Skip to main content Accessibility help
×
  • Cited by 41
Publisher:
Cambridge University Press
Online publication date:
July 2013
Print publication year:
2013
Online ISBN:
9781139381864

Book description

This book is the first to treat the analytic aspects of combinatorial enumeration from a multivariate perspective. Analytic combinatorics is a branch of enumeration that uses analytic techniques to estimate combinatorial quantities: generating functions are defined and their coefficients are then estimated via complex contour integrals. The multivariate case involves techniques well known in other areas of mathematics but not in combinatorics. Aimed at graduate students and researchers in enumerative combinatorics, the book contains all the necessary background, including a review of the uses of generating functions in combinatorial enumeration as well as chapters devoted to saddle point analysis, Groebner bases, Laurent series and amoebas, and a smattering of differential and algebraic topology. All software along with other ancillary material can be located via the book's website, http://www.cs.auckland.ac.nz/~mcw/Research/mvGF/asymultseq/ACSVbook/.

Reviews

'It deserves a place on college library shelves … it provides a nearly universal answer to the 'what can I do with this stuff?' question that students pose in so many basic courses. Recommended.'

D. V. Feldman Source: Choice

'The organization of the book is exemplary. A thorough and well-designed introduction provides full context and is worth rereading as one works through the book … The treatment of analytic methods for multivariate generating functions in this book is breathtaking. A detailed overview is followed by thorough chapters on smooth point asymptotics, multiple point asymptotics, and cone point asymptotics, then four worked examples, and extensions. The end result, a combination of analytic, Morse-theoretic, algebraic, topological, and asymptotic methods, is surprisingly effective. Indeed, it is astonishing that the authors have found relevant ways to exploit such a broad spectrum of mathematical tools to address the problem at hand.'

Robert Sedgewick Source: Bulletin of the AMS

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

References
References
Adamczewski, B. and J. P., Bell (May 2012). “Diagonalization and rationalization of algebraic Laurent series.” ArXiv e-prints Google Scholar. arXiv:math.NT/1205.4090 [math.NT] (cit. on p. 314).
Aizenberg, I. A. and A. P., Yuzhakov (1983). Integral representations and residues in multidimensional complex analysis. Vol. 58. Translations of Mathematical Monographs. Translated from the Russian by H. H., McFaden, Translation edited by Lev J., Leifman. Providence, RI CrossRef | Google Scholar: American Mathematical Society (cit. on pp. 8, 251).
Aldous, D. (2013 Google Scholar). “Power laws and killed branching random walls.” Webpage http://www.stat.be - keley.edu/user/aldous/Research/OP/brw.html. Accessed 2013-01-24 (cit. on p. 61).
Ambainis, A. et al. (2001). “One-dimensional quantum walks.” In: Proceedings of the 33rd Annual ACM Symposium on Theory of Computing. New York Google Scholar: ACM Press, pp. 37–49 (cit. on p. 190).
Askey, R. and G., Gasper (1972). “Certain rational functions whose power series have positive coefficients.” Amer. Math. Monthly 79 CrossRef | Google Scholar, pp. 327–341.
Atiyah, M., R., Bott, and L., Gårding (1970). “Lacunas for hyperbolic differential operators with constant coefficients, I.” Acta Mathematica 124 CrossRef | Google Scholar, pp. 109–189 (cit. on pp. 12, 253, 257, 261, 262, 267, 276).
Banderier, C., P., Flajolet, et al. (2001). “Random maps, coalescing saddles, singularity analysis, and Airy phenomena.” Random Structures Algorithms 19 CrossRef | Google Scholar. Analysis of algorithms (Krynica Morska, 2000), pp. 194–246 (cit. on p. 313).
Banderier, C. and P., Hitczenko (2012). “Enumeration and asymptotics of restricted compositions having the same number of parts.” Discrete Appl. Math. 160 CrossRef | Google Scholar, pp. 2542–2554 (cit. on p. 315).
Baryshnikov, Y., W., Brady, et al. (2010). “Two-dimensional quantum random walk.” J. Stat. Phys. 142 Google Scholar, pp. 78–107 (cit. on pp. 159, 164, 186, 190, 207, 297, 298).
Baryshnikov, Y. and R., Pemantle (2011). “Asymptotics of multivariate sequences, part III: quadratic points.” Adv. Math. 228 CrossRef | Google Scholar, pp. 3127–3206 (cit. on pp. 8, 12, 149, 159, 207, 253, 260–263, 265, 267, 268, 275, 276).
Baryshnikov, Y. and R., Pemantle (2013). “Morse theory of the complement of the complexification of a real hyperplane arrangement.” In preparation Google Scholar (cit. on p. 236).
Bena, I. et al. (May 2012). “Scaling BPS Solutions and pure-Higgs States.” ArXiv e-prints Google Scholar. arXiv:hep-th/1205.5023 [hep-th] (cit. on p. 207).
Bender, E. A. (1973). “Central and local limit theorems applied to asymptotic enumeration.” J. Combinatorial Theory Ser.A 15 Google Scholar, pp. 91–111 (cit. on pp. 6, 287).
Bender, E. A. (1974). “Asymptotic methods in enumeration.” SIAM Rev. 16 CrossRef | Google Scholar, pp. 485–515 (cit. on p. 6).
