Skip to main content Accessibility help
×
  • Cited by 10
Publisher:
Cambridge University Press
Online publication date:
May 2010
Print publication year:
2003
Online ISBN:
9780511606403

Book description

No longer simple line drawings on a page, molecular structures can now be viewed in full-figured glory, often in color and even with interactive possibilities. Anatomy of Gene Regulation is the first book to present the parts and processes of gene regulation at the three-dimensional level. Vivid structures of nucleic acids and their companion proteins are revealed in full-color, three-dimensional form. Beginning with a general introduction to three-dimensional structures, the book looks at the organization of the genome, the structure of DNA, DNA replication and transcription, splicing, protein synthesis, and ultimate protein death. Throughout, the text employs a discussion of genetics and structural mechanics. The concise and unique synthesis of information will offer insight into gene regulation, and into the development of methods to interfere with regulation at diseased states. This textbook and its accompanying web site are appropriate for both undergraduate and graduate students in genetics, molecular biology, structural biology, and biochemistry courses.

Reviews

' … beautiful and informative three-dimensional images of the nucleosome, RNA and DNA polymerases and the ribosome. Years of genetic and biochemical data spring to life when mapped onto these structures, and future experiments can be designed with much greater precision. Many of us who teach molecular biology at the undergraduate or graduate level have tried to convey this excitement by incorporating structures into our teaching. What might otherwise be dry descriptions of protein interactions or catalytic steps take on greater clarity and tangibility when students can see the molecules. Pangiotis Tsonis has compiled and summarized a great deal of structural information in his new book entitled Anatomy of Gene Regulations. It's a terrific idea and a laudable effort.'

Source: Nature Structural Biology

'So this book presents a very wide-ranging coverage of three-dimensional structural aspects only in a concise and attractive format with very readable text … I enjoyed this book as a handy source to dip into for structural insights and for the author's obvious pleasure in communicating these to his audience.'

Source: Heredity

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

Further Reading and References
Further Reading and References
BOOKS
Branden, C., and Tooze, J. (1999). Introduction to protein structure, Garland, New York Google Scholar
Lewin, B. (2000). Genes VII, Oxford, New York Google Scholar
Lodish, H., Berk, A., Zipursky, S. L., Matsudaira, P., Baltimore, D., and Darnell, J. (2000). Molecular cellular biology, W. H. Freeman, New York Google Scholar
Ptashne, M. (1992). A genetic switch, Cell Press and Blackwell Scientific Publications, Cambridge, MA Google Scholar
Singer, M., and Berg, P. (1991). Genes and genomes. University Science Books, Mill Valley, CA Google Scholar
Weaver, R. F. (1999). Molecular biology, McGraw-Hill, New York Google Scholar
SCIENTIFIC PAPERS AND REVIEWS
Anderson, J. E., Ptashne, M., and Harrison, S. C. (1987). Structure of the repressor-operator complex of bacteriophage 434. Nature 326 CrossRef | Google Scholar | PubMed: 846–52
Andrews, B. J., and Donoviel, M. S. (1995). A heterodimeric transcriptional repressor becomes crystal clear. Science 270 CrossRef | Google Scholar | PubMed: 251–3
Antson, A. A., Dodson, E. J., Dodson, G., Greaves, R. B., Chen, X., and Gollnick, P. (1999). Structure of the trp RNA-binding attenuation protein, TRAP, bound to RNA. Nature 401 CrossRef | Google Scholar | PubMed: 235–42
Arents, G., and Moudrianakis, E. N. (1995). The histone fold: A ubiquitous architectural motif utilized in DNA compaction and protein dimerization. Proc. Natl. Acad. Sci. USA 92 CrossRef | Google Scholar | PubMed: 11170–4
Asturias, F. J., Jiang, Y. W., Myers, L. C., Gustafsson, C. M., and Kornberg, R. D. (1999). Conserved structures of mediator and RNA polymerase II holoenzyme. Science 283 CrossRef | Google Scholar | PubMed: 985–7
Ban, N., Freeborn, B., Nissen, P., Penczek, P., Grassucci, R. A., Sweet, R., Frank, J., Moore, P. B., and Steitz, T. A. (1998). A 9 Å resolution X-Ray crystallographic map of the large ribosomal subunit. Cell 93 CrossRef | Google Scholar | PubMed: 1105–15
Ban, N., Nissen, P., Hansen, J., Capel, M., Moore, P. B., and Steitz, T. A. (1999). Placement of protein and RNA structures into a 5 A-resolution map of the 50S ribosomal subunit. Nature 400 CrossRef | Google Scholar | PubMed: 841–7
Ban, N., Nissen, P., Hansen, J., Moore, P. B., and Steitz, T. A. (2000). The complete atomic structure of the large ribosomal subunit at 2.4 Å resolution. Science 289 CrossRef | Google Scholar | PubMed: 905–19
Bass, B. L. (2000). Double-stranded RNA as a template for gene silencing. Cell 101 CrossRef | Google Scholar | PubMed: 235–8
Batey, R. T., Rambo, R. P., Lucast, L., Rha, B., and Doudna, J. A. (2000). Crystal structure of the ribonucleoprotein core of the signal recognition particle. Science 287 CrossRef | Google Scholar | PubMed: 1232–9
Battiste, J. L., Pestova, T. V., Hellen, C. U., and Wagner, G. (2000). The eIF1A solution structure reveals a large RNA-binding surface important for scanning function. Mol. Cell 5 CrossRef | Google Scholar | PubMed: 109–19
