Skip to main content Accessibility help
×
  • Cited by 37
Publisher:
Cambridge University Press
Online publication date:
July 2013
Print publication year:
2013
Online ISBN:
9781139381864

Book description

This book is the first to treat the analytic aspects of combinatorial enumeration from a multivariate perspective. Analytic combinatorics is a branch of enumeration that uses analytic techniques to estimate combinatorial quantities: generating functions are defined and their coefficients are then estimated via complex contour integrals. The multivariate case involves techniques well known in other areas of mathematics but not in combinatorics. Aimed at graduate students and researchers in enumerative combinatorics, the book contains all the necessary background, including a review of the uses of generating functions in combinatorial enumeration as well as chapters devoted to saddle point analysis, Groebner bases, Laurent series and amoebas, and a smattering of differential and algebraic topology. All software along with other ancillary material can be located via the book's website, http://www.cs.auckland.ac.nz/~mcw/Research/mvGF/asymultseq/ACSVbook/.

Reviews

'It deserves a place on college library shelves … it provides a nearly universal answer to the 'what can I do with this stuff?' question that students pose in so many basic courses. Recommended.'

D. V. Feldman Source: Choice

'The organization of the book is exemplary. A thorough and well-designed introduction provides full context and is worth rereading as one works through the book … The treatment of analytic methods for multivariate generating functions in this book is breathtaking. A detailed overview is followed by thorough chapters on smooth point asymptotics, multiple point asymptotics, and cone point asymptotics, then four worked examples, and extensions. The end result, a combination of analytic, Morse-theoretic, algebraic, topological, and asymptotic methods, is surprisingly effective. Indeed, it is astonishing that the authors have found relevant ways to exploit such a broad spectrum of mathematical tools to address the problem at hand.'

Robert Sedgewick Source: Bulletin of the AMS

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

References
References
Adamczewski, B. and J. P., Bell (May 2012). “Diagonalization and rationalization of algebraic Laurent series.” ArXiv e-prints. arXiv:math.NT/1205.4090 [math.NT] (cit. on p. 314).
Aizenberg, I. A. and A. P., Yuzhakov (1983). Integral representations and residues in multidimensional complex analysis. Vol. 58. Translations of Mathematical Monographs. Translated from the Russian by H. H., McFaden, Translation edited by Lev J., Leifman. Providence, RI: American Mathematical Society (cit. on pp. 8, 251).
Aldous, D. (2013). “Power laws and killed branching random walls.” Webpage http://www.stat.be - keley.edu/user/aldous/Research/OP/brw.html. Accessed 2013-01-24 (cit. on p. 61).
Ambainis, A. et al. (2001). “One-dimensional quantum walks.” In: Proceedings of the 33rd Annual ACM Symposium on Theory of Computing. New York: ACM Press, pp. 37–49 (cit. on p. 190).
Askey, R. and G., Gasper (1972). “Certain rational functions whose power series have positive coefficients.” Amer. Math. Monthly 79, pp. 327–341.
Atiyah, M., R., Bott, and L., Gårding (1970). “Lacunas for hyperbolic differential operators with constant coefficients, I.” Acta Mathematica 124, pp. 109–189 (cit. on pp. 12, 253, 257, 261, 262, 267, 276).
Banderier, C., P., Flajolet, et al. (2001). “Random maps, coalescing saddles, singularity analysis, and Airy phenomena.” Random Structures Algorithms 19. Analysis of algorithms (Krynica Morska, 2000), pp. 194–246 (cit. on p. 313).
Banderier, C. and P., Hitczenko (2012). “Enumeration and asymptotics of restricted compositions having the same number of parts.” Discrete Appl. Math. 160, pp. 2542–2554 (cit. on p. 315).
Baryshnikov, Y., W., Brady, et al. (2010). “Two-dimensional quantum random walk.” J. Stat. Phys. 142, pp. 78–107 (cit. on pp. 159, 164, 186, 190, 207, 297, 298).
Baryshnikov, Y. and R., Pemantle (2011). “Asymptotics of multivariate sequences, part III: quadratic points.” Adv. Math. 228, pp. 3127–3206 (cit. on pp. 8, 12, 149, 159, 207, 253, 260–263, 265, 267, 268, 275, 276).
Baryshnikov, Y. and R., Pemantle (2013). “Morse theory of the complement of the complexification of a real hyperplane arrangement.” In preparation (cit. on p. 236).
Bena, I. et al. (May 2012). “Scaling BPS Solutions and pure-Higgs States.” ArXiv e-prints. arXiv:hep-th/1205.5023 [hep-th] (cit. on p. 207).
Bender, E. A. (1973). “Central and local limit theorems applied to asymptotic enumeration.” J. Combinatorial Theory Ser.A 15, pp. 91–111 (cit. on pp. 6, 287).