Bender, E. A. and J. R., Goldman (1970/1971). “Enumerative uses of generating functions.” Indiana Univ. Math. J. 20 Google Scholar, pp. 753–765 (cit. on p. 43).
Bender, E. A. and L. B., Richmond (1983). “Central and local limit theorems applied to asymptotic enumeration. II. Multivariate generating functions.” J. Combin. Theory Ser.A 34 CrossRef | Google Scholar, pp. 255–265 (cit. on pp. xi, 6, 7, 163, 207, 286, 287).
Bender, E. and L. B., Richmond (1996). “Admissible functions and asymptotics for labelled structures by number of components.” Elec. J. Combin. 3 Google Scholar, Research Paper 34, 23 pp. (electronic).
Bender, E. A. and L. B., Richmond (1999). “Multivariate asymptotics for products of large powers with applications to Lagrange inversion.” Electron. J. Combin. 6 Google Scholar, Research Paper 8, 21 pp. (electronic) (cit. on pp. 7, 287).
Bender, E. A., L. B., Richmond, and S. G., Williamson (1983). “Central and local limit theorems applied to asymptotic enumeration. III. Matrix recursions.” J. Combin. Theory Ser. A 35 CrossRef | Google Scholar, pp. 263–278 (cit. on p. 7).
Bender, E. and S. G., Williamson (1991). Foundations of Applied Combinatorics. Redwood City, CA Google Scholar: Addison Wesley.
Berenstein, C. A. and R., Gay (1991). Complex variables. Vol. 125. Graduate Texts in Mathematics. An introduction. New York CrossRef | Google Scholar: Springer-Verlag (cit. on p. 6).
Bertozzi, A. and J., McKenna (1993). “Multidimensional residues, generating functions, and their application to queueing networks.” SIAM Rev. 35 CrossRef | Google Scholar, pp. 239–268 (cit. on pp. 8, 221, 251).
Bierstone, E. and P., Milman (1997). “Canonical desingularization in characteristic zero by blowing up the maximum strata of a local invariant.” Inventiones Mathematicae 128 CrossRef | Google Scholar, pp. 207–302 (cit. on p. 276).
Björner, A. et al. (1999). Oriented matroids. Second ed. Vol. 46. Encyclopedia of Mathematics and its Applications. Cambridge CrossRef | Google Scholar: Cambridge University Press (cit. on p. 213).
Bleistein, N. and R. A., Handelsman (1986). Asymptotic expansions of integrals. Second ed. New York Google Scholar: Dover Publications (cit. on pp. 11, 78, 87, 104).
Borcea, J., P., Branden, and T., Liggett (2009). “Negative dependence and the geometry of polynomials.” J. AMS 22 Google Scholar, pp. 521–567 (cit. on p. 276).
Bostan, A. et al. (2007). “Differential equations for algebraic functions.” In: ISSAC 2007. New York Google Scholar: ACM, pp. 25–32 (cit. on p. 44).
Bousquet-Mélou, M. and M., Petkovšek (2000). “Linear recurrences with constant coefficients: the multivariate case.” Discrete Math. 225. Formal power series and algebraic combinatorics (Toronto, ON, 1998 Google Scholar), pp. 51–75 (cit. on pp. 26, 28, 30, 32, 43).
Boyd, S. and L., Vandenberghe (2004). Convex optimization. Cambridge CrossRef | Google Scholar: Cambridge University Press (cit. on p. 204).
Bressler, A. and R., Pemantle (2007). “Quantum random walks in one dimension via generating functions.” In: 2007 Conference on Analysis of Algorithms, AofA 07 Google Scholar. Discrete Math. Theor. Comput. Sci. Proc., AH. Assoc. Discrete Math. Theor. Comput. Sci., Nancy, pp. 403–412 (cit. on p. 284).
Briand, E. (2010). “Covariants vanishing on totally decomposable forms.” In: Liaison, Schottky problem and invariant theory. Vol. 280. Progr. Math. Basel Google Scholar: Birkhäuser Verlag, pp. 237–256 (cit. on p. 219).
Canfield, E. R. and B., McKay (2009). “The asymptotic volume of the Birkhoff polytope.” Online J. Anal. Comb. 4 Google Scholar, p. 4 (cit. on p. 252).
Carteret, H. A., M. E. H., Ismail, and B., Richmond (2003). “Three routes to the exact asymptotics for the one-dimensional quantum walk.” J. Phys. A 36 Google Scholar (33), pp. 8775–8795 (cit. on p. 284).
Castro, F. (1984). “Théorème de division pour les opérateurs diffèrentiels et calcul des multiplicités Google Scholar.” PhD thesis. Thèse de 3ème cycle, Université de Paris 7 (cit. on p. 117).
Chabaud, C. (2002). “Séries génératrices algébriques: asymptotique et applications combinatoires Google Scholar.” PhD thesis. Université Paris VI (cit. on p. 292).
Chayes, J. T. and L., Chayes (1986). “Ornstein-Zernike behavior for self-avoiding walks at all non-critical temperatures.” Comm. Math. Phys. 105 CrossRef | Google Scholar, pp. 221–238 (cit. on p. 200).
