Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-qs9v7 Total loading time: 0 Render date: 2024-07-13T22:29:08.648Z Has data issue: false hasContentIssue false
Coming soon

1 - Observational background and basic assumptions

Dina Prialnik
Affiliation:
Tel-Aviv University
Get access

Summary

What is a star?

A star can be defined as a body that satisfies two conditions: (a) it is bound by self-gravity; (b) it radiates energy supplied by an internal source. From the first condition it follows that the shape of such a body must be spherical, for gravity is a spherically symmetric force field. Or, it might be spheroidal, if axisymmetric forces are also present. The source of radiation is usually nuclear energy released by fusion reactions that take place in stellar interiors, and sometimes gravitational potential energy released in contraction or collapse. By this definition, a planet, for example, is not a star, in spite of its stellar appearance, because it shines (mostly) by reflection of solar radiation. Nor can a comet be considered a star, although in early Chinese and Japanese records comets belonged with the ‘guest stars’ – those stars that appeared suddenly in the sky where none had previously been observed. Comets, like planets, shine by reflection of solar radiation and, moreover, their masses are too small for self-gravity to be of importance.

A direct implication of the definition is that stars must evolve: as they release energy produced internally, changes necessarily occur in their structure or composition, or both. This is precisely the meaning of evolution. From the above definition we may also infer that the death of a star can occur in two ways: violation of the first condition – self-gravity – meaning breakup of the star and scattering of its material into interstellar space, or violation of the second condition – internally supplied radiation of energy – that could result from exhaustion of the nuclear fuel.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×