Baumeister, W., Walz, J., Zuhl, F., and Seemuller, E. (1998). The proteasome: Paradigm of a self-compartmentalizing protease. Cell 92 CrossRef | Google Scholar | PubMed: 367–80
Beamer, L. J., and Pabo, C. O. (1992). Refined 1.8 Angstrom crystal structure of the lambda repressor-operator complex. J. Mol. Biol. 227 CrossRef | Google Scholar: 177–96
Becker, S., Groner, B., and Muller, C. W. (1998). Three-dimensional structure of the Stat3β homodimer bound to DNA. Nature 394 CrossRef | Google Scholar: 145–51
Bell, C. E., Frescura, P., Hochschild, A., and Lewis, M. (2000). Crystal structure of the λ repressor C-terminal domain provides a model for cooperative operator binding. Cell 101 CrossRef | Google Scholar | PubMed: 801–11
Berger, J. M., Gamblin, S. J., Harrison, S. C., and Wang, J. C. (1996). Structure and mechanism of DNA topoisomerase II. Nature 379 CrossRef | Google Scholar | PubMed: 225–32
Biou, V., Shu, F., and Ramakrishnan, V. (1995). X-ray crystallography shows that translational initation factor IF3 consists of two compact α/β domains linked by an α-helix. EMBO J. 14 Google Scholar: 4056–64
Birck, C., Poch, O., Romier, C., Ruff, M., Mengus, G., Lavigne, A., Davidson, I., and Moras, D. (1998). Human TAFII28 and TAFII18 interact through a histone fold encoded by atypical evolutionary conserved motifs also found in the SPT3 family. Cell 94 CrossRef | Google Scholar: 239–49
Blum, B., Bakalara, N., and Simpson, L. (1990). A model for RNA editing in kinetoplasmid mitochondria: “Guide” RNA molecules transcribed from maxicircle DNA provide the edited information. Cell 60 CrossRef | Google Scholar: 189–98
Bochkarev, A., Pfuetzner, R. A., Edwards, A. M., and Frappier, L. (1997). Structure of the single-stranded-DNA-binding domain of replication protein A bound to DNA. Nature 385 CrossRef | Google Scholar: 176–81
Bogden, C. E., Fass, D., Bergman, N., Nichols, M. D., and Berger, J. M. (1999). The structural basis for terminator recognition by the Rho transcription termination factor. Mol. Cell 3 CrossRef | Google Scholar | PubMed: 487–93
Brino, L., Urzhumtsev, A., Mousli, M., Bronner, C., Mitschler, A., Oudet, P., and Moras, D. (2000). Dimerization of Escherichia coli DNA-gyrase B provides a structural mechanism for activating the ATPase catalytic center. J. Biol. Chem. 275 CrossRef | Google Scholar | PubMed(13): 9468–75
Brodersen, D. E., Clemons, W. M. Jr., Carter, A. P., Morgan-Warren, R. J., Wimberly, B. T., and Ramakrishnan, V. (2000). The structural basis for the action of the antibiotics tetracycline, pactamycin, and hygromycin B on the 30S ribosomal subunit. Cell 103 CrossRef | Google Scholar | PubMed: 1143–54
Bukau, B., and Horwich, A. L. (1998). The Hsp70 and Hsp60 chaperone machines. Cell 92 CrossRef | Google Scholar | PubMed: 351–66
Bukau, B., Deuerling, E., Pfund, C., and Craig, E. A. (2000). Getting newly synthesized proteins into shape. Cell 101 CrossRef | Google Scholar | PubMed: 119–22
Caprara, M. G., Lehnert, V., Lambowitz, A. M., and Westhof, E. (1996). A tyrosyl-tRNA synthetase recognizes a conserved tRNA-like structural motif in the group I intron catalytic core. Cell 87 CrossRef | Google Scholar | PubMed: 1135–45
Carrodeguas, J. A., Theis, K., Bogenhagen, D. F., and Kisker, C. (2001). Crystal structure and deletion analysis show that the accessory subunit of mammalian DNA polymerase gamma, PolgammaB, functions as a homodimer. Mol. Cell 7 CrossRef | Google Scholar: 43–54
Carter, A. P., Clemons, W. M., Brodersen, D. E., Morgan-Warren, R. J., Hartsch, T., Wimberly, B. T., and Ramakrishnan, V. (2001). Atomic structure of an initiation factor bound to the 30S ribosomal subunit. Science 291 CrossRef | Google Scholar: 498–501
Carter, A. P., Clemmons, W. M., Brodersen, D. E., Morgan-Warren, R. J., Wimberly, B. T., and Ramakrishnan, V. (2000). Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics. Nature 407 Google Scholar | PubMed: 340–8
Cate, J. H., Yusupov, M. M., Yusupova, G. Z., Earnest, T. N., and Noller, H. F. (1999). X-ray crystal structures of 70S ribosome functional complexes. Science 285 CrossRef | Google Scholar | PubMed: 2095–104
Celander, D. W., and Cech, T. R. (1991). Visualizing the higher order folding of a catalytic RNA molecule. Science 251 CrossRef | Google Scholar | PubMed: 401–7
Cheetham, G. M. T., and Steitz, T. A. (1999). Structure of a transcribing T7 RNA polymerase initiation complex. Science 286 CrossRef | Google Scholar | PubMed: 2305–9
Chen, L., Glover, J. N. M., Hogan, P. G., Rao, A., and Harrison, S. C. (1998). Structure of the DNA-binding domains from NFAT, Fos and Jun bound specifically to DNA. Nature 392 CrossRef | Google Scholar: 42–8
Cho, H., Ha, N., Kang, L., Chung, K., Back, S., Jang, S., and Oh, B. (1998). Crystal structure of RNA helicase from genotype 1b hepatitis C virus. J. Biol. Chem. 273 CrossRef | Google Scholar | PubMed(24): 15045–52
Copertino, D. W., and Hallick, R. B. (1993). Group II and group III introns of twintrons: Potential relationships with nuclear pre-mRNA introns. Trends Biochem. Sci. 18 CrossRef | Google Scholar | PubMed: 467–71
Cramer, P., Bushnell, D. A., Fu, J., Gnatt, A. L., Maier-Davis, B., Thompson, N. E., Burgess, R. R., Edwards, A. M., David, P. R., and Kornberg, R. D. (2000). Architecture of RNA polymerase II and implications for the transcription mechanism. Science 288 CrossRef | Google Scholar | PubMed: 640–9