Chen, W. Y. C., E., Deutsch, and S., Elizalde (2006). “Old and young leaves on plane trees.” Eur. J. Combin. 27 CrossRef | Google Scholar, pp. 414–427 (cit. on p. 316).
Chyzak, F., M., Mishna, and B., Salvy (2005). “Effective scalar products of D-finite symmetric functions.” J. Combin. Theory Ser. A 112 CrossRef | Google Scholar, pp. 1–43 (cit. on p. 44).
Chyzak, F. and B., Salvy (1998). “Non-commutative elimination in Ore algebras proves multivariate identities.” J. Symbolic Comput. 26 CrossRef | Google Scholar, pp. 187–227 (cit. on pp. 39, 117, 118).
Comtet, L. (1964). “Calcul pratique des coefficients de Taylor d'une fonction algébrique.” Enseignement Math. (2) 10 Google Scholar, pp. 267–270 (cit. on p. 35).
Comtet, L. (1974). Advanced combinatorics. enlarged. The art of finite and infinite expansions. Dordrecht CrossRef | Google Scholar: D. Reidel Publishing (cit. on pp. 20, 194, 281).
Conway, J. B. (1978). Functions of one complex variable. Second ed. Vol. 11. Graduate Texts in Mathematics. New York CrossRef | Google Scholar: Springer-Verlag (cit. on pp. 6, 49, 126, 258).
Corteel, S., G., Louchard, and R., Pemantle (2004). “Common intervals of permutations.” In: Mathematics and computer science. III. Trends Math. Basel Google Scholar: Birkhäuser, pp. 3–14 (cit. on p. 20).
Coutinho, S. (1995). A primer of algebraic D-modules. Vol. 33. London Mathematical Society Student Texts. Cambridge CrossRef | Google Scholar: Cambridge University Press (cit. on p. 117).
Cox, D. A., J., Little, and D., O'Shea (2005). Using algebraic geometry. Second ed. Vol. 185. Graduate Texts in Mathematics. New York Google Scholar: Springer (cit. on pp. 11, 107, 118).
Cox, D., J., Little, and D., O'Shea (2007). Ideals, varieties, and algorithms. Third ed. Undergraduate Texts in Mathematics. An introduction to computational algebraic geometry and commutative algebra. New York CrossRef | Google Scholar: Springer (cit. on pp. 108, 118).
De Bruijn, N. G. (1981). Asymptotic methods in analysis. Third ed. New York Google Scholar: Dover Publications (cit. on p. 87).
Delabaere, E. and C. J., Howls (2002). “Global asymptotics for multiple integrals with boundaries.” Duke Math. J. 112 Google Scholar, pp. 199–264 (cit. on p. 315).
De Loera, J. A. and B., Sturmfels (2003). “Algebraic unimodular counting.” Math. Program. 96 CrossRef | Google Scholar. Algebraic and geometric methods in discrete optimization, pp. 183–203 (cit. on pp. 231, 251, 252).
Denef, J. and L., Lipshitz (1987). “Algebraic power series and diagonals.” J. Number Theory 26 CrossRef | Google Scholar, pp. 46–67 (cit. on p. 314).
DeVore, R. A. and G. G., Lorentz (1993). Constructive approximation. Vol. 303. Grundlehren der Mathematischen Wissenschaften. Berlin CrossRef | Google Scholar: Springer-Verlag (cit. on pp. 242, 243).
DeVries, T. (2011). “Algorithms for bivariate singularity analysis Google Scholar.” PhD thesis. University of Pennsylvania (cit. on pp. 143, 183, 280).
DeVries, T. (2010). “A case study in bivariate singularity analysis.” In: Algorithmic probability and combinatorics. Vol. 520. Contemp. Math. Providence, RI Google Scholar: Amer. Math. Soc., pp. 61–81 (cit. on pp. 8, 183, 184).
DeVries, T., J., van der Hoeven, and R., Pemantle (2012). “Effective asymptotics for smooth bivariate generating functions.” Online J. Anal. Comb. 7 Google Scholar, to appear (cit. on pp. 8, 178–180, 183).
Dobrushkin, V. (2010). Methods in algorithmic analysis. Boca Raton Google Scholar, CRC Press.
Drmota, M., B., Gittenberger, and T., Klausner (2005). “Extended admissible functions and Gaussian limiting distributions.” Math. Comp. 74 CrossRef | Google Scholar. no. 252 (electronic).
Du, P. et al. (2011). “The Aztec Diamond edge-probability generating function.” Preprint Google Scholar (cit. on p. 273).
Durrett, R. (2004). Probability: theory and examples. Third ed. Belmont, CA Google Scholar: Duxbury Press, p. 497 (cit. on p. 288).
Eisenbud, D. (1995). Commutative algebra. Vol. 150. Graduate Texts in Mathematics. With a view toward algebraic geometry. New York CrossRef | Google Scholar: Springer-Verlag (cit. on p. 353).
Fayolle, G., R., Iasnogorodski, and V., Malyshev (1999). Random walks in the quarter-plane. Vol. 40. Applications of Mathematics (New York). Algebraic methods, boundary value problems and applications. Berlin CrossRef | Google Scholar: Springer-Verlag (cit. on pp. xi, 43).
Flajolet, P. and A., Odlyzko (1990). “Singularity analysis of generating functions.” SIAM J. Discrete Math. 3 CrossRef | Google Scholar, pp. 216–240 (cit. on pp. 58, 63).
