of stochastic partial differential equations using Galerkin finite element techniques”, Comput. Methods Appl. Mech. Eng. 190 Google Scholar: 48, 6359-6372.
A., Debussche (2011), “Weak approximation of stochastic partial differential equations: the nonlinear case”, Math. Comp. 80 Google Scholar: 273, 89-117.
A., Debussche and J., Printems (2009), “Weak order for the discretization of the stochastic heat equation”, Math. Comp. 78 Google Scholar: 266, 845-863.
L. M., Delves and J., Walsh, eds. (1974), Numerical Solution of Integral Equations, Oxford Google Scholar: Oxford University Press.
S., Dereich (2011), “Multilevel Monte Carlo algorithms for Levy-driven SDEs with Gaussian correction”, Adv. in Appl. Probab. 21 Google Scholar: 1, 283-311.
A., Deya, M., Jolis, and L., Quer-Sardanyons (2013), “The Stratonovich heat equation: a continuity result and weak approximations”, Electron. J. Probab. 18 Google Scholar: 3, 1-34.
P., Diaconis (2009), “The Markov chain Monte Carlo revolution”, Bull. Am. Math. Soc. 46 Google Scholar: 2, 179-205.
A. B., Dieker and M., Mandjes (2003), “On spectral simulation of fractional Brownian motion”, Probab. Engrg. Inform. Sci. 17 Google Scholar: 417-434.
C. R., Dietrich (1995), “A simple and efficient space domain implementation of the turning bands method”, Water Resourc. Res. 31 Google Scholar: 1, 147-156.
C. R., Dietrich and G. N., Newsam (1993), “A fast and exact method of multidimensional Gaussian stochastic simulations”, Water Resourc. Res. 29 Google Scholar: 8, 2861-2869.
C. R., Dietrich and G. N., Newsam (1997), “Fast and exact simulation of stationary Gaussian processes through circulant embedding of the covariance matrix”, SIAM J. Sci. Comput. 18 Google Scholar: 4, 1088-1107.
R. M., Dudley (1999), Uniform Central Limit Theorems, Cambridge Studies in Advanced Mathematics vol. 63, Cambridge Google Scholar: Cambridge University Press, xiv + 436 pp.
R. M., Dudley (2002), Real Analysis and Probability, Cambridge Studies in Advanced Mathematics vol. 74, Cambridge Google Scholar: Cambridge University Press, x + 555 pp.
H. C., Elman, O. G., Ernst, D. P., O'Leary, and M., Stewart (2005a), “Efficient iterative algorithms for the stochastic finite element method with application to acoustic scattering”, Comput. Methods Appl. Mech. Eng. 194 Google Scholar: 9-11, 1037-1055.
H. C., Elman, D., Silvester, and A., Wathen (2005b), Finite Elements and Fast Iterative Solvers, Oxford Google Scholar: Oxford University Press, xiv + 400 pp.
H. C., Elman, A., Ramage, and D. J., Silvester (2007), “Algorithm 866: IFISS: A MATLAB toolbox for modelling incompressible flow”, ACM Trans. Math. Software, 33 Google Scholar: 14, 1-19.
O. G., Ernst and E., Ullmann (2010), “Stochastic Galerkin matrices”, SIAM J. Matrix Anal. Appl. 31 Google Scholar: 4, 1848-1872.
L. C., Evans (2010), Partial Differential Equations, 2nd ed., Graduate Studies in Mathematics vol. 19, Providence, RI Google Scholar: American Mathematical Society, xxii + 749 pp.
R., Eymard, T., Gallouët, and R., Herbin (2000), “Finite volume methods”, in: Handbook of numerical analysis, vol. VII, pp. 713-1020, Amsterdam: Amsterdam Google Scholar: North-Holland.
G. S., Fishman (1996), Monte Carlo: Concepts, Algorithms and Applications, Springer Series in Operations Research, New York Google Scholar: Springer-Verlag, xxvi + 698 pp.
B., Fornberg (1996), A Practical Guide to Pseudospectral Methods, Cambridge Monographs on Applied and Computational Mathematics, Cambridge Google Scholar: Cambridge University Press, x + 231 pp.
P., Frauenfelder, C., Schwab, and R. A., Todor (2005), “Finite elements for elliptic problems with stochastic coefficients”, Comput. Methods Appl. Mech. Eng. 194 Google Scholar: 205-228.
U., Frisch (1995), Turbulence: The Legacy of A. N. Kolmogorov, Cambridge Google Scholar: Cambridge University Press, xiv + 296 pp.
B., Fristedt and L., Gray (1997), A Modern Approach to Probability Theory, Probability and its Applications, Basel Google Scholar: Birkhauser, xx + 756 pp.
P. K., Friz and N. B., Victoir (2010), Multidimensional Stochastic Processes as Rough Paths, Cambridge Studies in Advanced Mathematics vol. 120, Cambridge Google Scholar: Cambridge University Press, xiv + 656 pp.
H., Fujita and T., Suzuki (1991), “Evolution problems”, in: Handbook of Numerical Analysis, vol. II, pp. 789-928, Amsterdam Google Scholar: North-Holland.