Bender, E. A. (1974). “Asymptotic methods in enumeration.” SIAM Rev. 16, pp. 485–515 (cit. on p. 6).
Bender, E. A. and J. R., Goldman (1970/1971). “Enumerative uses of generating functions.” Indiana Univ. Math. J. 20, pp. 753–765 (cit. on p. 43).
Bender, E. A. and L. B., Richmond (1983). “Central and local limit theorems applied to asymptotic enumeration. II. Multivariate generating functions.” J. Combin. Theory Ser.A 34, pp. 255–265 (cit. on pp. xi, 6, 7, 163, 207, 286, 287).
Bender, E. and L. B., Richmond (1996). “Admissible functions and asymptotics for labelled structures by number of components.” Elec. J. Combin. 3, Research Paper 34, 23 pp. (electronic).
Bender, E. A. and L. B., Richmond (1999). “Multivariate asymptotics for products of large powers with applications to Lagrange inversion.” Electron. J. Combin. 6, Research Paper 8, 21 pp. (electronic) (cit. on pp. 7, 287).
Bender, E. A., L. B., Richmond, and S. G., Williamson (1983). “Central and local limit theorems applied to asymptotic enumeration. III. Matrix recursions.” J. Combin. Theory Ser. A 35, pp. 263–278 (cit. on p. 7).
Bender, E. and S. G., Williamson (1991). Foundations of Applied Combinatorics. Redwood City, CA: Addison Wesley.
Berenstein, C. A. and R., Gay (1991). Complex variables. Vol. 125. Graduate Texts in Mathematics. An introduction. New York: Springer-Verlag (cit. on p. 6).
Bertozzi, A. and J., McKenna (1993). “Multidimensional residues, generating functions, and their application to queueing networks.” SIAM Rev. 35, pp. 239–268 (cit. on pp. 8, 221, 251).
Bierstone, E. and P., Milman (1997). “Canonical desingularization in characteristic zero by blowing up the maximum strata of a local invariant.” Inventiones Mathematicae 128, pp. 207–302 (cit. on p. 276).
Björner, A. et al. (1999). Oriented matroids. Second ed. Vol. 46. Encyclopedia of Mathematics and its Applications. Cambridge: Cambridge University Press (cit. on p. 213).
Bleistein, N. and R. A., Handelsman (1986). Asymptotic expansions of integrals. Second ed. New York: Dover Publications (cit. on pp. 11, 78, 87, 104).
Borcea, J., P., Branden, and T., Liggett (2009). “Negative dependence and the geometry of polynomials.” J. AMS 22, pp. 521–567 (cit. on p. 276).
Bostan, A. et al. (2007). “Differential equations for algebraic functions.” In: ISSAC 2007. New York: ACM, pp. 25–32 (cit. on p. 44).
Bousquet-Mélou, M. and M., Petkovšek (2000). “Linear recurrences with constant coefficients: the multivariate case.” Discrete Math. 225. Formal power series and algebraic combinatorics (Toronto, ON, 1998), pp. 51–75 (cit. on pp. 26, 28, 30, 32, 43).
Boyd, S. and L., Vandenberghe (2004). Convex optimization. Cambridge: Cambridge University Press (cit. on p. 204).
Bressler, A. and R., Pemantle (2007). “Quantum random walks in one dimension via generating functions.” In: 2007 Conference on Analysis of Algorithms, AofA 07. Discrete Math. Theor. Comput. Sci. Proc., AH. Assoc. Discrete Math. Theor. Comput. Sci., Nancy, pp. 403–412 (cit. on p. 284).
Briand, E. (2010). “Covariants vanishing on totally decomposable forms.” In: Liaison, Schottky problem and invariant theory. Vol. 280. Progr. Math. Basel: Birkhäuser Verlag, pp. 237–256 (cit. on p. 219).
Canfield, E. R. and B., McKay (2009). “The asymptotic volume of the Birkhoff polytope.” Online J. Anal. Comb. 4, p. 4 (cit. on p. 252).
Carteret, H. A., M. E. H., Ismail, and B., Richmond (2003). “Three routes to the exact asymptotics for the one-dimensional quantum walk.” J. Phys. A 36 (33), pp. 8775–8795 (cit. on p. 284).
Castro, F. (1984). “Théorème de division pour les opérateurs diffèrentiels et calcul des multiplicités.” PhD thesis. Thèse de 3ème cycle, Université de Paris 7 (cit. on p. 117).
Chabaud, C. (2002). “Séries génératrices algébriques: asymptotique et applications combinatoires.” PhD thesis. Université Paris VI (cit. on p. 292).
