Skip to main content Accessibility help
×
Hostname: page-component-788cddb947-nxk7g Total loading time: 0 Render date: 2024-10-09T04:23:21.186Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 June 2014

Brian Koberlein
Affiliation:
Rochester Institute of Technology, New York
David Meisel
Affiliation:
State University of New York, Geneseo
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Astrophysics through Computation
With Mathematica® Support
, pp. 357 - 368
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abraham, R., and Marsden, J.E. 1980. Foundations of Mechanics. Reading, MA: The Benjamin/Cummings. Advanced Book Program.Google Scholar
Adams, Douglas. 1986. The Ultimate Hitchhiker's Guide. New York: Wings Books.Google Scholar
Aitchison, J., and Brown, J.A.C. 1957. The Lognormal Distribution. New York: Cambridge University Press.Google Scholar
Aller, Lawrence H. 1963. Astrophysics: The Atmospheres of the Sun and Stars, 2nd ed. New York: Ronald Press.Google Scholar
Ambartsumian, V. 1958. Theoretical Astrophysics. London: Pergamon Press.Google Scholar
Andrews, H.C., and Hunt, B.R. 1977. Digital Image Restoration. Prentice-Hall Signal Processing Series. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
Angione, R.J., and Smith, H.J. 1983. 3C 273 Historical Data Base. Astronomical Journal, 90, 2474–2486.Google Scholar
Angélil, R., and Saha, P. 2010. Relativistic Redshift Effects and the Galactic Center Stars. Astrophysical Journal, 711.CrossRefGoogle Scholar
Angélil, R., Saha, P., and Merritt, D. 2010. Toward Relativistic Orbit Fitting of Galactic Center Stars and Pulsars. Astrophysical Journal, 720, 1303–1310.CrossRefGoogle Scholar
Arfkin, George B., and Weber, Hans J. 2001. Mathematical Methods for Physicists, 5th ed. San Diego: Harcourt/Academic Press.Google Scholar
Austen, Jane. 2006. Pride and Prejudice, Edited by Pat, Rogers. The Cambridge Edition of the Works of Jane Austen. Cambridge: Cambridge University Press.Google Scholar
Bahcall, N.A. 1988. Large-Scale Structure and Motion Traced by Galaxy Clusters. Princeton, NJ: Princeton University Press.Google Scholar
Baker, G.L., and Gollub, J.P. 1996. Chaotic Dynamics, 2nd ed. Cambridge, U.K.: Cambridge University Press.CrossRefGoogle Scholar
Baldwin, Ralph B. 1944. Certain Effects of Stellar Rotation. Popular Astronomy, 52, 134–138.Google Scholar
Baugh, C.M., and Efstathiou, G. 1993. The Three-Dimensional Power Spectrum Measured from the APM Galaxy Survey-I. Use of the Angular Correlation Function. MNRAS, 265, 145–156.CrossRefGoogle Scholar
Baumann, Gerd. 2000. Symmetry Analysis of Differential Equations with Mathematica. New York: Springer-Verlag.CrossRefGoogle Scholar
Beutler, F.J. 1961. Sampling Theorems and Bases in a Hilbert Space. Information Control, 4.CrossRefGoogle Scholar
Bolstad, William M. 2004. Introduction to Bayesian Statistics. Hoboken, NJ: John Wiley & Sons.CrossRefGoogle Scholar
Borne, K.D., and 91 others. 2009. Astroinformatics: A 21st Century Approach to Astronomy. Tech. rept. Submitted to 2010 Decadal Survey.Google Scholar
Borwein, J.M, and Bailey, David H. 2004. Mathematics by Experiment: Plausible Reasoning in the 21st Century. Natick, MA: A.K. Peters.Google Scholar
Borwein, J.M, Bailey, David H., and Girgensohn, Roland. 2004. Experimentation in Mathematics: Computational Paths to Discovery. Natick, MA: A.K. Peters.Google Scholar
Bowers, Richard L., and Wilson, James R. 1991. Numerical Modeling in Applied Physics and Astrophysics. Boston: Jones and Bartlett.Google Scholar
Bracewell, R. 1965. The Fourier Transform and Its Applications. New York: McGraw-Hill.Google Scholar
Brandt, J.C. 1970. Introduction to the Solar Wind. San Francisco: W.H. Freeman.Google Scholar
Bratteli, O., and Jorgensen, P. 2002. Wavelets through a Looking Glass: The World of the Spectrum. Applied and Numerical Harmonic Analysis. Boston: Birkhäauser.CrossRefGoogle Scholar
Brigham, E. Oran. 1974. The Fast Fourier Transform. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
Buchler, J. Robert, and Eichhorn, Heinrich. 1987. Chaotic Phenomena in Astrophysics. Annals of the New York Academy of Sciences, 497, 83.Google Scholar
Buchler, J.R., and Eichhorn, H. 1987. Chaotic Phenomena in Astrophysics, Vol. 155. New York: New York Academy of Sciences.Google Scholar
Budden, K.G. 1961. Radio Waves in the Ionosphere. Cambridge, U.K.: Cambridge Press.Google Scholar
Burke, B.F., and Graham-Smith, F. 2002. An Introduction to Radio Astronomy. 2nd ed. Cambridge: Cambridge University Press.Google Scholar
Böhm-Vitense, Erika. 1989. Introduction to Stellar Astrophysics, Vol. 2: Stellar Atmospheres. Cambridge: Cambridge University Press.Google Scholar
Böhm-Vitense, Erika. 1992. Introduction to Stellar Astrophysics, Vol. 3: Stellar Structure and Evolution. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Callen, Herbert B. 1985. Thermodynamics and an Introduction to Thermostatistics. 2nd ed. New York: John Wiley & Sons.Google Scholar
Cartan, E. 1966. The Theory of Spinors. Cambridge, MA: MIT Press.Google Scholar
Chandra, Suresh. 2005. Relation between Spectroscopic Constants with Limited Dunham Coefficients Pramana, 65(6), 1133–1137.