Darst, S. A., Edwards, A. M., Kubalek, E. W., and Kornberg, R. D. (1991). Three-dimensional structure of yeast RNA polymerase II at 16 A resolution. Cell 66 CrossRef | Google Scholar | PubMed: 121–8
Davenport, R. J., Wuite, G. J. L., Landick, R., and Bustamante, C. (2000). Single-molecule study of transcriptional pausing and arrest by E. coli RNA polymerase. Science 287 CrossRef | Google Scholar | PubMed: 2497–500
Decanniere, K., Babu, A. M., Reeve, J. N., and Heinemann, U. (2000). Crystal structures of recombinant Hmfa and Hmfb from the hyperthermophilic archaeon methanothermus ferridus. J. Mol. Biol. 303 CrossRef | Google Scholar: 35–47
Dernburg, A. F., Broman, K. W., Fung, J. C., Marshall, W. F., Philips, J., Agard, D. A., and Sedat, J. W. (1996). Perturbation of nuclear architecture by long-distance chromosome interactions. Cell 85 CrossRef | Google Scholar | PubMed: 745–59
Deo, R. C., Bonanno, J. B., Sonenberg, N., and Burley, S. K. (1999). Recognition of polyadenylate RNA by the poly(A)-binding protein. Cell 98 CrossRef | Google Scholar | PubMed: 835–45
Doublie, S., Tabor, S., Long, A. M., Richardson, C. C., and Ellenberger, T. (1998). Crystal structure of a bacteriophage T7 DNA replication complex at 2.2 Å resolution. Nature 391 CrossRef | Google Scholar | PubMed: 251–7
Ellenberger, T. E., Brandl, C. J., Struhl, K., and Harrison, S. C. (1992). The GCN4 basic region leucine zipper binds DNA as a dimer of uninterrupted alpha helices: Crystal structure of the protein-DNA complex. Cell 71 CrossRef | Google Scholar | PubMed: 1223–37
Elrod-Erickson, M., Benson, T. E., and Pabo, C. O. (1998). High-resolution structures of vatiant Zif268-DNA complexes: Implications for understanding zinc finger-DNA recognition. Structure 6 CrossRef | Google Scholar | PubMed: 451–64
Erwin, D., Valentine, J., and Jablonski, D. (1997). The origin of animal body plans. Amer. Sci. 85 Google Scholar: 126–37
Escalante, C. R., Yie, J., Thanos, D., and Aggarwal, A. K. (1998). Structure of IRF-1 with bound DNA reveals determinants of interferon regulation. Nature 391 CrossRef | Google Scholar | PubMed: 103–6
Fabrera, C., Farrow, M. A., Mukhopadhyay, B., Crecy-Lagard, V., Ortiz, A. R., and Schimmel, P. (2001). An aminoacyl tRNA synthetase whose sequence fits into neither of the two known classes. Nature 411 CrossRef | Google Scholar: 110–4
Feagin, J. E., Abraham, J. M., and Stuart, K. (1988). Extensive editing of the cytochrome c oxidase III transcript in Trypanosoma brucei. Cell 53 CrossRef | Google Scholar | PubMed: 413–22
Femino, A. M., Fay, F. S., Fogarty, K., and Singer, R. H. (1998). Visualization of single RNA transcripts in situ. Science 280 CrossRef | Google Scholar | PubMed: 585–90
Festenstein, R., Tolaini, M., Corbella, P., Mamalaki, C., Parrington, J., Fox, M., Miliou, A., Jones, M., and Kioussis, D. (1996). Locus control region function and heterochromatin-induced position effect variegation. Science 271 CrossRef | Google Scholar | PubMed: 1123–5
Filipski, J., Leblanc, J., Youdale, T., Sikorska, M., and Walker, P. R. (1990). Periodicity of DNA folding in higher order chromatin structures. EMBO J. 9 Google Scholar | PubMed(4): 1319–27
Fire, A. (1999). RNA-triggered gene silencing. Trends Genet. 15 CrossRef | Google Scholar | PubMed: 358–63
Fletcher, C. M., Pestova, T. V., Hellen, C. U., and Wagner, G. (1999). Structure and interactions of the translation initiation factor eIF1. EMBO J. 18 CrossRef | Google Scholar | PubMed: 2631–7
Frank, J. (1998). How the ribosome works. Amer. Sci. 86 CrossRef | Google Scholar: 428–39
Franklin, M. C., Wang, J., and Steitz, T. A. (2001). Structure of the replicating complex of a Pol α family DNA polymerase. Cell 105 CrossRef | Google Scholar | PubMed: 657–67
Gabashvili, I. S., Agrawal, R. K., Spahn, C. M. T., Grassucci, R. A., Svergun, D. I., Frank, J., and Penczek, P. (2000). Solution structure of the E. coli 70S ribosome at 11.5 Å resolution. Cell 100 CrossRef | Google Scholar: 537–49
Glasfeld, A., Koehler, A. N., Schumacher, M. A., and Brennan, R. G. (1999). The role of lysine 55 in determining the specificity of the purine repressor for its operators through minor groove interactions. J. Mol. Biol. 291 CrossRef | Google Scholar | PubMed(2): 347–61
Golden, B. L., Gooding, A. R., Podell, E. R., and Cech, T. R. (1998). A preorganized active site in the crystal structure of Tetrahymena ribozyme. Science 282 CrossRef | Google Scholar | PubMed: 259–64
Greider, C. W. (1999). Telomeres do D-loop-T-loop. Cell 97 CrossRef | Google Scholar | PubMed: 419–22
Griffith, J. D., Comeau, L., Rosenfield, S., Stansel, R. M., Bianchi, A., Moss, H., and Lange, T. (1999). Mammalian telomeres end in a large duplex loop. Cell 97 CrossRef | Google Scholar: 503–14
Gulbis, J. M., Kelman, Z., Hurwitz, J., O'Donnell, M., and Kuriyan, J. (1996). Structure of the C-terminal region of p21 complexed with human PCNA. Cell 87 CrossRef | Google Scholar: 297–306
Hakansson, K., Doherty, A. J., Shuman, S., and Wigley, D. B. (1997). X-Ray crystallography reveals a large conformational change during guanyl transfer by mRNA capping enzyme. Cell 89 CrossRef | Google Scholar: 545–53
Hard, T., Kellenbach, E., Boelens, R., Maler, B. A., Dahlman, K., Freedman, L. P., Carlstedt-Duke, J., Yamamoto, K. R., Gustafsson, J., and Kaptein, R. (1990). Solution structure of the glucocorticoid receptor DNA-binding domain. Science 249 CrossRef | Google Scholar | PubMed: 157–60