Chayes, J. T. and L., Chayes (1986). “Ornstein-Zernike behavior for self-avoiding walks at all non-critical temperatures.” Comm. Math. Phys. 105, pp. 221–238 (cit. on p. 200).
Chen, W. Y. C., E., Deutsch, and S., Elizalde (2006). “Old and young leaves on plane trees.” Eur. J. Combin. 27, pp. 414–427 (cit. on p. 316).
Chyzak, F., M., Mishna, and B., Salvy (2005). “Effective scalar products of D-finite symmetric functions.” J. Combin. Theory Ser. A 112, pp. 1–43 (cit. on p. 44).
Chyzak, F. and B., Salvy (1998). “Non-commutative elimination in Ore algebras proves multivariate identities.” J. Symbolic Comput. 26, pp. 187–227 (cit. on pp. 39, 117, 118).
Comtet, L. (1964). “Calcul pratique des coefficients de Taylor d'une fonction algébrique.” Enseignement Math. (2) 10, pp. 267–270 (cit. on p. 35).
Comtet, L. (1974). Advanced combinatorics. enlarged. The art of finite and infinite expansions. Dordrecht: D. Reidel Publishing (cit. on pp. 20, 194, 281).
Conway, J. B. (1978). Functions of one complex variable. Second ed. Vol. 11. Graduate Texts in Mathematics. New York: Springer-Verlag (cit. on pp. 6, 49, 126, 258).
Corteel, S., G., Louchard, and R., Pemantle (2004). “Common intervals of permutations.” In: Mathematics and computer science. III. Trends Math. Basel: Birkhäuser, pp. 3–14 (cit. on p. 20).
Coutinho, S. (1995). A primer of algebraic D-modules. Vol. 33. London Mathematical Society Student Texts. Cambridge: Cambridge University Press (cit. on p. 117).
Cox, D. A., J., Little, and D., O'Shea (2005). Using algebraic geometry. Second ed. Vol. 185. Graduate Texts in Mathematics. New York: Springer (cit. on pp. 11, 107, 118).
Cox, D., J., Little, and D., O'Shea (2007). Ideals, varieties, and algorithms. Third ed. Undergraduate Texts in Mathematics. An introduction to computational algebraic geometry and commutative algebra. New York: Springer (cit. on pp. 108, 118).
De Bruijn, N. G. (1981). Asymptotic methods in analysis. Third ed. New York: Dover Publications (cit. on p. 87).
Delabaere, E. and C. J., Howls (2002). “Global asymptotics for multiple integrals with boundaries.” Duke Math. J. 112, pp. 199–264 (cit. on p. 315).
De Loera, J. A. and B., Sturmfels (2003). “Algebraic unimodular counting.” Math. Program. 96. Algebraic and geometric methods in discrete optimization, pp. 183–203 (cit. on pp. 231, 251, 252).
Denef, J. and L., Lipshitz (1987). “Algebraic power series and diagonals.” J. Number Theory 26, pp. 46–67 (cit. on p. 314).
DeVore, R. A. and G. G., Lorentz (1993). Constructive approximation. Vol. 303. Grundlehren der Mathematischen Wissenschaften. Berlin: Springer-Verlag (cit. on pp. 242, 243).
DeVries, T. (2011). “Algorithms for bivariate singularity analysis.” PhD thesis. University of Pennsylvania (cit. on pp. 143, 183, 280).
DeVries, T. (2010). “A case study in bivariate singularity analysis.” In: Algorithmic probability and combinatorics. Vol. 520. Contemp. Math. Providence, RI: Amer. Math. Soc., pp. 61–81 (cit. on pp. 8, 183, 184).
DeVries, T., J., van der Hoeven, and R., Pemantle (2012). “Effective asymptotics for smooth bivariate generating functions.” Online J. Anal. Comb. 7, to appear (cit. on pp. 8, 178–180, 183).
Dobrushkin, V. (2010). Methods in algorithmic analysis. Boca Raton, CRC Press.
Drmota, M., B., Gittenberger, and T., Klausner (2005). “Extended admissible functions and Gaussian limiting distributions.” Math. Comp. 74. no. 252 (electronic).
Du, P. et al. (2011). “The Aztec Diamond edge-probability generating function.” Preprint (cit. on p. 273).
Durrett, R. (2004). Probability: theory and examples. Third ed. Belmont, CA: Duxbury Press, p. 497 (cit. on p. 288).
Eisenbud, D. (1995). Commutative algebra. Vol. 150. Graduate Texts in Mathematics. With a view toward algebraic geometry. New York: Springer-Verlag (cit. on p. 353).
Fayolle, G., R., Iasnogorodski, and V., Malyshev (1999). Random walks in the quarter-plane. Vol. 40. Applications of Mathematics (New York). Algebraic methods, boundary value problems and applications. Berlin: Springer-Verlag (cit. on pp. xi, 43).
