Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-m42fx Total loading time: 0 Render date: 2024-07-22T05:23:04.086Z Has data issue: false hasContentIssue false

14 - Covariant loop quantum gravity?

from Part III - Loop quantum gravity and spin foam models

Published online by Cambridge University Press:  26 October 2009

Daniele Oriti
Affiliation:
Universiteit Utrecht, The Netherlands
Get access

Summary

Introduction

In recent years, loop quantum gravity (LQG) has become a promising approach to Quantum Gravity (see e.g. for reviews). It has produced concrete results such as a rigorous derivation of the kinematical Hilbert space with discrete spectra for areas and volumes, the resulting finite isolated horizon entropy counting and regularization of black hole singularities, a well-defined framework for a (loop) quantum cosmology, and so on. Nevertheless, the model still has to face several key issues: a well-defined dynamics with a semi-classical regime described by Newton's gravity law and General Relativity, the existence of a physical semi-classical state corresponding to an approximately flat space-time, a proof that the no-gravity limit of LQG coupled to matter is standard quantum field theory, the Immirzi ambiguity, etc. Here, we address a fundamental issue at the root of LQG, which is necessarily related to these questions: why the SU(2) gauge group of loop quantum gravity? Indeed, the compactness of the SU(2) gauge group is directly responsible for the discrete spectra of areas and volumes, and therefore is at the origin of most of the successes of LQG: what happens if we drop this assumption?

Let us start by reviewing the general structure of LQG and how the SU(2) gauge group arises. In a first order formalism, General Relativity (GR) is formulated in term of tetrad e which indicates the local Lorentz frame and a Lorentz connection ω which describes the parallel transport.

Type
Chapter
Information
Approaches to Quantum Gravity
Toward a New Understanding of Space, Time and Matter
, pp. 253 - 271
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×