Harrison, C. J., Hayer-Hartl, M., Di Liberto, M., Hartl, F. U., and Kuriyan, J. (1997). Crystal structure of the nucleotide exchange factor GrpE bound to the ATPase domain of the molecular chaperone DnaK. Science 276 CrossRef | Google Scholar | PubMed: 431–5
Hodel, A. E., Gershon, P. D., and Quiocho, F. A. (1998). Structural basis for sequencing-nonspecific recognition of 5′-capped mRNA by a cap-modifying enzyme. Mol. Cell 1 CrossRef | Google Scholar | PubMed: 443–7
Hopkin, K. (1997). Spools, switches, or scaffolds: How might histones regulate transcription? J. NIH Res. 9 Google Scholar: 34–7
Horvath, M. P., Schweiker, V. L., Bevilacqua, J. M., Ruggles, J. A., and Schultz, S. C. (1998). Crystal structure of the Oxytricha nova telomere end binding protein complexed with single strand DNA. Cell 95 CrossRef | Google Scholar | PubMed: 963–74
Hosfield, D. J., Mol, C. D., Shen, B., and Tainer, J. A. (1998). Structure of the DNA repair and replication endonuclease and exonuclease FEN-1: Coupling DNA and PCNA binding to FEN-1 activity. Cell 95 CrossRef | Google Scholar | PubMed: 135–46
Howard, M. J. (1998). Protein NMR spectroscopy. Curr. Biol. 8 CrossRef | Google Scholar | PubMed(10): R331–3
Ito, K., Uno, M., and Nakamura, Y. (2000). A tripeptide ‘anticodon’ deciphers stop codons in messenger RNA. Nature 403 CrossRef | Google Scholar | PubMed: 680–4
Jin, Y., Mead, J., Li, T., Wolberger, C., and Vershon, A. K. (1995). Altered DNA recognition and bending by insertions in the α2 tail of the yeast a1/α2 homeodomain heterodimer. Science 270 CrossRef | Google Scholar: 290–3
Joseph, S., Weiser, B., and Noller, H. F. (1997). Mapping the inside of the ribosome with an RNA helical ruler. Science 278 CrossRef | Google Scholar | PubMed: 1093–8
Kastner, B. (1998). Purification and electron microscopy of spliceosomal snRNPs. In RNP particles, splicing and autoimmune diseases (J. Scenkel, Ed.), Springer, Berlin, pp. 95–140 CrossRef | Google Scholar
Kambach, C., Walke, S., Young, R., Avis, J. M., Fortelle, E., Raker, V. A., Luhrmann, R., Li, J., and Nagai, K. (1999). Crystal structures of two Sm protein complexes and their implications for the assembly of the spliceosomal snRNPs. Cell 96 CrossRef | Google Scholar | PubMed: 375–87
Kambach, C., Walke, S., and Nagai, K. (1999). Structure and assembly of the spliceosomal small nuclear ribonucleoprotein particles. Curr. Opin. Struct. Biol. 9 CrossRef | Google Scholar | PubMed: 222–30
Kang, C., Zhang, X., Ratliff, R., Moyzis, R., and Rich, A. (1992). Crystal structure of four-stranded Oxytricha telomeric DNA. Nature 356 CrossRef | Google Scholar | PubMed: 126–31
Keck, J. L., Roche, D. D., Lynch, A. S., and Berger, J. M. (2000). Structure of the RNA polymerase domain of E. coli primase. Science 287 CrossRef | Google Scholar | PubMed: 2482–6
Keenan, R. J., Freymann, D. M., Walter, P., and Stroud, R. M. (1998). Crystal structure of the signal sequence binding subunit of the signal recognition particle. Cell 94 CrossRef | Google Scholar | PubMed: 181–91
Kiefer, J. R., Mao, C., Braman, J. C., and Beese, L. S. (1998). Visualizing DNA replication in a catalytically active Bacillus DNA polymerase crystal. Nature 391 CrossRef | Google Scholar: 304–7
Kim, C. A., and Berg, J. M. (1996). A 2.2 Angstrom resolution crystal structure of a designed zinc finger protein bound to DNA. Nature Struct. Biol. 3 CrossRef | Google Scholar: 940–5
Kissinger, C. R., Liu, B., Martin-Blanco, E., Kornberg, T. B., and Pabo, C. O. (1990). Crystal structure of an engrailed homeodomain-DNA complex at 2.8 Å resolution: A framework for understanding homeodomain-DNA interactions. Cell 63 CrossRef | Google Scholar | PubMed: 579–90
Kjeldgaard, M., Nissen, P., Thirup, S., and Nyborg, J. (1993). The crystal structure of elongation factor EF-Tu from Thermus aquaticus in the GTP conformation. Structure 1 CrossRef | Google Scholar | PubMed(1): 35–50
Konforti, B. B., Abramovitz, D. L., Duarte, C. M., Karpeisky, A., Beigelan, L., and Pyle, A. M. (1998). Ribozyme catalysis from the major groove of group II intron domain 5. Mol. Cell 1 CrossRef | Google Scholar | PubMed: 433–41
Konig, P., Giraldo, R., Chapman, L., and Rhodes, D. (1996). The crystal structure of the DNA-binding domain of yeast RAP1 in complex with telomeric DNA. Cell 85 CrossRef | Google Scholar | PubMed: 125–36
Korolev, S., Hsieh, J., Gauss, G. H., Lohman, T. M., and Waksman, G. (1997). Major domain swiveling revealed by the crystal structures of complexes of E. coli rep helicase bound to single-stranded DNA and ADP. Cell 90 CrossRef | Google Scholar: 635–47
Korzheva, N., Mustaev, A., Kozlov, M., Malhotra, A., Nikiforov, V., Goldfarb, A., and Darst, S. A. (2000). A structural model of transcriptional elongation. Science 289 CrossRef | Google Scholar: 619–25
Larsen, C. N., and Finley, D. (1997). Protein translocation channels in the proteasome and other proteases. Cell 91 CrossRef | Google Scholar | PubMed: 431–4
Lavoie, B. D., Shaw, G. S., Millner, A., and Chaconas, G. (1996). Anatomy of a flexer-DNA complex inside a higher-order transposition intermediate. Cell 85 CrossRef | Google Scholar | PubMed: 761–71
Lawrence, J. B., Singer, R. H., and Marselle, L. M. (1989). Highly localized tracks of specific transcripts within interphase nuclei visualized by in situ hybridization. Cell 57 CrossRef | Google Scholar | PubMed: 493–502
Leuther, K. K., Bushnell, D. A., and Kornberg, R. D. (1996). Two-dimensional crystallography of TFIIB- and IIE-RNA polymerase II complexes: Implications for start site selection and initiation complex formation. Cell 85 CrossRef | Google Scholar | PubMed: 773–9