Flajolet, P. and A., Odlyzko (1990). “Singularity analysis of generating functions.” SIAM J. Discrete Math. 3, pp. 216–240 (cit. on pp. 58, 63).
Flajolet, P. and R., Sedgewick (2009). Analytic combinatorics. Cambridge University Press, p. 824 (cit. on pp. xi, 10, 15, 63, 292, 293, 295, 304, 306).
Flatto, L. and S., Hahn (1984). “Two parallel queues created by arrivals with two demands. I.” SIAM J. Appl. Math. 44, pp. 1041–1053 (cit. on p. 43).
Flatto, L. and H. P., McKean (1977). “Two queues in parallel.” Comm. Pure Appl. Math. 30, pp. 255–263 (cit. on p. 43).
Flaxman, A., A. W., Harrow, and G. B., Sorkin (2004). “Strings with maximally many distinct subsequences and substrings.” Electron. J. Combin. 11, Research Paper 8, 10 pp. (electronic) (cit. on pp. 113, 290).
Foata, D. and M.-P., Schützenberger (1970). Théorie géométrique des polynômes eulériens. Lecture Notes in Mathematics, Vol. 138. Berlin: Springer-Verlag (cit. on p. 43).
Forsberg, M., M., Passare, and A., Tsikh (2000). “Laurent determinants and arrangements of hyperplane amoebas.” Adv. Math. 151, pp. 45–70 (cit. on p. 127).
Furstenberg, H. (1967). “Algebraic functions over finite fields.” J. Algebra 7, pp. 271–277 (cit. on pp. 38, 314).
Galligo, A. (1985). “Some algorithmic questions on ideals of differential operators.” In: EUROCAL '85, Vol. 2 (Linz, 1985). Vol. 204. Lecture Notes in Comput. Sci. Berlin: Springer, pp. 413–421 (cit. on p. 117).
Gao, Z. and L. B., Richmond (1992). “Central and local limit theorems applied to asymptotic enumeration. IV. Multivariate generating functions.” J. Comput. Appl. Math. 41. Asymptotic methods in analysis and combinatorics, pp. 177–186 (cit. on pp. 7, 287).
Gårding, L. (1950). “Linear hyperbolic partial differential equations with constant coefficients.” Acta Math. 85, pp. 1–62 (cit. on pp. 149, 261).
Gel'fand, I. M., M. M., Kapranov, and A. V., Zelevinsky (1994). Discriminants, resultants, and multidimensional determinants. Mathematics: Theory & Applications. Boston, MA: Birkhäuser Boston (cit. on pp. xii, 11, 118, 124, 127–129, 131).
Gel'fand, I. and G., Shilov (1964). Generalized Functions, Volume I: Properties and Operations. Trans. by E., Saletan. New York: Academic Press (cit. on p. 268).
Gessel, I. M. (1981). “Two theorems of rational power series.” Utilitas Math. 19, pp. 247–254 (cit. on p. 44).
Gittenberger, B. and Mandlburger, (2006). “Haryman admissible functions in several variables.” Elec. J. Combin. 13, Research Paper 106, 9 pp. (electronic).
Goresky, M. and R., MacPherson (1988). Strati?ed Morse theory. Vol. 14. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. Berlin: Springer-Verlag (cit. on pp. 11, 99, 142, 348, 351, 354–360).
Goulden, I. P. and D. M., Jackson (2004). Combinatorial enumeration. With a foreword by Gian-Carlo Rota, Reprint of the 1983 original. Mineola, NY: Dover Publications (cit. on pp. 15, 22, 43, 281, 292).
Gourdon, X. and B., Salvy (1996). “Effective asymptotics of linear recurrences with rational coefficients.” In: Proceedings of the 5th Conference on Formal Power Series and Algebraic Combinatorics (Florence, 1993). Vol. 153, pp. 145–163 (cit. on pp. 47, 183).
Gülen, O. (1997). “Hyperbolic polynomials and interior point methods for convex programming.” Math. Oper. Res. 22, pp. 350–377 (cit. on p. 257).
Hardy, G. H. and S., Ramanujan (2000a). “Asymptotic formulæ for the distribution of integers of various types [Proc. London Math. Soc. (2) 16 (1917), 112–132].” In: Collected papers of Srinivasa Ramanujan. AMS Chelsea Publ., Providence, RI, pp. 245–261 (cit. on p. 62).
Hardy, G. H. and S., Ramanujan (2000b). “Une formule asymptotique pour le nombre des partitions de n [Comptes Rendus, 2 Jan. 1917].” In: Collected papers of Srinivasa Ramanujan. AMS Chelsea Publ., Providence, RI, pp. 239–241 (cit. on p. 62).