Flajolet, P. and R., Sedgewick (2009). Analytic combinatorics CrossRef | Google Scholar. Cambridge University Press, p. 824 (cit. on pp. xi, 10, 15, 63, 292, 293, 295, 304, 306).
Flatto, L. and S., Hahn (1984). “Two parallel queues created by arrivals with two demands. I.” SIAM J. Appl. Math. 44 CrossRef | Google Scholar, pp. 1041–1053 (cit. on p. 43).
Flatto, L. and H. P., McKean (1977). “Two queues in parallel.” Comm. Pure Appl. Math. 30 CrossRef | Google Scholar, pp. 255–263 (cit. on p. 43).
Flaxman, A., A. W., Harrow, and G. B., Sorkin (2004). “Strings with maximally many distinct subsequences and substrings.” Electron. J. Combin. 11 Google Scholar, Research Paper 8, 10 pp. (electronic) (cit. on pp. 113, 290).
Foata, D. and M.-P., Schützenberger (1970). Théorie géométrique des polynômes eulériens. Lecture Notes in Mathematics, Vol. 138. Berlin CrossRef | Google Scholar: Springer-Verlag (cit. on p. 43).
Forsberg, M., M., Passare, and A., Tsikh (2000). “Laurent determinants and arrangements of hyperplane amoebas.” Adv. Math. 151 CrossRef | Google Scholar, pp. 45–70 (cit. on p. 127).
Furstenberg, H. (1967). “Algebraic functions over finite fields.” J. Algebra 7 CrossRef | Google Scholar, pp. 271–277 (cit. on pp. 38, 314).
Galligo, A. (1985). “Some algorithmic questions on ideals of differential operators.” In: EUROCAL '85, Vol. 2 (Linz, 1985). Vol. 204. Lecture Notes in Comput. Sci. Berlin Google Scholar: Springer, pp. 413–421 (cit. on p. 117).
Gao, Z. and L. B., Richmond (1992). “Central and local limit theorems applied to asymptotic enumeration. IV. Multivariate generating functions.” J. Comput. Appl. Math. 41 CrossRef | Google Scholar. Asymptotic methods in analysis and combinatorics, pp. 177–186 (cit. on pp. 7, 287).
Gårding, L. (1950). “Linear hyperbolic partial differential equations with constant coefficients.” Acta Math. 85 Google Scholar, pp. 1–62 (cit. on pp. 149, 261).
Gel'fand, I. M., M. M., Kapranov, and A. V., Zelevinsky (1994). Discriminants, resultants, and multidimensional determinants. Mathematics: Theory & Applications. Boston, MA CrossRef | Google Scholar: Birkhäuser Boston (cit. on pp. xii, 11, 118, 124, 127–129, 131).
Gel'fand, I. and G., Shilov (1964). Generalized Functions, Volume I: Properties and Operations. Trans. by E., Saletan. New York Google Scholar: Academic Press (cit. on p. 268).
Gessel, I. M. (1981). “Two theorems of rational power series.” Utilitas Math. 19 Google Scholar, pp. 247–254 (cit. on p. 44).
Gittenberger, B. and Mandlburger, (2006). “Haryman admissible functions in several variables.” Elec. J. Combin. 13 Google Scholar, Research Paper 106, 9 pp. (electronic).
Goresky, M. and R., MacPherson (1988). Strati?ed Morse theory. Vol. 14. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. Berlin CrossRef | Google Scholar: Springer-Verlag (cit. on pp. 11, 99, 142, 348, 351, 354–360).
Goulden, I. P. and D. M., Jackson (2004). Combinatorial enumeration. With a foreword by Gian-Carlo Rota, Reprint of the 1983 original. Mineola, NY Google Scholar: Dover Publications (cit. on pp. 15, 22, 43, 281, 292).
Gourdon, X. and B., Salvy (1996). “Effective asymptotics of linear recurrences with rational coefficients.” In: Proceedings of the 5th Conference on Formal Power Series and Algebraic Combinatorics (Florence, 1993). Vol. 153 Google Scholar, pp. 145–163 (cit. on pp. 47, 183).
Gülen, O. (1997). “Hyperbolic polynomials and interior point methods for convex programming.” Math. Oper. Res. 22 Google Scholar, pp. 350–377 (cit. on p. 257).
Hardy, G. H. and S., Ramanujan (2000a). “Asymptotic formulæ for the distribution of integers of various types [Proc. London Math. Soc. (2) 16 (1917), 112–132].” In: Collected papers of Srinivasa Ramanujan. AMS Chelsea Publ., Providence, RI Google Scholar, pp. 245–261 (cit. on p. 62).
Hardy, G. H. and S., Ramanujan (2000b). “Une formule asymptotique pour le nombre des partitions de n [Comptes Rendus, 2 Jan. 1917].” In: Collected papers of Srinivasa Ramanujan. AMS Chelsea Publ., Providence, RI Google Scholar, pp. 239–241 (cit. on p. 62).
Hautus, M. L. J. and D. A., Klarner (1971). “The diagonal of a double power series.” Duke Math. J. 38 CrossRef | Google Scholar, pp. 229–235 (cit. on pp. 38, 283).