Levin, D. S., Bai, W., Yao, N., O'Donnel, M., and Tomkinson, A. E. (1997). An interaction between DNA ligase I and proliferating cell nuclear antigen: Implications for Okazaki fragment synthesis and joining. Proc. Natl. Acad. Sci. USA 94 CrossRef | Google Scholar | PubMed: 12863–8
Lewis, M., Chang, G., Horton, N. C., Kercher, M. A., Pace, H. C., Schumacher, M. A., Brennan, R. G., and Lu, P. (1996). Crystal structure of the lactose operon repressor and its complexes with DNA and inducer. Science 271 CrossRef | Google Scholar | PubMed: 1247–54
Li, T., Stark, M. R., Johnson, A. D., and Wolberger, C. (1995). Crystal structure of the MATa1/MATα2 homeodomain heterodimer bound to DNA. Science 270 CrossRef | Google Scholar: 262–9
Liao, S., Lin, J., Do, H., and Johnson, A. E. (1997). Both lumenal and cytosolic gating of the aqueous ER translocon pore are regulated from inside the ribosome during membrane protein integration. Cell 90 CrossRef | Google Scholar | PubMed: 31–41
Lima, C. D., Wang, L. K., and Shuman, S. (1999). Structure and mechanism of yeast RNA triphosphatase: An essential component of the mRNA capping apparatus. Cell 99 CrossRef | Google Scholar | PubMed: 533–43
Liu, D., Ishima, R., Tong, K. I., Bagby, S., Kokubo, T., Muhandiram, D. R., Kay, L. E., Nakatani, Y., and Ikura, M. (1998). Solution structure of a TBP-TAFII230 complex: Protein mimicry of the minor groove surface of the TATA box unwound by TBP. Cell 94 CrossRef | Google Scholar | PubMed: 573–83
Love, J. J., Li, X., Case, D. A., Giese, K., Grosschedl, R., and Wright, P. E. (1995). Structural basis for DNA bending by the architectural transcription factor LEF-1. Nature 376 CrossRef | Google Scholar | PubMed: 791–5
Luisi, B. F., Xu, W. X., Otwinowski, Z., Freedman, L. P., Yamamoto, K. R., and Siegler, P. B. (1991). Crystallographic analysis of the interaction of the glucocorticoid receptor with DNA. Nature 352 CrossRef | Google Scholar | PubMed: 497–505
Ma, J., Sigler, P. B., Xu, Z., and Karplus, M. (2000). A dynamic model for the allosteric mechanism of GroEL. J. Mol. Biol. 302 CrossRef | Google Scholar | PubMed(2): 303–13
Manna, A. C., Pai, K. S., Bussiere, D. E., Davies, C., White, S. W., and Bastia, D. (1996). Helicase-contrahelicase interaction and the mechanism of termination of DNA replication. Cell 87 CrossRef | Google Scholar | PubMed: 881–91
Marcotrigiano, J., Gingras, A. C., Sonenberg, N., and Burley, S. K. (1997). Cocrystal structure of the messenger RNA 5′ cap/binding protein (eIF4E) bound to 7/methyl/GDP. Cell 89 CrossRef | Google Scholar: 951–61
Marcotrigiano, J., Lomakin, I. B., Sonenberg, N., Pestova, T. V., Hellen, C. U. T., and Burley, S. K. (2001). A conserved HEAT domain within eIF4G directs assembly of the translation initiation machinery. Mol. Cell 7 CrossRef | Google Scholar | PubMed: 193–203
Marmorstein, R., and Harrison, S. C. (1994). Crystal structure of a PRP1/DNA complex: DNA recognition by proteins containing a Zn2Cys6 binuclear cluster. Genes Dev. 8 CrossRef | Google Scholar: 2504–12
Marmorstein, R., Carey, M., Ptashne, M., and Harrison, S. C. (1992). DNA recognition by GAL4: Structure of a protein-DNA complex. Nature 356 CrossRef | Google Scholar | PubMed: 408–14
Martinez/Yamout, M., Legge, G. B., Zhang, O., Wright, P. E., and Dyson, H. J. (2000). Solution structure of the cysteine/rich domain of the Escherichia coli chaperone protein DnaJ. J. Mol. Biol. 300 CrossRef | Google Scholar(4): 805–18
McCutcheon, J. P., Agrawal, R. K., Phillips, S. M., Grassucci, R. A., Gerchman, S. E., Clemons, W. M., Ramakrishnan, V., and Frank, J. (1999). Location of translation initiation factor IF3 on the small ribosomal subunit. Proc. Natl. Acad. Sci. USA 96 CrossRef | Google Scholar | PubMed: 4301–6
McKnight, S. L. (1991). Molecular zippers in gene regulation. Scientific American April: 54–64 CrossRef | Google Scholar
Milkereit, P., Gadal, O., Podtelejnikov, A., Trumlet, S., Gas, N., Petfalski, E., Tollervey, D., Mann, M., Hurt, E., and Tschochner, H. (2001). Maturation and internuclear transport of pre/ribosomes requires Noc proteins. Cell 105 CrossRef | Google Scholar: 499–509
Mooney, R. A., and Landick, R. (1999). RNA polymerase unveiled. Cell 96 CrossRef | Google Scholar: 687–90
Morals Cabral, J. H., Jackson, A. P., Smith, C. V., Shikotra, N., Maxwell, A., and Liddington, R. C. (1997). Crystal structure of the breakage/reunion domain of DNA gyrase. Nature 388 CrossRef | Google Scholar: 903–6
Morshauser, R. C., Hu, W., Wang, H., Pang, Y., Flynn, G. C., and Zuiderweg, E. R. P. (1999). High/resolution solution structure of the 18 kDa substrate/binding domain of the mammalian chaperone protein Hsc70. J. Mol. Biol. 289 CrossRef | Google Scholar: 1387–403
Mueller, F., Sommer, I., Baranov, P., Matadeen, R., Stoldt, M., Wohnert, J., Gorlach, M., Heel, M., and Brimacombe, R. (2000). The 3D arrangement of the 23 S and 5 S rRNA in the Escherichia coli 50 S ribosomal subunit based on a cryo/electron microscopic reconstruction at 7.5 Å resolution. J. Mol. Biol. 248 CrossRef | Google Scholar: 35–59
Muller, C. W., and Hermann, B. G. (1997). Crystallographic structure of the T-domain-DNA complex of the Brachyury transcription factor. Nature 389 CrossRef | Google Scholar | PubMed: 884–8
Murante, R. S., Henricksen, L. A., and Bambara, R. A. (1998). Junction ribonuclease: An activity in Okazaki fragment processing. Proc. Natl. Acad. Sci. USA 95 CrossRef | Google Scholar | PubMed: 2244–9