Hautus, M. L. J. and D. A., Klarner (1971). “The diagonal of a double power series.” Duke Math. J. 38, pp. 229–235 (cit. on pp. 38, 283).
Hayman, W. K. (1956). “A generalisation of Stirling's formula.” J. Reine Angew. Math. 196, pp. 67–95 (cit. on pp. xi, 51, 63, 137).
Henrici, P. (1988). Applied and computational complex analysis. Vol. 1. Wiley Classics Library. Power series – integration – conformal mapping – location of zeros, Reprint of the 1974 original, A Wiley-Interscience Publication. New York: John Wiley & Sons (cit. on p. 6).
Henrici, P. (1991). Applied and computational complex analysis. Vol. 2. Wiley Classics Library. Special functions – integral transforms – asymptotics – continued fractions, Reprint of the 1977 original, A Wiley-Interscience Publication. New York: John Wiley & Sons (cit. on pp. 6, 56, 63, 87).
Hironaka, H. (1973). “Subanalytic sets.” In: Number theory, algebraic geometry and commutative algebra, in honor of Yasuo Akizuki. Tokyo: Kinokuniya, pp. 453–493 (cit. on p. 351).
Hörmander, L. (1983). The analysis of linear partial differential operators. I. Vol. 256. Grundlehren der Mathematischen Wissenschaften. Distribution theory and Fourier analysis. Berlin: Springer-Verlag (cit. on p. 308).
Hörmander, L. (1990). An introduction to complex analysis in several variables. Third ed. Vol. 7. North-Holland Mathematical Library. Amsterdam: North-Holland Publishing (cit. on pp. 204, 326, 337, 339).
Hwang, H.-K. (1996). “Large deviations for combinatorial distributions. I. Central limit theorems.” Ann. Appl. Probab. 6, pp. 297–319 (cit. on p. 287).
Hwang, H.-K. (1998a). “Large deviations of combinatorial distributions. II. Local limit theorems.” Ann. Appl. Probab. 8, pp. 163–181 (cit. on p. 287).
Hwang, H.-K. (1998b). “On convergence rates in the central limit theorems for combinatorial structures.” Eur. J. Combin. 19, pp. 329–343 (cit. on p. 287).
Isaacson, E. and H. B., Keller (1994). Analysis of numerical methods. Corrected reprint of the 1966 original [Wiley, New York; MR0201039 (34 #924)]. New York: Dover Publications (cit. on p. 30).
Jockusch, W., J., Propp, and P., Shor (Jan. 1998). “Random Domino Tilings and the Arctic Circle Theorem.” ArXiv Mathematics e-prints. arXiv:math/9801068 (cit. on p. 13).
Kaloshin, V. Y. (2005). “A geometric proof of the existence of Whitney stratifications.” Mosc. Math. J. 5, pp. 125–133 (cit. on p. 144).
Kandri-Rody, A. and V., Weispfenning (1990). “Noncommutative Gröbner bases in algebras of solvable type.” J. Symbolic Comput. 9, pp. 1–26 (cit. on p. 117).
Kashiwara, M. (1978). “On the holonomic systems of linear differential equations. II.” Invent. Math. 49, pp. 121–135 (cit. on p. 118).
Kauers, M. and P., Paule (2011). The Concrete Tetrahedron. Leipzig: Springer-Wien.
Kauers, M. and D., Zeilberger (2011). “The computational challenge of enumerating high-dimensional rook walks.” Advances in Applied Mathematics 47, pp. 813–819 (cit. on p. 315).
Kenyon, R. and A., Okounkov (2007). “Limit shapes and the complex Burgers equation.” Acta Math. 199, pp. 263–302 (cit. on p. 274).
Kesten, H. (1978). “Branching Brownian motion with absorption.” Stochastic Processes Appl. 7, pp. 9–47 (cit. on p. 24).
Knuth, D. (2006). The Art of Computer Programming. Vol. I–IV. Upper Saddle River, NJ: Addison-Wesley (cit. on p. xi).
Kogan, Y. (2002). “Asymptotic expansions for large closed and loss queueing networks.” Math. Probl. Eng. 8, pp. 323–348 (cit. on p. 221).
Krantz, S. G. (2001). Function theory of several complex variables. Reprint of the 1992 edition. AMS Chelsea Publishing, Providence, RI (cit. on p. 131).
Kredel, H. (1993). Solvable Polynomial Rings. Aachen, Germany: Verlag Shaker (cit. on p. 117).
Larsen, M. and R., Lyons (1999). “Coalescing particles on an interval.” J. Theoret. Probab. 12, pp. 201–205 (cit. on pp. 13, 27).
Lee, J. M. (2003). Introduction to smooth manifolds. Vol. 218. Graduate Texts in Mathematics. New York: Springer-Verlag (cit. on p. 339).