Chandrasekhar, Subrahmanyan. 1934. The Radiative Equilibrium of Extended Stellar Atmospheres. MNRAS, 94, 443.CrossRefGoogle Scholar
Chandrasekhar, Subrahmanyan. 1942. 1943. Principles of Stellar Dynamics, Expanded Edition. New York: Dover.Google Scholar
Chandrasekhar, Subrahmanyan. 1943a. Dynamical Friction, Part 1. Astrophysical Journal, 97(No. 2), 255–262.Google Scholar
Chandrasekhar, Subrahmanyan. 1943b. Dynamical Friction, Part 2. Astrophysical Journal, 97(No. 2).Google Scholar
Chandrasekhar, Subrahmanyan. 1943c. Dynamical Friction, Part 3. Astrophysical Journal, 98(No. 1).Google Scholar
Chandrasekhar, Subrahmanyan. 1960. Radiative Transfer. New York: Dover.Google Scholar
Chandrasekhar, Subrahmanyan. 1967. An Introduction to the Study of Stellar Structure. New York: Dover Publications.Google Scholar
Chapman, G., et al. 1989. The Complete Monty Python's Flying Circus: All the Words, Vol.1. New York: Pantheon Books.Google Scholar
Cincotta, P.M., Mendez, M., and Nunez, J.A. 1995. Astronomical Time Series Analysis. I. A Search for Periodicity Using Information Entropy. Astrophysical Journal, 449, 231–235.CrossRefGoogle Scholar
Coles, W.D., Fakan, J.C., and Laurence, J.C. 1966. Superconducting Magnetic Bottle for Plasma Physics Experiments. NASA (NASA Technical TN D-3595).Google Scholar
Collins, George W. 1978. The Virial Theorem in Stellar Astrophysics. Astronomy and Astrophysics Series, Vol. 7. Tucson, AZ: Pachart.Google Scholar
Contopoulos, George. 1966. Problems of Stellar Dynamics. Providence, RI: American Mathematical Society, pp. 169–258.Google Scholar
Contopoulos, G. 1987. Stochasticity in Galactic Models. New York: New York Academy of Sciences.Google Scholar
Cox, Arthur N. 2000. Allen's Astrophysical Quantities, 4th ed. New York: Springer-Verlag.Google Scholar
Crandall, R.E. 1994. Projects in Scientific Computation. TELOS, The Electronic Library of Science. Santa Clara, CA: Springer-Verlag.CrossRefGoogle Scholar
Crandall, R.E. 1996. Topics in Advanced Scientific Computation. TELOS, The Electronic Library of Science. Santa Clara, CA: Springer-Verlag.CrossRefGoogle Scholar
Crandall, R.E. 1999. New Representation of the Madelung Constant. Experimental Mathematics, 8, 367–379.CrossRefGoogle Scholar
Crocce, M., Cabre, A., and Gaztanaga, E. 2011. Modeling the Angular Correlation Function and Its Full Covariance in Photometric Galaxy Surveys. MNRAS, 414, 329–349.CrossRefGoogle Scholar
Danby, John M.A. 1988. Fundamentals of Celestial Mechanics. 2nd rev and enlarged edn. Richamond, VA: Willmann-Bell.Google Scholar
Däappen, Werner. 2000. Ch.3 -Atoms and Molecules. 2nd ed., New York: Springer-Verlag, pp. 27–51.Google Scholar
Daubechies, I., and Sweldens, W. 1998. Factoring Wavelet Transforms into Lifting Steps. Journal Fourier Analysis and Application, 4, 247–269.CrossRefGoogle Scholar
Davies, Kenneth. 1966. Ionospheric Radio Propagation. New York: Dover Publications.Google Scholar
Davis, Harold T. 1962. Introduction to Non-linear Differential and Integral Equations. New York: Dover Publications.Google Scholar
Deeming, T.J. 1975. Fourier Analysis with Unequally-Spaced Data. Astrophysics and Space Science, 36(1), 137–158.CrossRefGoogle Scholar
Dekel, A. 1988. Theoretical Implications of Superclustering. Princeton, NJ: Princeton University Press.Google Scholar
Diacu, F., and Holmes, P., 1996. Celestial Encounters. Princeton, NJ: Princeton University Press.Google Scholar
Dingle, R.B, Arndt, D., and Roy, S.K. 1957. The Integrals Cp and Dp and their tabulation. Applied Science Research, 6-B, 144–155.Google Scholar
Dirac, P.A.M. 1975. General Theory of Relativity. New York: Wiley Interscience.Google Scholar
Drazin, P.G. 1992. Non-linear Systems. Cambridge Texts in Applied Mathematics. Cambridge, U.K.: Cambridge University Press.Google Scholar
Dubin, Daniel. 2003. Numerical and Analytical Methods for Scientists and Engineers using Mathematica. Hoboken, NJ: John Wiley Sons.CrossRefGoogle Scholar
Eddington, Arthur S. 1923 (reprinted 1960). The Mathematical Theory of Relativity. Cambridge, U.K.: Cambridge University Press.Google Scholar
Eddy, J.A. 1978. The New Solar Physics. The AAAS Selected Symposia Series, Vol. 17. Boulder, CO: Westview Press for the American Association for the Advancement of Science.Google Scholar
Faber, S.M., and Burstein, D. 1988. Motions of Galaxies in the Neighborhood of the Local Group. Princeton, NJ: Princeton University Press.Google Scholar
Feller, William. 1950. An Introduction to Probability Theory and Its Applications. Vol. I, 3rd ed. New York: John Wiley & Sons.Google Scholar
Feller, William. 1966. An Introduction to Probability Theory and Its Applications, Vol. II. New York: John Wiley and Son.Google Scholar
Feynman, R.P., Morinigo, F.B., and Wagner, W.G. 1995. Feynman Lectures on Gravitation. The Advanced Book Program. Reading, MA: Addison-Wesley.Google Scholar