Murray, J. B., Terwey, D. P., Maloney, L., Karpiesky, A., Usman, N., Beigelman, L., and Scott, W. G. (1998). The structural basis of hammerhead ribozyme self/cleavage. Cell 92 CrossRef | Google Scholar | PubMed: 665–73
Newton, C. S. (1997). Putting it all together: Building a prereplicative complex. Cell 91 Google Scholar: 717–20
Nissen, P., Hansen, J., Ban, N., Moore, P. B., and Steitz, T. A. (2000). The structural basis of ribosome activity in peptide bond synthesis. Science 289 CrossRef | Google Scholar | PubMed: 920–30
Nolte, R. T., Collins, R. M., Harrison, S. C., and Brown, R. S. (1998). Differing roles for zinc fingers in DNA recognition: Structure of a six finger transcription factor IIIA complex. Proc. Natl. Acad. Sci. USA 95 CrossRef | Google Scholar | PubMed: 2938–43
Nudler, E., Kashlev, M., Nikiforov, V., and Goldfarb, A. (1995). Coupling between transcription termination and RNA polymerase inchworming. Cell 81 CrossRef | Google Scholar | PubMed: 351–7
Otwinowski, Z., Schevitz, R. W., Zhang, R/G., Lawson, C. L., Joachimiak, A. J., Marmorstein, R., Luisi, B. F., and Sigler, P. B. (1988). Crystal structure of Trp repressor operator complex at atomic resolution. Nature 335 CrossRef | Google Scholar | PubMed: 321–9
Pabo, C. O., Aggarwal, A. K., Jordan, S. R., Beamer, L. J., Obeysekare, U. R., and Harrison, S. C. (1990). Conserved residues make similar contacts in two repressor-operator complexes. Science 247 CrossRef | Google Scholar | PubMed: 1210–13
Pavletich, N. P., and Pabo, C. O. (1993). Crystal structure of a five-finger GLI-DNA complex: New perspectives on zinc fingers. Science 261 CrossRef | Google Scholar | PubMed: 1701–7
Pazin, M. J., and Kadonaga, J. T. (1997). What's up and down with histone deacetylation and transcription? Cell 89 CrossRef | Google Scholar: 325–8
Pennisi, E. (1997). Opening the way to gene activity. Science 275 CrossRef | Google Scholar | PubMed: 155–7
Pestova, T. V., Borukhov, S. I., and Hellen, C. U. T. (1998). Eukaryotic ribosomes require initiation factors 1 and 1A to locate initiation codons. Nature 394 CrossRef | Google Scholar | PubMed: 854–9
Peter, B. J., Ullsperger, C., Hiasa, H., Marians, K. J., and Cozzarelli, N. R. (1998). The structure of supercoiled intermediates in DNA replication. Cell 94 CrossRef | Google Scholar | PubMed: 819–27
Piper, D. E., Batchelor, A. H., Chang, C. P., Clearly, M. L., and Wolberger, C. (1999). Structure of a HoxB1-Pbx1 heterodimer bound to DNA: Role of the hexapeptide and a fourth homeodomain helix in complex formation. Cell 96 CrossRef | Google Scholar: 587–97
Podobnik, M., McInerney, P., O'Donnell, M., and Kuriyan, J. (2000). A TOPRIM domain in the crystal structure of the catalytic core of Escherichia coli primase confirms a structural link to DNA topoisomerases. J. Mol. Biol. 300 CrossRef | Google Scholar | PubMed(2): 353–62
Poglitsch, C. L., Meredith, G. D., Gnatt, A. L., Jensen, G. J., Chang, W., Fu, J., and Kornberg, R. D. (1999). Electron crystal structure of an RNA polymerase transcription elongation complex. Cell 98 CrossRef | Google Scholar | PubMed: 791–8
Polacek, N., Gaynor, M., Yassin, A., and Mankin, A. S. (2001). Ribosomal peptidyl treansferase can withstand mutations at the putative catalytic nucleotide. Nature 411 CrossRef | Google Scholar: 498–501
Polyakov, A., Severinova, E., and Darst, S. A. (1995). Three-dimensional structure of E. coli core RNA polymerase: Promoter binding and elongation conformations of the enzyme. Cell 83 CrossRef | Google Scholar | PubMed: 365–73
Porse, B. T., and Garret, R. A. (1999). Ribosomal mechanics, antibiotics, and GTP hydrolysis. Cell 97 CrossRef | Google Scholar | PubMed: 423–6
Powell, L. M., Wallis, S. C., Pease, R. J., Edwards, Y. H., Knott, T. J., and Scott, J. (1987). A novel form of tissue/specific RNA processing produce apolipoprotein/B48 in intestine. Cell 50 CrossRef | Google Scholar: 831–40
Proudfoot, N. (1996). Ending the message is not so simple. Cell 87 CrossRef | Google Scholar | PubMed: 779–81
Raghunathan, S., Kozlov, A. G., Lohman, T. M., and Waksman, G. (2000). Structure of the DNA binding domain of E. coli SSB bound to ssDNA. Nature Struct. Biol. 7 CrossRef | Google Scholar | PubMed(8): 648–52
Ramakrishnan, V., and Moore, P. B. (2001). Atomic structures at last: the ribosome in 2000. Curr. Opin. Struct. Biol. 144–154 CrossRef | Google Scholar
Redinbo, M. R., Stewart, L., Kuhn, P., Champoux, J. J., and Hol, W. G. J.(1998). Crystal structures of human topoisomerase I in covalent and noncovalent complexes with DNA. Science 279 CrossRef | Google Scholar | PubMed: 1504–13
Rice, P. A., Yang, S/W., Mizuuchi, K., and Nash, H. A. (1996). Crystal structure of an IHF-DNA complex: A protein-induced DNA U-turn. Cell 87 CrossRef | Google Scholar | PubMed: 1295–306
Robinson, H., Gao, Y., McCrary, B. S., Edmondson, S. P., Shriver, J. W., and Wang, A. H. J. (1998). The hyperthermophile chromosomal protein Sac7d sharply kinks DNA. Nature 392 CrossRef | Google Scholar | PubMed: 202–5
Rodgers, D. W., and Harrison, S. C. (1993). The complex between phage 434 repressor DNA-binding domain and operator site O3: Structural differences between consensus and non-consensus half-sites. Structure 1 CrossRef | Google Scholar(4): 227–40
Roll/Mecak, A., Cao, C., Dever, T. E., and Burley, S. K. (2000). X-ray structures of the universal translation initiation factor IF2/eIF5B: Conformational changes on GDP and GDP binding. Cell 103 CrossRef | Google Scholar: 781–92