Leray, J. (1959). “Le calcul différentiel et intégral sur une variété analytique complexe. (Problème de Cauchy. III).” Bull. Soc. Math. France 87, pp. 81–180 (cit. on p. 8).
Lichtin, B. (1991). “The asymptotics of a lattice point problem associated to a finite number of polynomials. I.” Duke Math. J. 63, pp. 139–192 (cit. on p. 8).
Limic, V. and R., Pemantle (2004). “More rigorous results on the Kauffman-Levin model of evolution.” Ann. Probab. 32, pp. 2149–2178 (cit. on p. 45).
Lin, S. and R., Pemantle (2013). “Computation of second order asymptotics in Laplace-type integral for marginal distributions.” In preparation (cit. on p. 104).
Lipshitz, L. (1988). “The diagonal of a D-finite power series is D-finite.” J. Algebra 113, pp. 373–378 (cit. on p. 38).
Lipshitz, L. (1989). “D-finite power series.” J. Algebra 122, pp. 353–373 (cit. on pp. 36, 37, 44).
Lladser, M. (2003). “Asymptotic enumeration via singularity analysis.” PhD thesis. The Ohio State University (cit. on pp. 8, 313).
Lladser, M. (2006). “Uniform formulae for coefficients of meromorphic functions in two variables. I.” SIAM J. Discrete Math. 20, 811–828 (electronic) (cit. on pp. 8, 313).
Mikhalkin, G. (2000). “Real algebraic curves, the moment map and amoebas.” Ann. of Math. (2) 151, pp. 309–326 (cit. on p. 131).
Mikhalkin, G. (2004). “Amoebas of algebraic varieties and tropical geometry.” In: Different faces of geometry. Vol. 3. Int. Math. Ser. (N.Y.) Kluwer/Plenum, New York, pp. 257–300 (cit. on p. 131).
Milnor, J. (1963). Morse theory. Based on lecture notes by M., Spivak and R., Wells. Annals of Mathematics Studies, No. 51. Princeton, NJ: Princeton University Press (cit. on pp. 11, 340, 341, 343, 344, 349, 360).
Milnor, J. (1968). Singular points of complex hypersurfaces. Annals of Mathematics Studies, No. 61. Princeton, NJ: Princeton University Press (cit. on p. 140).
Mostowski, T. and E., Rannou (1991). “Complexity of the computation of the canonical Whitney strati?cation of an algebraic set in Cn.” In: Applied algebra, algebraic algorithms and error-correcting codes (New Orleans, LA, 1991). Vol. 539. Lecture Notes in Comput. Sci. Berlin: Springer, pp. 281–291 (cit. on p. 352).
Munarini, E. and N. Z., Salvi (2002/2004). “Binary strings without zigzags.” Sém. Lothar. Combin. 49, Art. B49h, 15 pp. (electronic).
Munkres, J. R. (1984). Elements of algebraic topology. Menlo Park, CA: Addison-Wesley Publishing (cit. on pp. 328–330).
Noble, R. (2010). “Asymptotics of a family of binomial sums.” J. Number Theory 130, pp. 2561–2585 (cit. on p. 299).
Odlyzko, A. M. (1995). “Asymptotic enumeration methods.” In: Handbook of combinatorics, Vol. 1, 2. Amsterdam: Elsevier, pp. 1063–1229 (cit. on pp. xi, 7, 278).
Orlik, P. and H., Terao (1992). Arrangements of hyperplanes. Vol. 300. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Berlin: Springer-Verlag (cit. on p. 228).
Paris, R. B. (2011). Hadamard expansions and hyperasymptotic evaluation. Vol. 141. Encyclopedia of Mathematics and its Applications. An extension of the method of steepest descents. Cambridge: Cambridge University Press (cit. on p. 315).
Paris, R. B. and D., Kaminski (2001). Asymptotics and Mellin-Barnes integrals. Vol. 85. Encyclopedia of Mathematics and its Applications. Cambridge: Cambridge University Press (cit. on p. 315).
Passare, M., D., Pochekutov, and A., Tsikh (2011). “Amoebas of complex hypersurfaces in statistical thermodynamics.” ArXiv e-prints. arXiv:math-ph/1112.4332 [math-ph] (cit. on p. 131).
Pemantle, R. (2000). “Generating functions with high-order poles are nearly polynomial.” In: Mathematics and computer science (Versailles, 2000). Trends Math. Basel: Birkhäuser, pp. 305–321 (cit. on p. 252).
Pemantle, R. (2010). “Analytic combinatorics in d variables: an overview.” In: Algorithmic probability and combinatorics. Vol. 520. Contemp. Math. Providence, RI: Amer. Math. Soc., pp. 195–220 (cit. on pp. 138, 143, 144, 159, 355).