Hayman, W. K. (1956). “A generalisation of Stirling's formula.” J. Reine Angew. Math. 196 Google Scholar, pp. 67–95 (cit. on pp. xi, 51, 63, 137).
Henrici, P. (1988). Applied and computational complex analysis. Vol. 1. Wiley Classics Library. Power series – integration – conformal mapping – location of zeros, Reprint of the 1974 original, A Wiley-Interscience Publication. New York Google Scholar: John Wiley & Sons (cit. on p. 6).
Henrici, P. (1991). Applied and computational complex analysis. Vol. 2. Wiley Classics Library. Special functions – integral transforms – asymptotics – continued fractions, Reprint of the 1977 original, A Wiley-Interscience Publication. New York Google Scholar: John Wiley & Sons (cit. on pp. 6, 56, 63, 87).
Hironaka, H. (1973). “Subanalytic sets.” In: Number theory, algebraic geometry and commutative algebra, in honor of Yasuo Akizuki. Tokyo Google Scholar: Kinokuniya, pp. 453–493 (cit. on p. 351).
Hörmander, L. (1983). The analysis of linear partial differential operators. I. Vol. 256. Grundlehren der Mathematischen Wissenschaften. Distribution theory and Fourier analysis. Berlin Google Scholar: Springer-Verlag (cit. on p. 308).
Hörmander, L. (1990). An introduction to complex analysis in several variables. Third ed. Vol. 7. North-Holland Mathematical Library. Amsterdam Google Scholar: North-Holland Publishing (cit. on pp. 204, 326, 337, 339).
Hwang, H.-K. (1996). “Large deviations for combinatorial distributions. I. Central limit theorems.” Ann. Appl. Probab. 6 Google Scholar, pp. 297–319 (cit. on p. 287).
Hwang, H.-K. (1998a). “Large deviations of combinatorial distributions. II. Local limit theorems.” Ann. Appl. Probab. 8 Google Scholar, pp. 163–181 (cit. on p. 287).
Hwang, H.-K. (1998b). “On convergence rates in the central limit theorems for combinatorial structures.” Eur. J. Combin. 19 CrossRef | Google Scholar, pp. 329–343 (cit. on p. 287).
Isaacson, E. and H. B., Keller (1994). Analysis of numerical methods. Corrected reprint of the 1966 original [Wiley, New York; MR0201039 (34 #924)]. New York Google Scholar: Dover Publications (cit. on p. 30).
Jockusch, W., J., Propp, and P., Shor (Jan. 1998). “Random Domino Tilings and the Arctic Circle Theorem.” ArXiv Mathematics e-prints Google Scholar. arXiv:math/9801068 (cit. on p. 13).
Kaloshin, V. Y. (2005). “A geometric proof of the existence of Whitney stratifications.” Mosc. Math. J. 5 Google Scholar, pp. 125–133 (cit. on p. 144).
Kandri-Rody, A. and V., Weispfenning (1990). “Noncommutative Gröbner bases in algebras of solvable type.” J. Symbolic Comput. 9 CrossRef | Google Scholar, pp. 1–26 (cit. on p. 117).
Kashiwara, M. (1978). “On the holonomic systems of linear differential equations. II.” Invent. Math. 49 CrossRef | Google Scholar, pp. 121–135 (cit. on p. 118).
Kauers, M. and P., Paule (2011). The Concrete Tetrahedron. Leipzig CrossRef | Google Scholar: Springer-Wien.
Kauers, M. and D., Zeilberger (2011). “The computational challenge of enumerating high-dimensional rook walks.” Advances in Applied Mathematics 47 CrossRef | Google Scholar, pp. 813–819 (cit. on p. 315).
Kenyon, R. and A., Okounkov (2007). “Limit shapes and the complex Burgers equation.” Acta Math. 199 CrossRef | Google Scholar, pp. 263–302 (cit. on p. 274).
Kesten, H. (1978). “Branching Brownian motion with absorption.” Stochastic Processes Appl. 7 CrossRef | Google Scholar, pp. 9–47 (cit. on p. 24).
Knuth, D. (2006). The Art of Computer Programming. Vol. I–IV. Upper Saddle River, NJ Google Scholar: Addison-Wesley (cit. on p. xi).
Kogan, Y. (2002). “Asymptotic expansions for large closed and loss queueing networks.” Math. Probl. Eng. 8 CrossRef | Google Scholar, pp. 323–348 (cit. on p. 221).
Krantz, S. G. (2001). Function theory of several complex variables. Reprint of the 1992 edition. AMS Chelsea Publishing, Providence, RI Google Scholar (cit. on p. 131).
Kredel, H. (1993). Solvable Polynomial Rings. Aachen, Germany Google Scholar: Verlag Shaker (cit. on p. 117).
Larsen, M. and R., Lyons (1999). “Coalescing particles on an interval.” J. Theoret. Probab. 12 CrossRef | Google Scholar, pp. 201–205 (cit. on pp. 13, 27).
Lee, J. M. (2003). Introduction to smooth manifolds. Vol. 218. Graduate Texts in Mathematics. New York CrossRef | Google Scholar: Springer-Verlag (cit. on p. 339).
Leray, J. (1959). “Le calcul différentiel et intégral sur une variété analytique complexe. (Problème de Cauchy. III).” Bull. Soc. Math. France 87 Google Scholar, pp. 81–180 (cit. on p. 8).