J., Gaines and T., Lyons (1994), “Random generation of stochastic area integrals”, SIAM J. Appl. Math. 54 Google Scholar: 4, 1132-1146.
A., Ganguly (2013), “Wong-Zakai type convergence in infinite dimensions”, Electron. J. Probab. 18 Google Scholar: 31, 1-34.
J., García-Ojalvo and J. M., Sancho (1999), Noise in Spatially Extended Systems, Institute for Nonlinear Science, New York Google Scholar: Springer-Verlag, xiv + 307 pp.
C., Gardiner (2009), Stochastic Methods: A Handbook for the Natural and Social Sciences Google Scholar, 4th ed., Springer Series in Synergetics, Springer-Verlag, xviii + 447 pp.
A. M., Garsia, E., Rodemich, and H., Rumsey Jr. (1971), “A real variable lemma and the continuity of paths of some Gaussian processes”, Indiana Univ. Math. J. 20 Google Scholar: 6, 565-578.
W., Gautschi (2004), Orthogonal Polynomials: Computation and Approximation, Numerical Mathematics and Scientific Computation, New York Google Scholar: Oxford University Press, x + 301 pp.
M., Geissert, M., Kovács, and S., Larsson (2009), “Rate of weak convergence of the finite element method for the stochastic heat equation with additive noise”, BIT, 49 Google Scholar: 2, 343-356.
R. G., Ghanem and P. D., Spanos (1991), Stochastic Finite Elements: A Spectral Approach, New York Google Scholar: Springer-Verlag, x + 214 pp.
Ĭ. Ī., Gīhman and A. V., Skorohod (1972), Stochastic Differential Equations, Translated from the Russian by K., Wickwire, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 72, New York Google Scholar: Springer-Verlag, pp. viii + 354.
M. B., Giles (2008a), “Improved multilevel Monte Carlo convergence using the Milstein scheme”, in: Monte Carlo and quasi-Monte Carlo methods, pp. 343-358, 2006, Berlin Google Scholar: Springer-Verlag.
M. B., Giles (2008b), “Multilevel Monte Carlo path simulation”, Oper. Res. 56 Google Scholar: 3, 607-617.
M. B., Giles and B. J., Waterhouse (2009), “Multilevel quasi-Monte Carlo path simulation”, in: Advanced Financial Modelling Google Scholar, pp. 165-181,
H., Abrecher, W. J., Runggaldier, and W., Schachermayer (eds.), Radon Series Computational and Applied Mathematics vol. 8, Berlin Google Scholar: Walter de Gruyter.
M. B., Giles, D. J., Higham, and X., Mao (2009), “Analysing multi-level Monte Carlo for options with non-globally Lipschitz payoff”, Finance Stoch. 13 Google Scholar: 3, 403-413.
C. J., Gittelson (2013), “An adaptive stochastic Galerkin method for random elliptic operators”, Math. Comp. 82 Google Scholar: 283, 1515-1541.
T., Gneiting (1998), “Closed form solutions of the two-dimensional turning bands equation”, Math. Geol. 30 Google Scholar: 4, 379-390.
T., Gneiting, H., Sevcíkova, D. B., Percival, M., Schlather, and Y., Jiang (2006), “Fast and exact simulation of large Gaussian lattice systems in ℝ2: exploring the limits”, J. Comput. Graph. Simul. 15 Google Scholar: 3, 483-501.
E., Gobet (2000), “Weak approximation of killed diffusion using Euler schemes”, Stoch. Process. Appl. 87 Google Scholar: 2, 167-197.
E., Gobet (2001), “Efficient schemes for the weak approximation of reflected diffusions”, Monte Carlo Methods Appl. 7 Google Scholar: 1-2, 193-202.
G. H., Golub and C. F., van Loan (2013), Matrix Computations, 4th ed., Johns Hopkins Studies in the Mathematical Sciences, Baltimore, MD Google Scholar: Johns Hopkins University Press, xiv + 756 pp.
G. H., Golub and J. H., Welsch (1969), “Calculation of Gauss quadrature rules”, Math. Comp. 23 Google Scholar: 106, A1-A10.
N. R., Goodman (1963), “Statistical analysis based on a certain multivariate complex Gaussian distribution (an introduction)”, Ann. Math. Statist. 34 Google Scholar: 1, 152-177.
A. D., Gordon and C. E., Powell (2012), “On solving stochastic collocation systems with algebraic multigrid”, IMA J. Numer. Anal. 32 Google Scholar: 3, 1051-1070.
D., Gottlieb and S. A., Orszag (1977), Numerical Analysis of Spectral Methods: Theory and Applications, CBMS-NSF Regional Conference Series in Applied Mathematics, No. 26, Philadelphia: Society for Industrial and Applied Mathematics, v + 172 Google Scholar pp.
C., Graham and D., Talay (2013), Stochastic Simulation and Monte Carlo Methods, vol. 68, Stochastic Modelling and Applied Probability, Heidelberg Google Scholar: Springer-Verlag, pp. xvi + 260.