Rould, M. A., Perona, J. J., Soll, D., and Steitz, T. A. (1989). Structure of E. coli glutaminyl-tRNA synthetase complexed with tRNA and ATP at 2.8 Å resolution. Science 246 CrossRef | Google Scholar | PubMed: 1135–42
Sachs, A. B. (2000). Cell cycle-dependent translation intitiation: IRES elements prevail. Cell 101 CrossRef | Google Scholar: 243–5
Sawaya, M. R., Guo, S., Tabor, S., Richardson, C. C., and Ellenberger, T. (1999). Crystal structure of the helicase domain from the replicative helicase-primase of bacteriophage T7. Cell 99 CrossRef | Google Scholar | PubMed: 167–77
Sawaya, M. R., Prasad, R., Wilson, S. H., Kraut, J., and Pelletier, H. (1997). Crystal structures of human DNA polymerase β complexed with gapped and nicked DNA: Evidence for an induced fit mechanism. Biochemistry 36 CrossRef | Google Scholar | PubMed: 11205–15
Schimmel, P., and Ribas de Pouplana, L. (1999). Genetic code origins: Experiments confirm phylogenic predictions and may explain a puzzle. Proc. Natl. Acad. Sci. USA 96 CrossRef | Google Scholar: 327–8
Schultz, S. C., Shields, G. C., and Steitz, T. A. (1991). Crystal structure of a CAP-DNA complex: The DNA is bent by 90 degrees. Science 253 CrossRef | Google Scholar | PubMed: 1001–7
Schumacher, M. A., Choi, K. Y., Zaklin, H., and Brennan, R. G. (1994). Crystal structure of the LacI family member, PurR, bound to DNA: Minor groove binding by alpha helices. Science 266 CrossRef | Google Scholar: 763–70
Schwabe, J. W. R., and Rhodes, D. (1991). Beyond zinc fingers: Steroid hormone receptors have a novel structural motif for DNA recognition. Trends Biochem. Sci. 16 CrossRef | Google Scholar | PubMed: 291–6
Schwabe, J. W. R., Neuhaus, D., and Rhodes, D. (1990). Solution structure of the DNA/binding domain of the oestrogen receptor. Nature 348 CrossRef | Google Scholar: 458–61
Selmer, M., Al/Karadaghi, S., Hirokawa, G., Kaji, A., and Liljas, A. (1999). Crystal structure of Thermotoga maritima ribosome recycling factor: A tRNA mimic. Science 286 CrossRef | Google Scholar | PubMed: 2349–52
Shamoo, Y., and Steitz, T. A. (1999). Building a replisome from interacting pieces: Sliding clamp complexed to a peptide from DNA polymerase and a polymerase editing complex. Cell 99 CrossRef | Google Scholar: 155–65
Sharkey, M., Graba, Y., and Scott, M. P. (1997). Hox genes in evolution: Protein surfaces and paralog groups. Trends Genet. 13 CrossRef | Google Scholar | PubMed: 145–51
Sharp, P. A., and Burge, C. B. (1997). Classification of introns: U2-type or U12-type. Cell 91 CrossRef | Google Scholar | PubMed: 875–9
Shimon, L. J. W., and Harrison, S. C. (1993). The phage 434 OR2/R1-69 complex at 2.5 angstroms resolution. J. Mol. Biol. 232 CrossRef | Google Scholar: 826–38
Shimotakahara, S., Gorin, A., Kolbanovskiy, A., Kettani, A., Hingerty, B. E., Amin, S., Broyde, S., Geacintov, N., and Patel, D. J. (2000). Accomodation of S-cis-tamoxifen-N-guanine adduct within a bent and widened DNA minor groove. J. Mol. Biol. 302 CrossRef | Google Scholar | PubMed: 377–93
Shippen/Lentz, D., and Blackburn, E. H. (1990). Functional evidence for an RNA template in telomerase. Science 247 CrossRef | Google Scholar: 546–52
Shyu, A., and Wilkinson, M. F. (2000). The double lives of shuttling mRNA binding proteins. Cell 102 CrossRef | Google Scholar | PubMed: 135–8
Siegert, R., Leroux, M. R., Scheufler, C., Harti, F. U., and Moarefi, I. (2000). Structure of the molecular chaperone prefoldin: Unique interaction of multiple coiled coil tentacles with unfolded proteins. Cell 103 CrossRef | Google Scholar | PubMed: 621–32
Singer, R. H., and Green, M. R. (1997). Compartmentalization of eukaryotic gene expression: Causes and effects. Cell 91 CrossRef | Google Scholar | PubMed: 291–4
Smale, S. T., and Baltimore, D. (1989). The “initiator” as a transcription control element. Cell 57 CrossRef | Google Scholar: 103–13
Sollner/Webb, B. (1991). RNA editing. Curr. Opin. Cell Biol. 3 CrossRef | Google Scholar: 1056–61
Song, H., Mugnier, P., Das, A. K., Webb, H. M., Evans, D. R., Tuite, M. F., Hemmings, B. A., and Barford, D. (2000). The crystal structure of human eukaryotic release factor eRF1/mechanism of stop codon recognition and peptidyl-tRNA hydrolysis. Cell 100 CrossRef | Google Scholar | PubMed: 311–21
Spronk, C. A. E. M., Bonvin, A. M. J. J., Radha, P. K., Melacini, G., Boelens, R., and Kaptein, R. (1999). The solution structure of lac repressor headpiece 62 complexed to symmetrical lac operator. Structure 7 CrossRef | Google Scholar | PubMed: 1483–92
Staley, J. P., and Guthrie, C. (1998). Mechanical devices of the spliceosome: Motors, clocks, springs, and things. Cell 92 CrossRef | Google Scholar | PubMed: 315–26
Stark, H., Orlova, E. V., Rinke/Appel, J., Junke, N., Mueller, F., Rodnina, M., Wintermeyer, W., Brimacombe, R. and Heel, M. (1997). Arrangement of tRNAs in pre/ and posttranslocational ribosomes revealed by electron cryomicroscopy. Cell 88 CrossRef | Google Scholar: 19–28
Stark, H., Rodnina, M. V., Wieden, H. J., Heel, M., and Wintermeyer, W. (2000). Large/scale movement of elongation factor G and extensive conformational change of the ribosome during translocation. Cell 100 CrossRef | Google Scholar | PubMed: 301–9
Steitz, T. A. (1992). A general structural mechanism of coupling NTP hydrolysis to other processes. Proceedings of the Robert A. Welch Foundation, Houston, TX, pp. 173–86 Google Scholar