Pemantle, R. and M. C., Wilson (2002). “Asymptotics of multivariate sequences. I. Smooth points of the singular variety.” J. Combin. Theory Ser. A 97, pp. 129–161 (cit. on pp. 8, 12, 13, 148, 159, 163, 164, 169, 192, 207, 251, 290).
Pemantle, R. and M. C., Wilson (2004). “Asymptotics of multivariate sequences. II. Multiple points of the singular variety.” Combin. Probab. Comput. 13, pp. 735–761 (cit. on pp. 8, 12, 13, 104, 148, 159, 222, 251).
Pemantle, R. and M. C., Wilson (2008). “Twenty combinatorial examples of asymptotics derived from multivariate generating functions.” SIAM Rev. 50, pp. 199–272 (cit. on pp. 8, 137, 221, 278, 289, 295, 299).
Pemantle, R. and M. C., Wilson (2010). “Asymptotic expansions of oscillatory integrals with complex phase.” In: Algorithmic probability and combinatorics. Vol. 520. Contemp. Math. Providence, RI: Amer. Math. Soc., pp. 221–240 (cit. on pp. 8, 104, 105, 162, 316).
Petersen, T. K. and D., Speyer (2005). “An arctic circle theorem for Groves.” J. Combin. Theory Ser.A 111, pp. 137–164 (cit. on p. 271).
Petkovšek, M., H. S., Wilf, and D., Zeilberger (1996). A = B. Wellesley, MA: A K Peters (cit. on p. 44).
Pólya, G. (1969). “On the number of certain lattice polygons.” J. Combin. Theory 6, pp. 102–105 (cit. on p. 278).
Pólya, G. and G., Szegő (1998). Problems and theorems in analysis. II. Classics in Mathematics. Theory of functions, zeros, polynomials, determinants, number theory, geometry, Translated from the German by C. E., Billigheimer, Reprint of the 1976 English translation. Berlin: Springer-Verlag (cit. on p. 30).
Raichev, A. and M. C., Wilson (2007). “A new method for computing asymptotics of diagonal coefficients of multivariate generating functions.” In: 2007 Conference on Analysis of Algorithms, AofA 07. Discrete Math. Theor. Comput. Sci. Proc., AH. Assoc. Discrete Math. Theor. Comput. Sci., Nancy, pp. 439–449 (cit. on p. 314).
Raichev, A. and M. C., Wilson (2008). “Asymptotics of coefficients of multivariate generating functions: improvements for smooth points.” Electron. J. Combin. 15, Research Paper 89, 17 (cit. on pp. 8, 314).
Raichev, A. and M. C., Wilson (Feb. 2012a). “A new approach to asymptotics of Maclaurin coefficients of algebraic functions.” ArXiv e-prints. arXiv:1202.3826 [math.CO] (cit. on pp. 183, 314).
Raichev, A. and M. C., Wilson (2012b). “Asymptotics of coefficients of multivariate generating functions: improvements for multiple points.” Online J. Anal. Combin. 7, to appear (cit. on pp. 8, 309, 314).
Rannou, E. (1998). “The complexity of stratification computation.” Discrete Comput. Geom. 19, pp. 47–78 (cit. on p. 352).
Riddell, R. J. Jr., and G. E., Uhlenbeck (1953). “On the theory of the virial development of the equation of state of mono-atomic gases.” J. Chem. Phys. 21, pp. 2056–2064 (cit. on p. 43).
Riesz, M. (1949). “L'intégrale de Riemann-Liouville et le problème de Cauchy.” Acta Mathematica 81, pp. 1–223 (cit. on p. 267).
Rockefellar, R. T. (1966). Convex analysis. Princeton: Princeton University Press (cit. on p. 130).
Rogers, D. G. (1978). “Pascal triangles, Catalan numbers and renewal arrays.” Discrete Math. 22, pp. 301–310 (cit. on p. 288).
Rubel, L. A. (1983). “Some research problems about algebraic differential equations.” Trans. Amer. Math. Soc. 280, pp. 43–52 (cit. on p. 44).
Rubel, L. A. (1992). “Some research problems about algebraic differential equations. II.” Illinois J. Math. 36, pp. 659–680 (cit. on p. 44).
Safonov, K. V. (1987). “On conditions for the sum of a power series to be algebraic and rational.” Mat. Zametki 41, pp. 325–332, 457 (cit. on p. 305).
Safonov, K. V. (2000). “On power series of algebraic and rational functions in Cn.” J. Math. Anal. Appl. 243, pp. 261–277 (cit. on pp. 305, 307, 308).
Saito, M., B., Sturmfels, and N., Takayama (2000). Gröbner deformations of hypergeometric differential equations. Vol. 6. Algorithms and Computation in Mathematics. Berlin: Springer-Verlag (cit. on pp. 44, 117).