I. G., Graham, F. Y., Kuo, D., Nuyens, R., Scheichl, and I. H., Sloan (2011), “Quasi-Monte Carlo methods for elliptic PDEs with random coefficients and applications”, J. Comput. Phys. 230 Google Scholar: 10, 3668-3694.
W., Grecksch and P. E., Kloeden (1996), “Time-discretised Galerkin approximations of parabolic stochastic PDEs”, Bull. Austral. Math. Soc. 54 Google Scholar: 1, 79-85.
G. R., Grimmett and D. R., Stirzaker (2001), Probability and Random Processes, 3rd ed., Oxford Google Scholar: Oxford University Press, xii + 596 pp.
I., Gyongy (1998a), “A note on Euler's approximations”, Potential Anal. 8 Google Scholar: 3, 205-216.
I., Gyongy (1998b), “Lattice approximations for stochastic quasi-linear parabolic partial differential equations driven by space-time white noise. I”, Potential Anal. 9 Google Scholar: 1, 1-25.
I., Gyongy (1999), “Lattice approximations for stochastic quasi-linear parabolic partial differential equations driven by space-time white noise. II”, Potential Anal. 11 Google Scholar: 1, 1-37.
I., Gyongy and N., Krylov (2003), “On the splitting-up method and stochastic partial differential equations”, Ann. Probab. 31 Google Scholar: 2, 564-591.
I., Gyongy and A., Millet (2009), “Rate of convergence of space time approximations for stochastic evolution equations”, Potential Anal. 30 Google Scholar: 1, 29-64.
W., Hackbusch (1992), Elliptic Differential Equations: Theory and Numerical Treatment, Springer Series in Computational Mathematics vol. 18, Translated from the author's revision of the 1986 German original by R., Fadiman and P. D. F., Ion, Berlin Google Scholar: Springer-Verlag, xiv + 311 pp.
E., Hairer and G., Wanner (1996), Solving Ordinary Differential Equations II, 2nd ed., Springer Series in Computational Mathematics vol. 14, Berlin Google Scholar: Springer-Verlag, xvi + 614 pp.
E., Hairer, S. P., Nørsett, and G., Wanner (1993), Solving Ordinary Differential Equations I, 2nd ed., Springer Series in Computational Mathematics vol. 8, Berlin Google Scholar: Springer-Verlag, xvi + 528 pp.
M., Hairer, A. M., Stuart, J., Voss, and P., Wiberg (2005), “Analysis of SPDEs arising in path sampling part I: the Gaussian case”, Commun. Math. Sci. 3 Google Scholar: 4, 587-603.
M., Hairer, A. M., Stuart, and J., Voss (2007), “Analysis of SPDEs arising in path sampling part II: the nonlinear case”, Ann. Appl. Probab. 17 Google Scholar: 5-6, 1657-1706.
M., Hairer (2009), “An Introduction to Stochastic PDEs”, University of Warwick Lecture Notes Google Scholar.
M., Hairer and J. C., Mattingly (2011), “A theory of hypoellipticity and unique ergodicity for semilinear stochastic PDEs”, Electron. J. Probab. 16 Google Scholar: 23.
J. M., Hammersley and D. C., Handscomb (1965), Monte Carlo Methods, Methuen's Monographs on Applied Probability and Statistics, London Google Scholar: Methuen, vii + 178 pp.
E., Hausenblas (2003a), “Approximation for semilinear stochastic evolution equations”, Potential Anal. 18 Google Scholar: 2, 141-186.
E., Hausenblas (2003b), “Weak approximation for semilinear stochastic evolution equations”, in: Stochastic analysis and related topics VIII, pp. 111-128, Progress in Probability. vol. 53, Basel Google Scholar: Birkhauser.
E., Hausenblas (2007), “Wong-Zakai type approximation of SPDEs of Levy noise”, Acta Appl. Math. 98 Google Scholar: 2, 99-134.
D., Henry (1981), Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics vol. 840, Berlin Google Scholar: Springer-Verlag, iv + 348 pp.
K., Hesse, I. H., Sloan, and R. S., Womersley (2010), “Numerical integration on the sphere”, in: Handbook of Geomathematics, pp. 1187-1219, W., Freeden, Z., Nashed, and T., Sonar (eds.), Berlin Google Scholar: Springer-Verlag.
D. J., Higham (2000), “Mean-square and asymptotic stability of the stochastic theta method”, SIAM J. Numer Anal 38 Google Scholar: 3, 753-769.
D. J., Higham, X., Mao, and A. M., Stuart (2002), “Strong convergence of Euler-type methods for nonlinear stochastic differential equations”, SIAM J. Numer Anal. 40 Google Scholar: 3, 1041-1063.
D. J., Higham, X., Mao, and A. M., Stuart (2003), “Exponential mean-square stability of numerical solutions to stochastic differential equations”, London Math. Soc. J. Comput. Math. 6 Google Scholar: 297-313.
E., Hille and J. D., Tamarkin (1931), “On the characteristic values of linear integral equations”, Acta Numerica, 57 Google Scholar: 1–76.
W., Hundsdorfer and J., Verwer (2003), Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations, Springer Series in Computational Mathematics vol. 33, Berlin Google Scholar: Springer-Verlag, x + 471 pp.