Lichtin, B. (1991). “The asymptotics of a lattice point problem associated to a finite number of polynomials. I.” Duke Math. J. 63 CrossRef | Google Scholar, pp. 139–192 (cit. on p. 8).
Limic, V. and R., Pemantle (2004). “More rigorous results on the Kauffman-Levin model of evolution.” Ann. Probab. 32 Google Scholar, pp. 2149–2178 (cit. on p. 45).
Lin, S. and R., Pemantle (2013). “Computation of second order asymptotics in Laplace-type integral for marginal distributions.” In preparation Google Scholar (cit. on p. 104).
Lipshitz, L. (1988). “The diagonal of a D-finite power series is D-finite.” J. Algebra 113 CrossRef | Google Scholar, pp. 373–378 (cit. on p. 38).
Lipshitz, L. (1989). “D-finite power series.” J. Algebra 122 CrossRef | Google Scholar, pp. 353–373 (cit. on pp. 36, 37, 44).
Lladser, M. (2003). “Asymptotic enumeration via singularity analysis Google Scholar.” PhD thesis. The Ohio State University (cit. on pp. 8, 313).
Lladser, M. (2006). “Uniform formulae for coefficients of meromorphic functions in two variables. I.” SIAM J. Discrete Math. 20 CrossRef | Google Scholar, 811–828 (electronic) (cit. on pp. 8, 313).
Mikhalkin, G. (2000). “Real algebraic curves, the moment map and amoebas.” Ann. of Math. (2) 151 CrossRef | Google Scholar, pp. 309–326 (cit. on p. 131).
Mikhalkin, G. (2004). “Amoebas of algebraic varieties and tropical geometry.” In: Different faces of geometry. Vol. 3. Int. Math. Ser. (N.Y.) Kluwer/Plenum, New York CrossRef | Google Scholar, pp. 257–300 (cit. on p. 131).
Milnor, J. (1963). Morse theory. Based on lecture notes by M., Spivak and R., Wells. Annals of Mathematics Studies, No. 51. Princeton, NJ Google Scholar: Princeton University Press (cit. on pp. 11, 340, 341, 343, 344, 349, 360).
Milnor, J. (1968). Singular points of complex hypersurfaces. Annals of Mathematics Studies, No. 61. Princeton, NJ Google Scholar: Princeton University Press (cit. on p. 140).
Mostowski, T. and E., Rannou (1991). “Complexity of the computation of the canonical Whitney strati?cation of an algebraic set in Cn.” In: Applied algebra, algebraic algorithms and error-correcting codes (New Orleans, LA, 1991). Vol. 539. Lecture Notes in Comput. Sci. Berlin Google Scholar: Springer, pp. 281–291 (cit. on p. 352).
Munarini, E. and N. Z., Salvi (2002/2004). “Binary strings without zigzags.” Sém. Lothar. Combin. 49 Google Scholar, Art. B49h, 15 pp. (electronic).
Munkres, J. R. (1984). Elements of algebraic topology. Menlo Park, CA Google Scholar: Addison-Wesley Publishing (cit. on pp. 328–330).
Noble, R. (2010). “Asymptotics of a family of binomial sums.” J. Number Theory 130 CrossRef | Google Scholar, pp. 2561–2585 (cit. on p. 299).
Odlyzko, A. M. (1995). “Asymptotic enumeration methods.” In: Handbook of combinatorics, Vol. 1, 2. Amsterdam Google Scholar: Elsevier, pp. 1063–1229 (cit. on pp. xi, 7, 278).
Orlik, P. and H., Terao (1992). Arrangements of hyperplanes. Vol. 300. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Berlin CrossRef | Google Scholar: Springer-Verlag (cit. on p. 228).
Paris, R. B. (2011). Hadamard expansions and hyperasymptotic evaluation. Vol. 141. Encyclopedia of Mathematics and its Applications. An extension of the method of steepest descents. Cambridge CrossRef | Google Scholar: Cambridge University Press (cit. on p. 315).
Paris, R. B. and D., Kaminski (2001). Asymptotics and Mellin-Barnes integrals. Vol. 85. Encyclopedia of Mathematics and its Applications. Cambridge CrossRef | Google Scholar: Cambridge University Press (cit. on p. 315).
Passare, M., D., Pochekutov, and A., Tsikh (2011). “Amoebas of complex hypersurfaces in statistical thermodynamics.” ArXiv e-prints Google Scholar. arXiv:math-ph/1112.4332 [math-ph] (cit. on p. 131).
Pemantle, R. (2000). “Generating functions with high-order poles are nearly polynomial.” In: Mathematics and computer science (Versailles, 2000). Trends Math. Basel Google Scholar: Birkhäuser, pp. 305–321 (cit. on p. 252).
Pemantle, R. (2010). “Analytic combinatorics in d variables: an overview.” In: Algorithmic probability and combinatorics. Vol. 520. Contemp. Math. Providence, RI Google Scholar: Amer. Math. Soc., pp. 195–220 (cit. on pp. 138, 143, 144, 159, 355).