Fischel, D. 1976. Oversampling of Digitized Images. Astronomical Journal, 81.CrossRefGoogle Scholar
Friedman Harold, L. 1985. A Course in Statistical Mechanics. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
Friedrich, M., Finsterbusch, R., Tokar, K.M., and Spœcker, H. 1991. A Further Generalization of the Sen and Wyller Magnetoionic Theory. Advances in Space Research, 11(10), 105–108.CrossRefGoogle Scholar
Fry, J.N. 1987. On the Origin of Large Scale Cosmological Structure. New York: New York Academy of Sciences.Google Scholar
Funsten, H.O., and 13 others. 2009. Structures and Spectral Variations of the Outer Heliosphere in IBEX Energetic Neutral Atom Maps. Science, 326(13 November 2009), 964–966.CrossRefGoogle ScholarPubMed
Fuselier, S.A., and 14 others. 2009. Width and Variation of the ENA Flux Ribbon Observed by the Interstellar Boundary Explorer. Science, 326(13 November 2009), 962–964.CrossRefGoogle ScholarPubMed
Gibbs, J.W. 1966. “On the Equilibrium of Heterogeneous Substances” in The Scientific Papers of J. Willard Gibbs: Vol. 1. Thermodynamics, H.A., Bumstead, Van Name, , and Ralph Gibbs, Dover, New York, 55–371.Google Scholar
Galison, P. 2003. Einstein's Time, Poincaré's Maps Empires of Time. New York: W.W. Norton.Google Scholar
Gillessen, S., Eisenhauer, F., Trippe, S., Alexander, T., Genzel, R., Martins, F., and Ott, T. 2009. Monitoring Stellar Orbits Around the Massive Black Hole in the Galactic Center. Astrophysical Journal, 692(2), 1075–1109.CrossRefGoogle Scholar
Goldstein, Herbert, Poole, C.P. Jr., and Safko, J.L. 2002. Classical Mechanics, 3rd edn. New York: Addison-Wesley.Google Scholar
Goldstein, S.J., and Meisel, D.D. 1969. Observations of the Crab Pulsar During an Occultation by the Solar Corona. Nature, 224, 349–350.CrossRefGoogle Scholar
Gray, David F. 1992. The Observation and Analysis of Stellar Photospheres, 2nd ed. Cambridge Astrophysics Series. Cambridge: Cambridge University Press.Google Scholar
Green, Robin M. 1985. Spherical Astronomy. Cambridge: Cambridge University Press.Google Scholar
Griffin, R.F. 2010. Spectroscopic Binary Orbits from Photoelectric Radial Velocities Paper 215. The Observatory: A Review of Astronomy, 130(1219), 349–363.Google Scholar
Grossman, Nathaniel. 1996. The Sheer Joy of Celestial Mechanics. Boston: Birkäauser.CrossRefGoogle Scholar
Groth, H.G., and Wellman, P. 1970. Spectrum Formation in Stars with Steady-State Extended Atmospheres. IAU Collequia: International Astronomical Union.CrossRefGoogle Scholar
Gurnett, Don A., Bhattacharjee, Amitava. 2005. Introduction to Plasma Physics With Space and Laboratory Applications. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Haardt, F., and 15 others. 1998. The Hidden X-ray Seyfert Nucleus in 3C273:BeppoSAX Results. Astronomy and Astrophysics, 340, 35–46.Google Scholar
Hamming, R.W. 1977. Digital Filters. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
Harris, John W., and Stöcker, Horst. 1998. Handbook of Mathematics and Computational Science. New York: Springer Verlag.CrossRefGoogle Scholar
Hartmann, L., and Burkert, A. 2007. On the Structure of the Orion A Cloud and the Formation of the Orion Nebula Cluster. Astrophysical Journal, 654, 988–997.CrossRefGoogle Scholar
Harwit, Martin. 1988. Astrophysical Concepts, 2nd ed. Astronomy and Astrophysics Library. New York: Springer-Verlag.CrossRefGoogle Scholar
Hasani, Sadri. 1999. Mathematical Physics: A Modern Introduction. New York: Springer-Verlag.CrossRefGoogle Scholar
Hassani, Sadri. 2003. Mathematical Methods Using Mathematica: For Students of Physics and Related Fields. Undergraduate Texts in Contemporary Physics. New York: Springer.CrossRefGoogle Scholar
Hawking, S. W. 1976. Black Holes and Thermodynamics. Physical Review D, 13(2), 191–197. PRD.CrossRefGoogle Scholar
Haynes, M.P., and Giovanelli, Ri. 1988. Large Scale Structure in the Local Universe: The Pisces-Perseus Super Cluster. Princeton, NJ: Princeton University Press.Google Scholar
Heggie, D., and Hut, P. 2003. The Gravitational Million-Body Problem. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Herbst, Eric. 1995. Chemistry in the Interstellar Medium. Annual Review of Physical Chemistry, 27–53.Google Scholar
Herbst, Eric, and van Dishoeck, Ewine F. 2009. Complex Organic Interstellar Molecules, Vol. 47, Annual Review of Astronomy and Astrophysics: Annual Reviews, 427–480.Google Scholar
Herman, J.R., and Goldberg, R.A., 1978. Sun, Weather, Climate. NASA Special Publications, Vol. SP-426. Washington, DC: National Aeronautics and Space Administration.Google Scholar
Herzberg, Gerard. 1950. Molecular Spectra and Molecular Structure I. Spectra of Diatomic Molecules 2nd ed. New York: Van Nostrand Reinhold.Google Scholar