M., Hutzenthaler, A., Jentzen, and P. E., Kloeden (2010), “Strong and weak divergence in finite time of Euler's method for stochastic differential equations with non-globally Lipschitz continuous coefficients”, Proc. R. Soc. London Ser. A, 467 Google Scholar: 2130, 1563-1576.
A., Iserles (1996), A First Course in the Numerical Analysis of Differential Equations, Cambridge Texts in Applied Mathematics, Cambridge Google Scholar: Cambridge University Press, xviii + 378 pp.
A., Ivić (2003), The Riemann Zeta-Function, Reprint of the 1985 original, Mineola, NY Google Scholar: Dover Publications, xxii + 517 pp.
A., Jentzen, P. E., Kloeden, and A., Neuenkirch (2009a), “Pathwise approximation of stochastic differential equations on domains: higher order convergence rates without global Lipschitz coefficients”, Numer. Math. 112 Google Scholar: 1, 41-64.
A., Jentzen, P. E., Kloeden, and A., Neuenkirch (2009b), “Pathwise convergence of numerical schemes for random and stochastic differential equations”, in: Foundations of computational mathematics, Hong Kong 2008, pp. 140-161, London Mathematical Society Lecture Note Series vol. 363, Cambridge Google Scholar: Cambridge University Press.
A., Jentzen and P. E., Kloeden (2009), “Overcoming the order barrier in the numerical approximation of stochastic partial differential equations with additive space-time noise”, Proc. R. Soc. London Ser. A, 465 Google Scholar: 2102, 649-667.
A., Jentzen and P. E., Kloeden (2011), Taylor Approximations for Stochastic Partial Differential Equations, CBMS-NSF Regional Conference Series in Applied Mathematics vol. 83 Google Scholar, SIAM, xiv + 220 pp.
A., Jentzen and M., Röckner (2010), A Milstein scheme for SPDEs Google Scholar, eprint: arXiv:1001.2751.
S., Joe and F. Y., Kuo (2003), “Remark on algorithm 659: implementing Sobol's quasirandom sequence generator”, ACM Trans. Math. Software, 29 Google Scholar: 1, 49-57.
I., Karatzas and S. E., Shreve (1991), Brownian Motion and Stochastic Calculus, 2nd ed., Graduate Texts in Mathematics vol. 113, New York Google Scholar: Springer-Verlag, xxiv + 470 pp.
M. A., Katsoulakis, G. T., Kossioris, and O., Lakkis (2007), “Noise regularization and computations for the 1-dimensional stochastic Allen-Cahn problem”, Interfaces Free Bound. 9 Google Scholar: 1, 1-30.
P. E., Kloeden and A., Neuenkirch (2007), “The pathwise convergence of approximation schemes for stochastic differential equations”, LMS J. Comput. Math. 10 Google Scholar: 235-253.
P. E., Kloeden, E., Platen, and I. W., Wright (1992), “The approximation of multiple stochastic integrals”, Stochastic Anal. Appl. 10 Google Scholar: 4, 431-441.
P. E., Kloeden, G. J., Lord, A., Neuenkirch, and T., Shardlow (2011), “The exponential integrator scheme for stochastic partial differential equations: pathwise error bounds”, J. Comput. Appl. Math. 235 Google Scholar: 5, 1245-1260.
P. E., Kloeden and E., Platen (1992), Numerical Solution of Stochastic Differential Equations, Applications of Mathematics vol. 23, Berlin Google Scholar: Springer-Verlag, xxxvi + 632 pp.
T. W., Koerner (1989), Fourier Analysis, Cambridge Google Scholar: Cambridge University Press.
A. N., Kolmogorov (1940), “Wienersche Spiralen und einige andere interessante Kurven Im Hil-bertschen Raum”, C. R. (Doklady) Acad. URSS (N.S.) 26 Google Scholar: 115-118.
H., König (1986), Eigenvalue Distribution of Compact Operators, Operator Theory: Advances and Applications vol. 16, Basel Google Scholar: Birkhauser, 262 pp.
G. T., Kossioris and G. E., Zouraris (2010), “Fully-discrete finite element approximations for a fourth-order linear stochastic parabolic equation with additive space-time white noise”, M2AN Math. Model. Numer. Anal. 44 Google Scholar: 2, 289-322.
M., Kovács, S., Larsson, and F., Saedpanah (2010), “Finite element approximation of the linear stochastic wave equation with additive noise”, SIAM J. Numer Anal. 48 Google Scholar: 2, 408-427.
M., Kovács, F., Lindgren, and S., Larsson (2011), “Spatial approximation of stochastic convolutions”, J. Comput. Appl. Math. 235 Google Scholar: 12, 3554-3570.
S. M., Kozlov (1979), “The averaging of random operators”, Mat. Sb. (N.S.) 109 Google Scholar(151): 2, 188-202.
R., Kruse and S., Larsson (2012), “Optimal regularity for semilinear stochastic partial differential equations with multiplicative noise”, Electron. J. Probab. 17 Google Scholar: 65, 1-19.