Pemantle, R. and M. C., Wilson (2002). “Asymptotics of multivariate sequences. I. Smooth points of the singular variety.” J. Combin. Theory Ser. A 97 CrossRef | Google Scholar, pp. 129–161 (cit. on pp. 8, 12, 13, 148, 159, 163, 164, 169, 192, 207, 251, 290).
Pemantle, R. and M. C., Wilson (2004). “Asymptotics of multivariate sequences. II. Multiple points of the singular variety.” Combin. Probab. Comput. 13 CrossRef | Google Scholar, pp. 735–761 (cit. on pp. 8, 12, 13, 104, 148, 159, 222, 251).
Pemantle, R. and M. C., Wilson (2008). “Twenty combinatorial examples of asymptotics derived from multivariate generating functions.” SIAM Rev. 50 CrossRef | Google Scholar, pp. 199–272 (cit. on pp. 8, 137, 221, 278, 289, 295, 299).
Pemantle, R. and M. C., Wilson (2010). “Asymptotic expansions of oscillatory integrals with complex phase.” In: Algorithmic probability and combinatorics. Vol. 520. Contemp. Math. Providence, RI Google Scholar: Amer. Math. Soc., pp. 221–240 (cit. on pp. 8, 104, 105, 162, 316).
Petersen, T. K. and D., Speyer (2005). “An arctic circle theorem for Groves.” J. Combin. Theory Ser.A 111 CrossRef | Google Scholar, pp. 137–164 (cit. on p. 271).
Petkovšek, M., H. S., Wilf, and D., Zeilberger (1996). A = B. Wellesley, MA Google Scholar: A K Peters (cit. on p. 44).
Pólya, G. (1969). “On the number of certain lattice polygons.” J. Combin. Theory 6 CrossRef | Google Scholar, pp. 102–105 (cit. on p. 278).
Pólya, G. and G., Szegő (1998). Problems and theorems in analysis. II. Classics in Mathematics. Theory of functions, zeros, polynomials, determinants, number theory, geometry, Translated from the German by C. E., Billigheimer, Reprint of the 1976 English translation. Berlin CrossRef | Google Scholar: Springer-Verlag (cit. on p. 30).
Raichev, A. and M. C., Wilson (2007). “A new method for computing asymptotics of diagonal coefficients of multivariate generating functions.” In: 2007 Conference on Analysis of Algorithms, AofA 07 Google Scholar. Discrete Math. Theor. Comput. Sci. Proc., AH. Assoc. Discrete Math. Theor. Comput. Sci., Nancy, pp. 439–449 (cit. on p. 314).
Raichev, A. and M. C., Wilson (2008). “Asymptotics of coefficients of multivariate generating functions: improvements for smooth points.” Electron. J. Combin. 15 Google Scholar, Research Paper 89, 17 (cit. on pp. 8, 314).
Raichev, A. and M. C., Wilson (Feb. 2012a). “A new approach to asymptotics of Maclaurin coefficients of algebraic functions.” ArXiv e-prints Google Scholar. arXiv:1202.3826 [math.CO] (cit. on pp. 183, 314).
Raichev, A. and M. C., Wilson (2012b). “Asymptotics of coefficients of multivariate generating functions: improvements for multiple points.” Online J. Anal. Combin. 7 Google Scholar, to appear (cit. on pp. 8, 309, 314).
Rannou, E. (1998). “The complexity of stratification computation.” Discrete Comput. Geom. 19 CrossRef | Google Scholar, pp. 47–78 (cit. on p. 352).
Riddell, R. J. Jr., and G. E., Uhlenbeck (1953). “On the theory of the virial development of the equation of state of mono-atomic gases.” J. Chem. Phys. 21 CrossRef | Google Scholar, pp. 2056–2064 (cit. on p. 43).
Riesz, M. (1949). “L'intégrale de Riemann-Liouville et le problème de Cauchy.” Acta Mathematica 81 CrossRef | Google Scholar, pp. 1–223 (cit. on p. 267).
Rockefellar, R. T. (1966). Convex analysis. Princeton Google Scholar: Princeton University Press (cit. on p. 130).
Rogers, D. G. (1978). “Pascal triangles, Catalan numbers and renewal arrays.” Discrete Math. 22 CrossRef | Google Scholar, pp. 301–310 (cit. on p. 288).
Rubel, L. A. (1983). “Some research problems about algebraic differential equations.” Trans. Amer. Math. Soc. 280 CrossRef | Google Scholar, pp. 43–52 (cit. on p. 44).
Rubel, L. A. (1992). “Some research problems about algebraic differential equations. II.” Illinois J. Math. 36 Google Scholar, pp. 659–680 (cit. on p. 44).
Safonov, K. V. (1987). “On conditions for the sum of a power series to be algebraic and rational.” Mat. Zametki 41 Google Scholar, pp. 325–332, 457 (cit. on p. 305).
Safonov, K. V. (2000). “On power series of algebraic and rational functions in Cn.” J. Math. Anal. Appl. 243 CrossRef | Google Scholar, pp. 261–277 (cit. on pp. 305, 307, 308).
Saito, M., B., Sturmfels, and N., Takayama (2000). Gröbner deformations of hypergeometric differential equations. Vol. 6. Algorithms and Computation in Mathematics. Berlin CrossRef | Google Scholar: Springer-Verlag (cit. on pp. 44, 117).