Hilborn, Robert C. 1994. Chaos and Non-linear Dynamics: An Introduction for Scientists and Engineers. New York: Oxford University Press.Google Scholar
Hillenbrand, L.A., and Hartmann, L.W. 1998. A Preliminary Study of the Orion Nebula Cluster Structure and Dynamics. Astrophysical Journal, 492, 540–553.CrossRefGoogle Scholar
Hook, I.M., McMahon, R.G., Boyle, B.J., and Irwin, M.J. 1994. The Variability of Optically Selected Quasars. Monthly Notices of the Royal Astronomical Society, 268, 305–320.CrossRefGoogle Scholar
Hubbard, B.B. 1998. The World According to Wavelets;The Story of a Mathematical Technique in the Making, 2nd ed. Wellesley, MA: A.K. Peters.Google Scholar
Hubbard, J.H., and West, B.H. 1991. Differential Equations:A Dynamical Approach Ordinary Differential Equations. Texts in Applied Mathematics, Vol. 5. New York: Springer-Verlag.Google Scholar
Hubbard, J.H., and West, B.H. 1995. Differential Equations: A Dynamical Approach Higher-Dimension Systems. Texts in Applied Mathematics, Vol. 18. New York: Springer-Verlag.CrossRefGoogle Scholar
Hulse, R.A., and Taylor, J.H. 1975. Discovery of a Pulsar in a Binary System. Astrophysical Journal (Letters), 195, L51.CrossRefGoogle Scholar
Hundhausen, A.J. 1972. Coronal Expansion and Solar Wind. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Hundhausen, A.J. 1978. Streams, Sectors and Solar Magnetism. Boulder, CO.: AAAS, Chap. 4.Google Scholar
Hundhausen, A.J. 1995. The Solar Wind. Cambridge: Cambridge University Press.Google Scholar
Hunt, B.R. 1978. Digital Image Processing. Prentice-Hall Signal Processing Series. Englewood Cliffs, NJ: Prentice-Hall. Chap. 4, pp. 169–237.Google Scholar
Iyer, S.V., and Hansen, E.C. 2009. Light's Bending Angle in the Equatorial Plane of a Kerr Black Hole. Physical Review D, 80(12).CrossRefGoogle Scholar
Jefimenko, Oleg D. 1989. Electricity and Magnetism, 2nd ed. Star City, WV, 26505: Electret Scientific Co.Google Scholar
Kaiser, Gerald. 1994. A Friendly Guide to Wavelets. Boston: Birkhäauser.Google Scholar
Kataoka, J., and 6 others. 2002. RXTE Observations of 3C 273 between 1996 and 2000: Variability Time-scale and Jet Power. MNRAS, 336, 932–944.CrossRefGoogle Scholar
Kelso, J.M. 1964. Radio Ray Propagation in the Ionosphere. New York: McGraw-Hill.Google Scholar
King, I.R. 1966. The Structure of Star Clusters. III. Some Simple Dynamical Models. Astronomical Journal, 71(1), 64–75.CrossRefGoogle Scholar
Kittel, Charles. 1986. Introduction to Solid State Physics, 6th ed. New York: John Wiley & Sons.Google Scholar
Kittel, Charles, and Kroemer, Herbert. 1980. Thermal Physics. New York: W.H. Freeman.Google Scholar
Kivelson, Margaret G., and Russell, Christopher T. Editors. 1995. Introduction to Space Physics. Cambridge: Cambridge University.
Kolb, E.W., and Turner, M.S. 1990. The Early Universe. Frontiers in Physics. Redwood City, CA: Addison-Wesley. Advanced Book Program.Google Scholar
Kosirev, N. 1934. Radiative Equilibrium of the Extended Photosphere. MNRAS, 94, 430.CrossRefGoogle Scholar
Krasner, S. 1990a. The Ubiquity of Chaos, Vol. 89-15S. Washington, DC: American Association for Advancement of Science.Google Scholar
Krasner, Saul. 1990b. The Ubiquity of Chaos. Washington, DC: American Association for Advancement of Science.Google Scholar
Kraus, Stefan. 2009. Tracing the Binary Orbit of the Young, Massive High-eccentricity Binary System Theta 1 Orionis C. The ESO Messenger, 136(June 2009), 44–47.Google Scholar
Krimigis, S.M., and 4 others. 2009. Imaging the Interaction of the Heliosphere with the Interstellar Medium from Saturn with Cassini. Science, 326(13 November 2009), 971–973.CrossRefGoogle ScholarPubMed
Lamb, D.Q., and Van Horn, H.M. 1975. Evolution of Crystallizing Pure 12 C White Dwarfs. Astrophysical Journal, 200, 306–323.CrossRefGoogle Scholar
Lang, Kenneth R. 1992. Astrophysical Data: Planets and Stars. New York: Springer-Verlag.CrossRefGoogle Scholar
Lanm, H. Y.-F. 1979. Analog and Digital Filters: Design and Realization. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
Laurendeau, Normand M. 2010. Statistical Thermodynamics. Cambridge: Cambridge University Press.Google Scholar
Limber, D.N. 1952. Anaysis of Counts of the ExtraGalactic Nebulae in Terms of a Fluctuating Density Field. Astrophysical Journal, 117, 134–144.Google Scholar
Limber, D.N. 1954. Analysis of Counts of the Extragalactic Nebulae in Terms of a Fluctuating Density Field. II. Astrophysical Journal, 119, 655–681.CrossRefGoogle Scholar
Linnik, Yu. V. 1961. Method of Least Squares and Principles of the Theory of Observations. New York: Pergamon Press.Google Scholar
Lomb, N.R. 1976. Least-Squares Frequency Analysis of Unequally Spaced Data. Astrophysics and Space Science, 39, 447–463.CrossRefGoogle Scholar