J., Kuelbs and T., Kurtz (1974), “Berry-Esseen estimates in Hilbert space and an application to the law of the iterated logarithm”, Ann. Probability, 2 Google Scholar: 387–407.
C., Laing and G. J., Lord, eds. (2010), Stochastic Methods in Neuroscience, Oxford Google Scholar: Oxford University Press, xxiv + 370 pp.
J. D., Lambert (1991), Numerical Methods for Ordinary Differential Systems, Chichester Google Scholar: John Wiley & Sons, x + 293 pp.
A., Lang, P.-L., Chow, and J., Potthoff (2010), “Almost sure convergence of a semidiscrete Milstein scheme for SPDEs of Zakai type”, Stochastics, 82 Google Scholar: 3, 315-326.
A., Lang, P.-L., Chow, and J., Potthoff (2012), “Erratum: Almost sure convergence of a semi-discrete Milstein scheme for SPDEs of Zakai type”, Stochastics, 84 Google Scholar: 4, 561-561.
P. D., Lax (2002), Functional Analysis, New York Google Scholar: John Wiley & Sons, xx + 580 pp.
O. P., Le Maitre and O. M., Knio (2010), Spectral Methods for Uncertainty Quantification, Scientific Computation, New York Google Scholar: Springer-Verlag, xvi + 536 pp.
F., Lindgren, H., Rue, and J., Lindström (2011), “An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach”, J. R. Stat. Soc. Ser. B, 73 Google Scholar: 4, 423-498.
M., Loève (1977), Probability Theory I, 4th ed., Graduate Texts in Mathematics vol. 45, New York Google Scholar: Springer-Verlag, xvii + 425 pp.
M., Loève (1978), Probability Theory II, 4th ed., Graduate Texts in Mathematics vol. 46, New York Google Scholar: SpringerVerlag, xvi + 413 pp.
G. J., Lord and J., Rougemont (2004), “A numerical scheme for stochastic PDEs with Gevrey regularity”, IMA J. Numer Anal. 24 Google Scholar: 4, 587-604.
G. J., Lord and T., Shardlow (2007), “Postprocessing for stochastic parabolic partial differential equations”, SIAM J. Numer Anal. 45 Google Scholar: 2, 870-889.
G. J., Lord and A., Tambue (2013), “Stochastic exponential integrators for the finite element discretization of SPDEs for multiplicative and additive noise”, IMA J. Numer Anal. 33 Google Scholar: 2, 515-543.
B. B., Mandelbrot and J. W., van Ness (1968), “Fractional Brownian motions, fractional noises, and applications”, SIAM Rev. 10 Google Scholar: 422-437.
A., Mantoglou and J. L., Wilson (1982), “The turning bands method for simulation of random fields using line generation by a spectral method”, Water Resourc. Res. 18 Google Scholar: 5, 1379-1394.
X., Mao (2008), Stochastic Differential Equations and Applications, 2nd ed., Chichester Google Scholar: Horwood, xviii + 422 pp.
G., Marsaglia and W. W., Tsang (2000), “The Ziggurat method for generating random variables”, J. Statist. Software, 8 Google Scholar: 5, 1-7.
G., Matheron (1973), “The intrinsic random functions and their applications”, Adv. in Appl. Probab. 5 Google Scholar: 3, 439-468.
M., Matsumoto and T., Nishimura (1998), “Mersenne twister: a 623-dimensionally equidistributed uniform pseudorandom number generator”, ACM Trans. Model. and Comput. Simul. 8 Google Scholar: 1, 3-30.
J. C., Mattingly, A. M., Stuart, and M. V., Tretyakov (2010), “Convergence of numerical time-averaging and stationary measures via Poisson equations”, SIAM J. Numer. Anal. 48 Google Scholar: 2, 552-577.
G. N., Milstein and M. V., Tretyakov (1999), “Simulation of a space-time bounded diffusion”, Adv. in Appl. Probab. 9 Google Scholar: 3, 732-779.
G. N., Milstein and M. V., Tretyakov (2004), Stochastic Numerics for Mathematical Physics, Berlin Google Scholar: Springer-Verlag, xx + 594 pp.
Y. S., Mishura (2008), Stochastic Calculus for Fractional Brownian Motion and Related Processes, Lecture Notes in Mathematics vol. 1929, Berlin Google Scholar: Springer-Verlag, xviii + 393 pp.
C., Moler (1995), “Random thoughts: 10435 years is a very long time”, Cleve's Corner Google Scholar, Fall Edition.
C., Moler (2001), “Normal behavior: Ziggurat algorithm generates normally distributed random numbers”, Cleve's Corner Google Scholar, Spring Edition.
P., Mörters and Y., Peres (2010), Brownian Motion, Cambridge Series in Statistical and Probabilistic Mathematics, Cambridge Google Scholar: Cambridge University Press, xii + 403 pp.
K. W., Morton and D. F., Mayers (2005), Numerical Solution of Partial Differential Equations, 2nd ed., Cambridge Google Scholar: Cambridge University Press, xiv + 278 pp.
T., Müller-Gronbach and K., Ritter (2007), “An implicit Euler scheme with non-uniform time discretization for heat equations with multiplicative noise”, BIT, 47 Google Scholar: 2, 393-418.