Shapiro, L. W. et al. (1991). “The Riordan group.” Discrete Appl. Math. 34. Combinatorics and theoretical computer science (Washington, DC, 1989 CrossRef | Google Scholar), pp. 229–239 (cit. on p. 288).
Sprugnoli, R. (1994). “Riordan arrays and combinatorial sums.” Discrete Math. 132 CrossRef | Google Scholar, pp. 267–290 (cit. on p. 288).
Stanley, R. P. (1997). Enumerative combinatorics. Vol. 1. Vol. 49. Cambridge Studies in Advanced Mathematics. With a foreword by Gian-Carlo Rota, Corrected reprint of the 1986 original. Cambridge CrossRef | Google Scholar: Cambridge University Press (cit. on pp. 13, 15, 43, 231, 278).
Stanley, R. P. (1999). Enumerative combinatorics. Vol. 2. Vol. 62. Cambridge Studies in Advanced Mathematics. With a foreword by Gian-Carlo Rota and appendix 1 by Sergey Fomin. Cambridge CrossRef | Google Scholar: Cambridge University Press (cit. on pp. 25, 33–35, 38, 43, 302, 304).
Stanley, R. P. (1980). “Differentiably finite power series.” Euro. J. Combin. 1 CrossRef | Google Scholar, pp. 175–188 (cit. on p. 44).
Stein, E. M. (1993). Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals. Vol. 43. Princeton Mathematical Series. With the assistance of Timothy S. Murphy, Monographs in Harmonic Analysis, III. Princeton, NJ Google Scholar: Princeton University Press (cit. on pp. 81, 87, 94, 104, 105).
Sturmfels, B. (2002). Solving systems of polynomial equations. Vol. 97. CBMS regional conference series in mathematics. Providence RI CrossRef | Google Scholar: American Mathematical Society, pp. viii+152 (cit. on p. 118).
Szegö, G. (1933). “Über gewisse Potenzreihen mit lauter positiven Koeffizienten.” Math. Z. 37 CrossRef | Google Scholar, pp. 674–688 (cit. on p. 270).
Theobald, T. (2002). “Computing amoebas.” Experiment. Math. 11, 513–526 (2003 CrossRef | Google Scholar) (cit. on pp. 127, 131).
Van der Hoeven, J. (2009). “Ball arithmetic.” HAL preprints Google Scholar. HAL: 00432152 (cit. on p. 183).
Van Lint, J. H. and R. M., Wilson (2001). A course in combinatorics. Second ed. Cambridge CrossRef | Google Scholar: Cambridge University Press (cit. on pp. 10, 15).
Varchenko, A. N. (1977). “Newton polyhedra and estimation of oscillating integrals.” Functional Anal. Appl. 10 CrossRef | Google Scholar, pp. 175–196 (cit. on pp. 161, 250).
Vince, A. and M., Bona (Apr. 2012). “The number of ways to assemble a graph.” ArXiv e-prints Google Scholar. arXiv:1204.3842 [math.CO] (cit. on p. 316).
Wagner, D. G. (2011). “Multivariate stable polynomials: theory and application.” Bull. AMS 48 CrossRef | Google Scholar, pp. 53–84 (cit. on p. 276).
Ward, M. (2010). “Asymptotic rational approximation to Pi: Solution of an unsolved problem posed by Herbert Wilf.” Disc. Math. Theor. Comp. Sci. Google Scholar AM, pp. 591–602 (cit. on p. 63).
Warner, F. W. (1983). Foundations of differentiable manifolds and Lie groups. Vol. 94. Graduate Texts in Mathematics. Corrected reprint of the 1971 edition. New York CrossRef | Google Scholar: Springer-Verlag (cit. on pp. 321, 324, 339).
Whitney, H. (1965). “Tangents to an analytic variety.” Annals Math. 81 CrossRef | Google Scholar, pp. 496–549 (cit. on p. 98).
Wilf, H. S. (1994). Generatingfunctionology. Second ed. Boston, MA Google Scholar: Academic Press (cit. on p. 278).
Wilf, H. S. (2006). Generatingfunctionology. Third ed. Available at http://www.math.upenn.edu/~wilf/DownldGF.html. Wellesley, MA Google Scholar: A K Peters (cit. on pp. 10, 15, 43).
Wilson, M. C. (2005). “Asymptotics for generalized Riordan arrays.” In: 2005 International Conference on Analysis of Algorithms Google Scholar. Discrete Math. Theor. Comput. Sci. Proc., AD. Assoc. Discrete Math. Theor. Comput. Sci., Nancy, 323–333 (electronic) (cit. on pp. 8, 288, 293).
Wimp, J. and D., Zeilberger (1985). “Resurrecting the asymptotics of linear recurrences.” J. Math. Anal. Appl. 111 CrossRef | Google Scholar, pp. 162–176 (cit. on p. 314).
Wong, R. (2001). Asymptotic approximations of integrals. Vol. 34. Classics in Applied Mathematics. Corrected reprint of the 1989 original. Philadelphia, PA CrossRef | Google Scholar: Society for Industrial and Applied Mathematics (SIAM) (cit. on pp. 87, 104).
Zeilberger, D. (1982). “Sister Celine's technique and its generalizations.” J. Math. Anal. Appl. 85 CrossRef | Google Scholar, pp. 114–145 (cit. on p. 44).

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.