Lucy, L.B. 1974. An Iterative Technique for the Rectification of Observed Distributions. Astronomical Journal, 79(4), 745–754.CrossRefGoogle Scholar
Madore, B.F. 2012. Level 5: A Knowledge Base for Extragalactic Astronomy and Cosmology. ned.ipac.caltech.edu/level5/.Google Scholar
Madore, B.F, and Steer, I.P. 2008. NASA/IPAC Extragalactic Database Master List of Galaxy Distances. ned.ipac.caltech.edu/Library/Distances/.Google Scholar
Maller, A.H., McIntosh, D.H., Katz, N., and Weinberg, M.D. 2005. The Galaxy Angular Correlation Functions and Power Spectrum from the Two Micron All Sky Survey. Astrophysical Journal, 619, 147–160.CrossRefGoogle Scholar
Manchester, R.N., and Taylor, J.H. 1977. Pulsars. A Series of Books in Astronomy and Astrophysics. San Francisco: W.H. Freeman.Google Scholar
Margenau, Henry, and Murphy, George M. 1956. The Mathematics of Physics and Chemistry, Vol. 1, 2nd ed. Princeton, NJ: D. Van Nostrand Co.Google Scholar
Margenau, Henry, and Murphy, George M. 1964. The Mathematics of Physics and Chemistry, Vol. 2. Princeton, NJ: D. Van Nostrand Co.Google Scholar
Mason, Brian D., McAlister Harold A., and Hartkopf, William I. 1995. Binary Star Orbits from Speckle Interferometry. VII The Multiple System Xi Ursae Majoris. Astrophysical Journal, 109(January 1995), 332–340.Google Scholar
Mason, B.D., Wycoff, G.L., Hartkopf, W.I., Douglas, G.G., and Worley, C.E. 2001. Washington Double Star Catalog 2001.0.Google Scholar
McComas, D.J., and 35 others. 2009. Global Observations of the Interstellar Insteration from the Interstellar Boundary Explorer (IBEX). Science, 326(13 November 2009), 959–962.CrossRefGoogle Scholar
McLennan, James A. 1989. Introduction to Nonequilibrium Statistical Mechanics. Prentice-Hall Advanced Reference Series. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
Meeus, Jean. 1998. Astronomical Algorithms, 2nd ed. Richmond, VA: Willmann-Bell.Google Scholar
Meisel, D.D. 1978. Fourier Transforms of Data Sampled at Unequal Observational Intervals. Astrophysical Journal, 83(5), 538–545.Google Scholar
Meisel, D.D. 1979. Fourier Transforms of Data Sampled in Equally Spaced Intervals. Astrophysical Journal, 84(1), 116–126.Google Scholar
Meisel, D.D., Saunders, B.A., Frank, Z.A., and Packard, M.L. 1982. The Helium 1083. Angstrom Line in Early Type Stars: An Atlas of Fabry-Perot Scans. Astrophysical Journal, 263, 759–776.CrossRefGoogle Scholar
Meisel, David D., Janches, D., and Mathews, J.D. 2002. The Size Distribution of Arecibo Interstellar Particles and Its implications. Astrophysical Journal, 579(2002 Nov. 10), 895–904.CrossRefGoogle Scholar
Mertins, A. 1999. Signal Analysis. Chichester, U.K.: John Wiley & Sons.CrossRefGoogle Scholar
Mestel, L., and Ruderman, M.A. 1967. The Energy Content of a White Dwarf and Its Rate of Cooling. MNRAS, 136, 27.CrossRefGoogle Scholar
Meyer, Stuart L. 1975. Data Analysis for Scientists and Engineers. Wiley Series in Probability and MatheMatical Statistics. New York: John Wiley & Sons.Google Scholar
Mihalas, Dimitri. 1978. Stellar Atmospheres. 2nd ed. A Series of Books in Astronomy and Astrophysics. San Francisco: W.H. Freeman.Google Scholar
Mills, Allan P. Jr. 2011. The Problem of Sticking of Slow Positronium Atoms Incident upon a Cold Surface. ebookbrowse.com/icpa-15-isps-lecture-mills-pdf-d51817945 (2011).Google Scholar
Milton, K.A. 2011. Resource Letter VWCPF-1:Van der Waals and Casimir-Polder forces. arxiv at http://arkiv.org/abs/cond-mat/0410424.
Misner, C.W., Thorne, K.S., and Wheeler, J.A. 1973. Gravitation. San Francisco: W.H. Freeman.Google Scholar
Möbius, E., and 19 others. 2009. Direct Observations of Interstellar H,He and O by the Interstellar Boundary Explorer. Science, 326(13 November), 969–971.CrossRefGoogle Scholar
Mohling, Franz. 1982. Statistical Mechanics: Methods and Applications. New York: Halsted Press John Wiley.Google Scholar
Montgomery, D.C., and Peck, Elizabeth A. 1990. Multicollinearity in Regression. New York: McGraw-Hill, Chap. 15.Google Scholar
Moore, F.K. 1966. Models of Gas Flows with Chemical and Radiative Effects. Providence, RI: American Mathematical Society.Google Scholar
Müller, C.M. 2005. Cosmological Bounds on the Equation of State of Dark Matter. Physical Review D, 71(4).CrossRefGoogle Scholar
Nash, David. 2011. The Astronomy Nexus Web Site. www.astronaxus.com.Google Scholar
Nelson, R.D., Lide, D.R., and Maryott, A.R. 1967. Selected Values of Electric Dipole Moments for Molecules in the Gas Phase. United States Department of Commerce.CrossRefGoogle Scholar
Obergaulinger, Martin. 2006 (8/09/ 2012). Inflation, Dark Energy, Dark Matter. www.mpa-garching.mpg.de/lectures/ADSEM/SS06-Obergaulinger.pdf.Google Scholar
Observatory, Applications Department U.S. Naval. 19982005. Multiyear Interactive Computer Almanac 1800–2050. Richmond, VA.: Willmann-Bell.