T., Müller-Gronbach and K., Ritter (2008), “Minimal Errors for Strong and Weak Approximation of Stochastic Differential Equations”, in: Monte Carlo and Quasi-Monte Carlo Methods 2006 Google Scholar, pp. 53-82, A. Keller, S. Heinrich, and H. Niederreiter (eds.), Berlin: Springer-Verlag.
E., Nelson (1967), Dynamical Theories of Brownian Motion, Princeton, NJ Google Scholar: Princeton University Press, 120 pp.
A., Neuenkirch (2008), “Optimal pointwise approximation of stochastic differential equations driven by fractional Brownian motion”, Stoch. Process. Appl. 118 Google Scholar: 12, 2294-2333.
G. N., Newsam and C. R., Dietrich (1994), “Bounds on the size of nonnegative definite circulant embeddings of positive definite Toeplitz matrices”, IEEE Trans. Inform. Theory, 40 Google Scholar: 4, 1218-1220.
H., Niederreiter (1992), Random Number Generation and Quasi-Monte Carlo Methods, CBMS-NSF Regional Conference Series in Applied Mathematics vol. 63, Philadelphia Google Scholar: Society for Industrial and Applied Mathematics, vi + 241 pp.
F., Nobile, R., Tempone, and C. G., Webster (2008a), “A sparse grid stochastic collocation method for partial differential equations with random input data”, SIAM J. Numer Anal. 46 Google Scholar: 5, 2309-2345.
F., Nobile, R., Tempone, and C. G., Webster (2008b), “An anisotropic sparse grid stochastic collocation method for partial differential equations with random input data”, SIAM J. Numer Anal. 46 Google Scholar: 5, 2411-2442.
E., Novak and K., Ritter (1996), “High-dimensional integration of smooth functions over cubes”, Numer. Math. 75 Google Scholar: 1, 79-97.
B., Øksendal (2003), Stochastic Differential Equations, 6th ed., Universitext, Berlin Google Scholar: Springer-Verlag, xxiv + 360 pp.
H. C., Öttinger (1996), Stochastic Processes in Polymeric Fluids, Berlin Google Scholar: Springer-Verlag, xxiv + 362 pp.
A., Pazy (1983), Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences vol. 44, New York Google Scholar: Springer-Verlag, viii + 279 pp.
P. Z., Peebles (1993), Probability, Random Variables, and Random Signal Principles, New York Google Scholar: McGraw-Hill.
M. F., Pellissetti and R. G., Ghanem (2000), “Iterative solution of systems of linear equations arising in the context of stochastic finite elements”, Advances in Engineering Software, 31 Google Scholar: 607–616.
B., Picinbono (1996), “Second-order complex random vectors and normal distributions”, IEEE Trans. Signal Process, 44 Google Scholar: 10, 2637-2640.
C. E., Powell and H. C., Elman (2009), “Block-diagonal preconditioning for spectral stochastic finite-element systems”, IMA J. Numer. Anal. 29 Google Scholar: 2, 350-375.
C. E., Powell and D. J., Silvester (2007), PIFISS: Potential (Incompressible) Flow and Iteration Software Guide Google Scholar, tech. rep. 2007.14, MIMS: University of Manchester.
C., Prévôt and M., Röckner (2007), A Concise Course on Stochastic Partial Differential Equations, Lecture Notes in Mathematics vol. 1905, Berlin Google Scholar: Springer, vi + 144 pp.
P. E., Protter (2005), Stochastic Integration and Differential Equations Google Scholar, 2nd ed., Stochastic Modelling and Applied Probability vol. 21, Springer-Verlag, xiv + 419 pp.
A., Quarteroni and A., Valli (2008), Numerical Approximation of Partial Differential Equations, Springer Series in Computational Mathematics, Berlin Google Scholar: Springer.
L., Quer-Sardanyons and M., Sanz-Solé (2006), “Space semi-discretisations for a stochastic wave equation”, Potential Anal. 24 Google Scholar: 4, 303-332.
J. B., Reade (1983), “Eigenvalues of positive definite kernels”, SIAM J. Math. Anal. 14 Google Scholar: 1, 152-157.
M., Renardy and R. C., Rogers (2004), An Introduction to Partial Differential Equations, 2nd ed., Texts in Applied Mathematics vol. 13, New York Google Scholar: Springer-Verlag, xiv + 434 pp.
F., Riesz and B., Sz.-Nagy (1990), Functional Analysis, Translated from the second French edition by L. F., Boron, New York: Mineola, NY Google Scholar: Dover Publications, xii + 504 pp.
J. C., Robinson (2001), Infinite-Dimensional Dynamical Systems, Cambridge Texts in Applied Mathematics, Cambridge Google Scholar: Cambridge University Press, xviii + 461 pp.
L. C. G., Rogers and D., Williams (2000), Diffusions, Markov Processes, and Martingales, vol. 1, Reprint of the second (1994) edition, Cambridge Google Scholar: Cambridge University Press, xx + 386 pp.