Stewart, L., Redinbo, M. R., Qiu, X., Hol, W. G. J., and Champoux, J. J. (1998). A model for the mechanism of human topoisomerase I. Science 279 CrossRef | Google Scholar | PubMed: 1534–41
Strobel, S. A., and Cech, T. R. (1995). Minor groove recognition of the conserved G-U pair at the Tetrahymena ribozyme reaction site. Science 267 CrossRef | Google Scholar | PubMed: 675–9
Su, S., Gao, Y/G., Robinson, H., Liaw, Y/C., Edmondson, S. P., Shriver, J. W., and Wang, A. H/J. (2000). Crystal structure of the chromosomal proteins Sso7d/Sac7d bound to DNA containing T-G mismatched base pairs. J. Mol. Biol. 303 CrossRef | Google Scholar | PubMed: 395–403
Subramanya, H. S., Doherty, A. J., Ashford, S. R., and Wigley, D. B. (1996). Crystal structure of an ATP-dependent DNA ligase from bacteriophage T7. Cell 85 CrossRef | Google Scholar | PubMed: 607–15
Tan, S., and Richmond, T. J. (1998). Crystal structure of the yeast MATα2/MCM1/DNA ternary complex. Nature 391 CrossRef | Google Scholar | PubMed: 660–6
Tan, S., Hunziker, Y., Sargent, D. F., and Richmond, T. J. (1996). Crystal structure of a yeast TFIIA/TBP/DNA complex. Nature 381 CrossRef | Google Scholar | PubMed: 127–34
Tsai, F. T. F., and Singer, P. B. (2000). Structural basis of preinitiation complex assembly of human Pol II promoters. EMBO J. 19 CrossRef | Google Scholar | PubMed(1): 25–36
Tuschi, T., Gohlke, C., Jovin, T. M., Westhof, E., and Eckstein, F. (1994). A three-dimensional model for the hammerhead ribozyme based on fluorescence measurements. Science 266 CrossRef | Google Scholar: 785–9
Velankar, S. S., Soultanas, P., Dillingham, M. S., Subramanya, H. S., and Wigley, D. B. (1999). Crystal structures of complexes of PcrA DNA helicase with a DNA substrate indicate an inchworm mechanism. Cell 97 CrossRef | Google Scholar | PubMed: 75–84
Wang, D., Meier, T. I., Chan, C. L., Feng, G., Lee, D. N., and Landick, R. (1995). Discontinuous movements of DNA and RNA in RNA polymerase accompany formation of a paused transcription complex. Cell 81 CrossRef | Google Scholar | PubMed: 341–50
Wang, J., Sattar, A. K. M. A., Wang, C. C., Karam, J. D., Konigsberg, W. H., and Steitz, T. A. (1997). Crystal structure of a pol α family replication DNA polymerase from bacteriophage RB69. Cell 89 CrossRef | Google Scholar | PubMed: 1087–99
Wang, Y., and Patel, D. J. (1993). Solution structure of the human telomeric repeat d[AG (T AG)] G/tetraplex. Structure 1 CrossRef | Google Scholar(4): 263–82
Wei, X., Samarabandu, J., Devdhar, R. S., Siegel, A. J., Acharya, R., and Berezney, R. (1998). Segregation of transcription and replication sites into higher order domains. Science 281 CrossRef | Google Scholar | PubMed: 1502–4
Weichenrieder, O., Wild, K., Strub, K., and Cusak, S. (2000). Structure and assembly of the Alu domain of the mammalian signal recognition particle. Nature 408 CrossRef | Google Scholar | PubMed: 167–73
Wells, S. E., Hillner, P. E., Vale, R. D., and Sachs, A. B. (1998). Circularization of mRNA by eukaryotic translation initiation factors. Mol. Cell 2 CrossRef | Google Scholar | PubMed: 135–40
Wickner, S., Maurizi, M. R., and Gottesman, S. (1999). Posttranslational quality control: Folding, refolding, and degrading proteins. Science 286 CrossRef | Google Scholar | PubMed: 1888–93
Wilson, K. S., and Noller, H. F. (1998). Mapping the position of translational elongation factor EF-G in the ribosome by directed hydroxyl radical probing. Cell 92 CrossRef | Google Scholar | PubMed: 131–9
Wilson, K. S.. (1998). Molecular movement inside the translational engine. Cell 92 CrossRef | Google Scholar | PubMed: 337–49
Wimberly, B. T., Brodersen, D. E., Clemmons, W. M., Morgan/Warren, R. J., Carter, A. P., Vonrhein, C., Hartsch, T., and Ramakrishnan, V. (2000). Structure of the 30S ribosomal subunit. Nature 407 Google Scholar | PubMed: 327–39
Wimberly, B. T., Guymon, R., McCutcheon, J. P., White, S. W., and Ramakrishnan, V. (1999). A detailed view of a ribosomal active site: The structure of the L11/RNA complex. Cell 97 CrossRef | Google Scholar | PubMed: 491–502
Wintjens, R., Lievin, J., Rooman, M., and Buisine, E. (2000). Contribution of cation-π interactions to the stability of protein-DNA complexes. J. Mol. Biol. 302 CrossRef | Google Scholar | PubMed: 395–410
Xing, Y., Johnson, C. V., Moen, P. T. Jr., McNeil, J. A., and Lawrence, J. (1995). Nonrandom gene organization: Structural arrangements of specific pre/mRNA transcription and splicing with SC-35 domains. J. Cell Biol. 131 CrossRef | Google Scholar | PubMed: 1635–47
Xu, H. E., Rould, M. A., Xu, W., Epstein, J. A., Maas, R. L., and Pabo, C. O. (1999). Crystal structure of the human pax-6 paired domain-DNA complex reveals specific roles for the linker region and carboxy-terminal subdomain in DNA binding. Genes Develop. 13 CrossRef | Google Scholar: 1263–75
Yudkovsky, N., Ranish, J. A., and Hahn, S. (2000). A transcription reinitiation intermediate that is stabilized by activator. Nature 408 CrossRef | Google Scholar | PubMed: 225–9
Zhu, X., Zhao, X., Burkholder, W. F., Gragerov, A., Ogata, C. M., Gottesman, M. E., and Hendrickson, W. A. (1996). Structural analysis of substrate binding by the molecular chaperone DnaK. Science 272 CrossRef | Google Scholar | PubMed: 1606–14

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 1111 *
Loading metrics...

Book summary page views

Total views: 3512 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 21st April 2025. This data will be updated every 24 hours.

Usage data cannot currently be displayed.