O'Keefe, John A. 1966. Stability of a Rotating Liquid Mass. Providence, RI: American Mathematical Society, pp. 155–169.Google Scholar
Opher, M., Stone, E.C., and Gombosi, T.I. 2007. The Orientation of the Local Magnetic Field. Science, 316, 875.CrossRefGoogle Scholar
Oppenheim, Alan V. 1975. Digital Signal Processing. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
Orfanides, S.J. 1988. Optimum Signal Processing, 2nd ed. New York: Macmillan.Google Scholar
Ott, Edward. 1993. Chaos in Dynamical Systems. Cambridge: Cambridge University Press.Google Scholar
Pack, J.L., and Phelps, A.V. 1959. Electron Collision Frequencies in Nitrogen and the Lower Atmosphere. Physical Review Letters, 3.Google Scholar
Paltani, S., Courvoisier, T.J.L., and Walter, R. 1998. The Blue-Bump of 3C273. Astronomy and Astrophysics, 340, 47–61.Google Scholar
Parker, E.N. 1963. Interplanetary Dynamical Processes. New York: Wiley Interscience.Google Scholar
Parker, E.N. 1978. Solar Physics in Broad Perspective. Boulder, Co.: AAAS, Chap. 1.Google Scholar
Peebles, P.J.E. 1980. The Large Scale Structure of the Universe. Princeton NJ: Princeton University Press.Google Scholar
Penrose, R., and Rindler, W. 1984. 1986. Spinors and Spacetime, Vols. I–II. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Percival, I.C. 1987. Chaos in Hamiltonian Systems. Princeton, NJ: Princeton University Press.Google Scholar
Peterson, I. 1993. Newton's Clock. New York: W.H. Freeman.Google Scholar
Phelps, A.V. 1960. Propagation Constants for Electromagnetic Waves in a Refracting Mdeioum in a Magnetic Field. Proceedings of the Cambridge Philosophical Society, 27.Google Scholar
Plischke, Michael, and Bergersen, Birger. 1989. Equilibrium Statistical Physics. Prentice-Hall Advanced Reference Series. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
Poincaré, H. 1993. New Methods of Celestial Mechanics, Parts 1–3. History of Modern Physics and Astronomy, Vol. 13. New York: American Institute of Physics.Google Scholar
Pollard, Harry. 1966a. Mathematical Introduction to Celestial Mechanics. Prentice-Hall Mathematics Series. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
Pollard, Harry. 1966b. Qualitative Methods in the N-Body Problem. Providence, RI: American Mathematical Society, pp. 259–291.Google Scholar
Prasanna, A.R., Narlikar, J.V., and Vishveshwrar, C.V. 1980. Gravitation, Quanta, and the Universe. In Einstein Centenary Symposium, Ahmedabad, 1979. New York: Halsted Press.Google Scholar
Press, William H., Teukolsky, Saul A., Vetterling, William T., and Flannery, Brian P. 2002. Numerical Recipes: The Art of Scientific Computing CDROM v.2.10. Cambridge: Cambridge University Press.Google Scholar
Prialnik, Dina. 2000. An Introduction to the Theory of Stellar Structure and Evolution. Cambridge: Cambridge University Press.Google Scholar
Qaisar, S.M., Fesquest, L., and Renaudin, M. 2006. Spectral Analysis of a Signal Driven Sampling Scheme. 14th European Signal Processing Conference, Florence, Italy.Google Scholar
Rabiner, L.R., and Gold, B. 1975. Theory and Application of Digital Signal Processing. Englewood Cliffs NJ: Prentice-Hall.Google Scholar
Rasband, S. Neil. 1990. Chaotic Dynamics of Nonlinear Systems. New York: Wiley-Interscience.Google Scholar
Ratcliffe, J.A. 1959. The Magnetoionic Theory. Cambridge, U.K.: Cambridge University Press.Google Scholar
Reif, Fredrick. 1965. Fundamentals of Statistical and Thermal Physics. Reissued 2009 by Waveland Press. Long Grove, IL: Waveland Press.Google Scholar
Rensch, R., and Koel, B.E. 2003. Surfaces and Films. New York: AIP Press Springer, Chap. 25.Google Scholar
Riley, K.F., Hobson, M.P., and Bence, S.J. 1997. Mathematical Methods for Physics and Engineering. Cambridge: Cambridge University Press.Google Scholar
Robertson, Howard P. 1938. The Two-Body Problem in General Relativity. Annals of Mathematics, 39, 101–104.CrossRefGoogle Scholar
Robertson, Howard P., and Noonan, Thomas W. 1968. Relativity and Cosmology. Saunders Physics Books. Philadelphia: W.B. Saunders Co.Google Scholar
Rodriquez, L.F., Gomez, L., Loinard, L., Lizano, S., Allen, C., Poveda, A., and Menten, K.M. 2008. New Observations of the Large Proper Motions of Radio Sources in the Orion BN/Kl Region. RevMexAA(Serie de Conferencias), 34, 75–78.Google Scholar
Rovithis-Livaniou, H. 2004. The Gravity Darkening Effect: From von Zeipel Up to Date. Aerospace Research in Bulgaria 20, 90–98 (2005).Google Scholar
Rubin, V.C., and Coyne, G.V. 1988. Large-Scale Motions in the Universe. Princeton Series in Physics. Princeton, NJ: Princeton University Press.Google Scholar
Rybicki, George B.Theoretical Methods of Treating Line Formation Problems in Steady-State Extended Atmospheres. In: Groth, H.G., and Wellman, P. (eds), Spectrum Formation in Stars with Steady-State Extended Atmospheres IAU No2, vol. NBS Special Publication 332. National Bureau of Standards.