S. M., Ross (1997), Simulation, 2nd ed., San Diego Google Scholar: Academic Press, xii + 282 pp.
A., Rößler (2010), “Runge-Kutta methods for the strong approximation of solutions of stochastic differential equations”, SIAM J. Numer Anal. 48 Google Scholar: 3, 922-952.
B. L., Rozovskiĭ (1990), Stochastic Evolution Systems, Mathematics and its Applications (Soviet Series) vol. 35, Dordrecht Google Scholar: Kluwer, xviii + 315 pp.
W., Rudin (1987), Real and Complex Analysis, 3rd ed., New York Google Scholar: McGraw-Hill, xiv + 416 pp.
T., Ryden and M., Wiktorsson (2001), “On the simulation of iterated Itô integrals”, Stoch. Process. Appl. 91 Google Scholar: 151-168.
M., Schlather (1999), Introduction to Positive Definite Functions and to Unconditional Simulation of Random Fields Google Scholar, tech. rep. ST-99-10, Lancaster University.
M., Schlather (2001), “Simulation and analysis of random fields”, R News, 1 Google Scholar: 2, 18-20.
C., Schwab and R. A., Todor (2006), “Karhunen-Loève approximation of random fields by generalized fast multipole methods”, J. Comput. Phys. 217 Google Scholar: 100-122.
C., Schwab and C. J., Gittelson (2011), “Sparse tensor discretizations of high-dimensional parametric and stochastic PDEs”, Acta Numer. 20 Google Scholar: 291-467.
R. J., Serfling (1980), Approximation Theorems of Mathematical Statistics, New York Google Scholar: John Wiley & Sons, xiv + 371 pp.
T., Shardlow (1999), “Numerical methods for stochastic parabolic PDEs”, Numer Funct. Anal. Optim. 20 Google Scholar: 1-2, 121-145.
T., Shardlow and A. M., Stuart (2000), “A perturbation theory for ergodic properties of Markov chains”, SIAM J. Numer Anal. 37 Google Scholar: 4, 1120-1137.
I. G., Shevtsova (2007), “Sharpening the upper bound for the absolute constant in the Berry–Esséen inequality”, Theory Probab. Appl. 51 Google Scholar: 3, 549-553.
M., Shinozuka (1971), “Simulation of multivariate and multidimensional random processes”, J. Acoust. Soc. Am. 49 Google Scholar: 1B, 357-368.
M., Shinozuka and C.-M., Jan (1972), “Digital simulation of random processes and its applications”, J. Sound Vibrat. 25 Google Scholar: 1, 111-128.
S., Smolyak (1963), “Quadrature and interpolation formulas for tensor products of certain classes of functions”, Soviet Math. Dokl. 4 Google Scholar: 240-243.
I. N., Sneddon (1972), The Use of Integral Transforms, New York Google Scholar: McGraw-Hill.
I. N., Sneddon (1995), Fourier Transforms, Reprint of the 1951 original, New York: Mineola, NY Google Scholar: Dover Publications, xii + 542 pp.
T., Sottinen (2003), “Fractional Brownian Motion in Finance and Queueing Google Scholar”, PhD thesis, University of Helsinki.
G., Strang and G. J., Fix (1973), An Analysis of the Finite Element Method, Series in Automatic Computation, Englewood Cliffs, NJ Google Scholar: Prentice Hall.
J. C., Strikwerda (2004), Finite Difference Schemes and Partial Differential Equations, 2nd ed., Philadelphia Google Scholar: Society for Industrial and Applied Mathematics, xii + 435 pp.
A. M., Stuart (2010), “Inverse problems: a Bayesian perspective”, Acta Numer. 19 Google Scholar: 451-559.
A. M., Stuart and A. R., Humphries (1996), Dynamical Systems and Numerical Analysis, Cambridge Monographs on Applied and Computational Mathematics vol. 2, Cambridge Google Scholar: Cambridge University Press, xxii + 685 pp.
A. M., Stuart, J., Voss, and P., Wiberg (2004), “Fast conditional path sampling of SDEs and the Langevin MCMC method”, Commun. Math. Sci. 2 Google Scholar: 4, 685-697.
E., Süli and D. F., Mayers (2003), An Introduction to Numerical Analysis, Cambridge Google Scholar: Cambridge University Press, x + 433 pp.
D., Talay (1996), “Probabilistic numerical methods for partial differential equations: elements of analysis”, in: Probabilistic Models for Nonlinear Partial Differential Equations Google Scholar, pp. 148-196, D. Talay and L. Tubaro (eds.), Lecture Notes in Math. vol. 1627, Berlin: Springer-Verlag.
D., Talay (2002), “Stochastic Hamiltonian systems: exponential convergence to the invariant measure, and discretization by the implicit Euler scheme”, Markov Process. Relat. Fields, 8 Google Scholar: 2, 163-198.
D., Talay and L., Tubaro (1990), “Expansion of the global error for numerical schemes solving stochastic differential equations”, Stochastic Anal. Appl. 8 Google Scholar: 4, 483-509.
R., Temam (1988), Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Applied Mathematical Sciences vol. 68, New York Google Scholar: Springer-Verlag, xvi + 500 pp.