Shapiro, L. W. et al. (1991). “The Riordan group.” Discrete Appl. Math. 34. Combinatorics and theoretical computer science (Washington, DC, 1989), pp. 229–239 (cit. on p. 288).
Sprugnoli, R. (1994). “Riordan arrays and combinatorial sums.” Discrete Math. 132, pp. 267–290 (cit. on p. 288).
Stanley, R. P. (1997). Enumerative combinatorics. Vol. 1. Vol. 49. Cambridge Studies in Advanced Mathematics. With a foreword by Gian-Carlo Rota, Corrected reprint of the 1986 original. Cambridge: Cambridge University Press (cit. on pp. 13, 15, 43, 231, 278).
Stanley, R. P. (1999). Enumerative combinatorics. Vol. 2. Vol. 62. Cambridge Studies in Advanced Mathematics. With a foreword by Gian-Carlo Rota and appendix 1 by Sergey Fomin. Cambridge: Cambridge University Press (cit. on pp. 25, 33–35, 38, 43, 302, 304).
Stanley, R. P. (1980). “Differentiably finite power series.” Euro. J. Combin. 1, pp. 175–188 (cit. on p. 44).
Stein, E. M. (1993). Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals. Vol. 43. Princeton Mathematical Series. With the assistance of Timothy S. Murphy, Monographs in Harmonic Analysis, III. Princeton, NJ: Princeton University Press (cit. on pp. 81, 87, 94, 104, 105).
Sturmfels, B. (2002). Solving systems of polynomial equations. Vol. 97. CBMS regional conference series in mathematics. Providence RI: American Mathematical Society, pp. viii+152 (cit. on p. 118).
Szegö, G. (1933). “Über gewisse Potenzreihen mit lauter positiven Koeffizienten.” Math. Z. 37, pp. 674–688 (cit. on p. 270).
Theobald, T. (2002). “Computing amoebas.” Experiment. Math. 11, 513–526 (2003) (cit. on pp. 127, 131).
Van der Hoeven, J. (2009). “Ball arithmetic.” HAL preprints. HAL: 00432152 (cit. on p. 183).
Van Lint, J. H. and R. M., Wilson (2001). A course in combinatorics. Second ed. Cambridge: Cambridge University Press (cit. on pp. 10, 15).
Varchenko, A. N. (1977). “Newton polyhedra and estimation of oscillating integrals.” Functional Anal. Appl. 10, pp. 175–196 (cit. on pp. 161, 250).
Vince, A. and M., Bona (Apr. 2012). “The number of ways to assemble a graph.” ArXiv e-prints. arXiv:1204.3842 [math.CO] (cit. on p. 316).
Wagner, D. G. (2011). “Multivariate stable polynomials: theory and application.” Bull. AMS 48, pp. 53–84 (cit. on p. 276).
Ward, M. (2010). “Asymptotic rational approximation to Pi: Solution of an unsolved problem posed by Herbert Wilf.” Disc. Math. Theor. Comp. Sci. AM, pp. 591–602 (cit. on p. 63).
Warner, F. W. (1983). Foundations of differentiable manifolds and Lie groups. Vol. 94. Graduate Texts in Mathematics. Corrected reprint of the 1971 edition. New York: Springer-Verlag (cit. on pp. 321, 324, 339).
Whitney, H. (1965). “Tangents to an analytic variety.” Annals Math. 81, pp. 496–549 (cit. on p. 98).
Wilf, H. S. (1994). Generatingfunctionology. Second ed. Boston, MA: Academic Press (cit. on p. 278).
Wilf, H. S. (2006). Generatingfunctionology. Third ed. Available at http://www.math.upenn.edu/~wilf/DownldGF.html. Wellesley, MA: A K Peters (cit. on pp. 10, 15, 43).
Wilson, M. C. (2005). “Asymptotics for generalized Riordan arrays.” In: 2005 International Conference on Analysis of Algorithms. Discrete Math. Theor. Comput. Sci. Proc., AD. Assoc. Discrete Math. Theor. Comput. Sci., Nancy, 323–333 (electronic) (cit. on pp. 8, 288, 293).
Wimp, J. and D., Zeilberger (1985). “Resurrecting the asymptotics of linear recurrences.” J. Math. Anal. Appl. 111, pp. 162–176 (cit. on p. 314).
Wong, R. (2001). Asymptotic approximations of integrals. Vol. 34. Classics in Applied Mathematics. Corrected reprint of the 1989 original. Philadelphia, PA: Society for Industrial and Applied Mathematics (SIAM) (cit. on pp. 87, 104).
Zeilberger, D. (1982). “Sister Celine's technique and its generalizations.” J. Math. Anal. Appl. 85, pp. 114–145 (cit. on p. 44).

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.