Rybicki, George B., and Press, W.H. 1992. Interpolation, Realization, and Reconstruction of Noisy, Irregularly Sampled Data. Astrophysical Journal, 398, 169–176.CrossRefGoogle Scholar
Savedoff, M.P., Van Horn, H.M., and Vila, S.C. 1969. Late Phases of Stellar Evolution I: Pure Iron Stars. Astrophysical Journal, 155(Jan 1969), 221–245.CrossRefGoogle Scholar
Scargle, J.D. 1981. Studies in Astronomical Time Series Analysis I. Modeling Random Processes in the Time Domain. Astrophysical Journal Supplement Series, 45, 1–71.CrossRefGoogle Scholar
Scargle, J.D. 1982. Studies in Astronomical Time Series Analysis. II. Statistical Aspects of Spectral Analysis of Unevenly Spaced Data. Astrophysical Journal, 263, 835–853.CrossRefGoogle Scholar
Scargle, J.D. 1989. Studies in Astronomical Time Series Analysis III Fourier Transforms, Autcorrelation Functions and Cross-Correlation Functions of Unevenly Spaced Data. Astrophysical Journal, 343, 874–887.CrossRefGoogle Scholar
Scargle, J.D. 1990. Studies in Astronomical Time Series IV. Modeling Chaotic and Random Processes with Linear Filters. Astrophysical Journal, 359, 469–482.CrossRefGoogle Scholar
Scargle, J.D. 1997. Astronomical Time Series Analysis: New Methods for Studying Periodic and Aperiodic Systems. Dordrect: Kluwer, p. 1.Google Scholar
Scargle, J.D. 1998. Studies in Astronomical Time Series Analysis. Astrophysical Journal, 504, 405–418.Google Scholar
Scargle, J.D. 2003. Advanced Tools for Astronomical Times Series and Image Analysis. New York: Springer, pp. 293–308.Google Scholar
Scheuer, P.A.G. 1968. Amplitude Variations in Pulsed Radio Sources. Nature, 218, 920.CrossRefGoogle Scholar
Schneider, P., Ehlers, J., and Falco, E.E. 1993. Garvitational Lenses. New York: Springer-Verlag.Google Scholar
Schwandron, N.A., and 23 others. 2009. Comparison of Interstellar Boundary Explorer Observations with 3D Global Heliospheric Models. Science, 326(13 November 2009), 966–968.Google Scholar
Schwarzschild, M. 1954. Mass Distribution and Mass-luminosity Ratio in Galaxies. Astronomical Journal, 59.CrossRefGoogle Scholar
Schwarzschild, M. 1987. Galactic Models with Moderate Stochasticity. New York: New York Academy of Sciences.Google Scholar
Schwarzschild, Martin. 1958. Structure and Evolution of Stars. New York: Dover Publications (Originally published by Princeton University Press).CrossRefGoogle Scholar
Sebok, W.L. 1986. The Angular Correlation Function of Galaxies as a Function of Magnitude. Astrophysical Journal Supplement Series, 62, 301–330.CrossRefGoogle Scholar
Seidelmann, P. Kenneth. 1992. Explanatory Supplement to the Astronomical Almanac. Mill Valley, CA: University Science Books.Google Scholar
Serra, A.L., and Romero, M.J.L.D. 2011. Measuring the Dark Matter Equation of State. MNRAS, 415, L74–L77.CrossRefGoogle Scholar
Shai, D.E., Cole, M.W., and Lammert, P.E. 2007. Adsorption of Quantum Gases on Curved Surfaces. Journal of Low Temperature Physics, 147(1–2), 59–79.CrossRefGoogle Scholar
Shen, S.F. 1966. Shock Waves in Rarefied Gases. Providence, RI: American Mathematical Society.Google Scholar
Shu, Frank H. 1991. The Physics of Astrophysics, Vol. 1: Radiation. A Series of Books in Astronomy. Mill Valley, CA: University Science Books.Google Scholar
Shu, Frank H. 1992. The Physics of Astrophysics, Vol.II: Gas Dynamics. A Series of Books in Astronomy. Mill Valley, CA: University Science Books.Google Scholar
Simonetti, J.H.Cordes, J.M., and Heeschen, D.S. 1985. Flicker of Extragalactic Radio Sources at Two Frequencies. Astrophysical Journal, 296, 46–59.CrossRefGoogle Scholar
Slettebak, Arne. 1970. Stellar Rotation: Proceedings of the IAU Colloquium held at the Ohio State University. Dordrecht The Netherland: Kluwer Academic Publishers, D. Reidel Publishing.CrossRefGoogle Scholar
Smart, W. M. 1960. Text-Book on Spherical Astronomy, 4th ed. Cambridge: Cambridge University Press.Google Scholar
Sobolev, V. 1960. Moving Envelopes of Stars. Cambridge, MA: Harvard University Press.CrossRefGoogle Scholar
Söderhjelm, Staffan. 1999. Visual Binary Orbits and Masses Post Hipparchos. Astronomy and Astrophysics, 341, 121–140.Google Scholar
Soldi, S., and 14 others. 2008. The multiwavelength variability of 3C273. Astronomy and Astrophysics, 486, 411–425.CrossRefGoogle Scholar
Soleng, Harald H. 2011. Tensors in Physics. Harald H. Soleng.Google Scholar
Souokoulis, Costas M., and Economou, Eleftherios N. 2003. Ch. 24 Solid State Physics. New York: Springer-Verlag AIP Press.Google Scholar
Spitzer, L. 1987. Dynamical Evolution of Globular Clusters. Princeton, NJ: Princeton University Press.Google Scholar
Steer, I. 2011. NED-D.Google Scholar
Stowe, Keith. 1984. Introduction to Statistical Mechanics and Thermodynamics. New York: John Wiley & Sons.Google Scholar
Strogatz, S.H. 1994. Nonlinear Dynamics and Chaos. Reading, MA: Addison-Wesley.Google Scholar
Sturrock, Peter A. 1996. Plasma Physics: An introduction to the theory of Astrophysical, Geophysical and Laboratory Plasmas. Cambridge: Cambridge University Press.Google Scholar
Sturrock, Peter A., and Scargle, J.D. 2009. A Bayesian Assessment of P-values for Significance Estimation of Power Spectra and an Alternative Procedure with Application to Solar Neutrino Data. Astrophysical Journal, 706(2009 Nov. 20), 393–398.CrossRefGoogle Scholar
Sweldens, Wim. 2012. Polyvalens: A Really Friendley Wavelet Guide. www.polyvalens.com/blog/?pageid=15.Google Scholar
Szatmáry, K., Vinkó, J., and Gál, J. 1994. Application of wavelet analysis in variable star research. Astronomy and Astrophysics Supplement Series, 108, 377–394.Google Scholar
Tanenbaum, B. Samuel. 1967. Plasma Physics. McGraw-Hill Physical and Quantum Electronics Series. New York: McGraw-Hill.Google Scholar