G., Tessitore and J., Zabczyk (2006), “Wong-Zakai approximations of stochastic evolution equations”, J. Evol. Equ. 6 Google Scholar: 4, 621-655.
V., Thomée (2006), Galerkin Finite Element Methods for Parabolic Problems, 2nd ed., Springer Series in Computational Mathematics vol. 25, Berlin Google Scholar: Springer-Verlag, xii + 370 pp.
L. N., Trefethen (2000), Spectral Methods inMATLAB, Software, Environments, and Tools vol. 10, Philadelphia Google Scholar: Society for Industrial and Applied Mathematics, xviii + 165 pp.
K., Twardowska (1996), “Wong-Zakai approximations for stochastic differential equations”, Acta Appl. Math. 43 Google Scholar: 3, 317-359.
K., Twardowska and A., Nowak (2004), “On the relation between the Itô and Stratonovich integrals in Hilbert spaces”, Ann. Math. Sil. 18 Google Scholar: 49-63.
N. G., van Kampen (1997), Stochastic Processes in Physics and Chemistry, 2nd ed., Amsterdam Google Scholar: North-Holland, xiv + 419 pp.
J., van Neerven, M., Veraar, and L., Weis (2012), “Stochastic maximal LP -regularity”, Ann. Probab. 40 Google Scholar: 2, 788-812.
C. R., Vogel (2002), Computational Methods for Inverse Problems, Frontiers in Applied Mathematics vol. 23, Philadelphia Google Scholar: Society for Industrial and Applied Mathematics, xvi + 183 pp.
J., Voss (2012), “The effect of finite element discretization on the stationary distribution of SPDEs”, Commun. Math. Sci. 10 Google Scholar: 4, 1143-1159.
J. B., Walsh (1981), “A stochastic model of neural response”, Adv. in Appl. Probab. 13 Google Scholar: 2, 231-281.
J. B., Walsh (1984a), “An Introduction to Stochastic Partial Differential Equations”, in: École d'Été de Probabilités de Saint-Flour, pp. 265-139, A., Dold and B., Eckmann Google Scholar (eds.), Springer Lecture Notes in Mathematics vol. 1180, Springer-Verlag.
J. B., Walsh (1984b), “Regularity properties of a stochastic partial differential equation”, in: Seminar on stochastic processes, pp. 257-290, Progress in Probability and Statistics 1983, vol. 7, Boston Google Scholar: Birkhäuser.
G. N., Watson (1995), A Treatise on the Theory ofBessel Functions, Cambridge Mathematical Library, Reprint of the second (1944) edition, Cambridge Google Scholar: Cambridge University Press, viii + 804 pp.
H., Weyl (1912), “Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen”, Math. Annal. 71 Google Scholar: 441-479.
H., Widom (1963), “Asymptotic behavior of the eigenvalues of certain integral equations”, Trans. Amer. Math. Soc. 109 Google Scholar: 278-295.
N., Wiener (1938), “The Homogeneous Chaos”, Am. J. Math. 60 Google Scholar: 4, 897-936.
M., Wiktorsson (2001), “Joint characteristic function and simultaneous simulation of iterated Itô integrals for multiple independent Brownian motions”, Adv. in Appl. Probab. 11 Google Scholar:2, 470-487.
D., Williams (1991), Probability with Martingales, Cambridge Mathematical Textbooks, Cambridge Google Scholar: Cambridge University Press, xvi + 251 pp.
E., Wong and M., Zakai (1965), “On the relation between ordinary and stochastic differential equations”, Internat. J. Eng. Sci. 3 Google Scholar: 2, 213-229.
A. T. A., Wood and G., Chan (1994), “Simulation of Stationary Gaussian Processes in [0,1]d”, J. Comput. Graph. Simul. 3 Google Scholar: 4, 409-432.
D., Xiu and J. S., Hesthaven (2005), “High-order collocation methods for differential equations with random inputs”, SIAM J. Sci. Comput. 27 Google Scholar: 3, 1118-1139.
D., Xiu and G. E., Karniadakis (2002), “The Wiener-Askey polynomial chaos for stochastic differential equations”, SIAM J. Sci. Comput. 24 Google Scholar: 2, 619-644.
A. M., Yaglom (1962), An Introduction to the Theory of Stationary Random Functions, Translated and edited by R. A., Silverman, Englewood Cliffs, NJ Google Scholar: Prentice Hall, xiii + 235 pp.
Y., Yan (2005), “Galerkin finite element methods for stochastic parabolic partial differential equations”, SIAM J. Numer Anal. 43 Google Scholar: 4, 1363-1384.
K., Yosida (1995), Functional Analysis, Classics in Mathematics, Reprint of the sixth (1980) edition, Berlin Google Scholar: Springer-Verlag, xii + 501 pp.
V. V., Yurinskiĭ (1982), “On the accuracy of normal approximation of the probability of hitting a ball”, Teor. Veroyatnost. i Primenen. 27 Google Scholar: 2, 270-278.
E., Zeidler (1995), Applied Functional Analysis, Applied Mathematical Sciences vol. 109, New York Google Scholar: Springer-Verlag, xvi + 404 pp.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.