Terrell, J. 1977. Size Limits on Fluctuating Astronomical Sources. Astrophysical Journal (Letters), 213, L93–L97.CrossRefGoogle Scholar
Terrell, J., and Olsen, K.H. 1970. Power Spectrum of 3C 273 Light Fluctuations. Astrophysical Journal, 161, 399–413.CrossRefGoogle Scholar
Thieberger, R., Spiegel, E.A., and Smith, L.A. 1990. The Dimensions of Cosmic Fractals. Washington, DC: The Ubiquity of Chaos, ed. Saul Krasner. American Association for the Advancement of Science Washington DC, pp. 197–217.Google Scholar
Thompson, A.R., Moran, J.M., and Swenson, G.W. Jr. 2001. Interferometry and Synthesis in Radio Astronomy. New York: John Wiley & Sons.CrossRefGoogle Scholar
Trusler, J.P.M., and Wakeham, W.A. 2003. Thermodynamics and Thermophysics, Ch. 26. New York: AIP Press/Springer.Google Scholar
Tyagi, S. 2004. “New Series Representation for Madelung Constant.” Progress of Theoretical Physics, 114(3), 517–521 (2005).Google Scholar
Van de Hulst, H.C., Müller, C.A., and Oort, J.H. 1954. The Spiral Structure of the Outer Part of the Galactic System Derived from the Hydrogen Emission at 21 cm Wavelength. Bulletin of the Astronomical Institute of the the Netherlands (BAN), 12(May 1954), 117–149.Google Scholar
van de Weijgaert, R. 2007. Measuring the Two Point Correlation Function. www.astro.rug.nl/~welygaert/tim1publication/iss2007/computerII.pdf.Google Scholar
van der Ziel, A. 1970. Noise; Sources, Characterization,Measurement. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
Van Horn, Hugh. 1968a. Implications of White Dwarf Crystallization for the Chemical Composition of the Planetary Nuclei. Dordrecht, Netherlands: International Astronomical Union, pp. 425–427.Google Scholar
Van Horn, Hugh. 1968b. Crystallization of White Dwarfs. Astrophysical Journal, 151(Jan 1968), 227–238.CrossRefGoogle Scholar
Veron-Cetty, M.P., and Veron, P. 2010. A Catalog of Quasars and Active Nuclei, 13th ed. Astronomy and Astrophysics, 518.CrossRefGoogle Scholar
Vio, R., Cristiani, S., Lessi, O., and Provenzale, A. 1992. Time Series Analysis in Astronomy: An Application to Quasar Variability Studies. Astrophysical Journal, 391, 518–530.CrossRefGoogle Scholar
Vityazev, V.V. 1996a. Time-Series of Unequally Spaced Data: Intercomparison between the Shuster Periodogram and the LS Spectra. Astronomical and Astrophysical Transactions, 12, 139–158.Google Scholar
Vityazev, V.V. 1996b. Time-Series of Unequally Spaced Data: The Statistical Properties of the Schuster Periodogram. Astronomical and Astrophysical Transactions, 12.Google Scholar
Vollmer, M. 2009. Newton's Law of Cooling Revisited. European Journal of Physics, 30, 1063–1084.CrossRefGoogle Scholar
Wadsworth Harrison, M. Jr. 1990. Handbook of Statistical Methods for Scientists and Engineers. New York: McGraw-Hill.Google Scholar
Walsh, D.Carswell, R.F., and Weymann, R.J. 1979. Nature, 279.CrossRef
Wax, N. 1957. Selected Papers on Noise and Stochastic Processes. New York: Dover Publications.Google Scholar
Weinstein, Eric. 2007a. MathWorld-Madelung Constants. Mathworld.wolfram.com/MadelungConstants.html.Google Scholar
Weinstein, Eric. 2007b. MadelungConstants.nb (downloadable working Mathematica notebook). mathworld.wolfram.com/notebooks/Constants/MadelungConstants.nb.Google Scholar
Weinstein, Eric W. 2003. The CRC Concise Encyclopedia of Mathematica, 2nd ed. Boca Raton, Fl: Chapman and Hall/CRC.Google Scholar
Wellin, Paul, Gaylord, Richard, and Kamin, Samuel. 2005. An Introduction to programming with Mathematica. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Wiener, N. 1949. Extrapolation, Interpolation, and Smoothing of Stationary Time Series. Cambridge, MA: MIT Press.Google Scholar
Wikipedia. 2012 (9 May 2012). WKB Approximation. en.wikipedia.org/wiki/WKB approximation.
Wilcox, J.Z., and Wilcox, T.J. 1995. Algorithm for Extraction of Periodic Signals for Sparse Irregularly Sampled Data. Astronomy and Astrophysics Supplement Series, 112, 395–405.Google Scholar
Will, Clifford M. 1993. Theory and Experiment in Gravitational Physics. Revised 2nd ed. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Wilson, B.A., Dame, T.M., Mashender, M.R.W., and Thaddeus, P. 2005. A Uniform CO Survey of the Molecular Clouds in Orion and Monoceros. Astronomy and Astrophysics, 430, 523–539.CrossRefGoogle Scholar
Wisdom, J. 1987. Chaotic Behavior in the Solar System. Princeton, NJ: Princeton University Press.Google Scholar
Wyller, A.A., and Sen, H.K. 1960. On the Generalization of the Appleton-Hartree Magnetoionic Formulas. Journal of Geophysical Research, 65(No. 12), 3931–3950.Google Scholar
Zimmerman, Robert L., and Olness, Fredrick I. 2002. Mathematica for Physics, 2nd ed. Reading, MA: Addison-Wesley.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Brian Koberlein, Rochester Institute of Technology, New York, David Meisel, State University of New York, Geneseo
  • Book: Astrophysics through Computation
  • Online publication: 05 June 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9780511863172.011
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Brian Koberlein, Rochester Institute of Technology, New York, David Meisel, State University of New York, Geneseo
  • Book: Astrophysics through Computation
  • Online publication: 05 June 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9780511863172.011
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Brian Koberlein, Rochester Institute of Technology, New York, David Meisel, State University of New York, Geneseo
  • Book: Astrophysics through Computation
  • Online publication: 05 June 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9780511863172.011
Available formats
×