Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-sh8wx Total loading time: 0 Render date: 2024-07-19T23:23:40.904Z Has data issue: false hasContentIssue false

7 - Numerical Methods for Solving the Equations of Interaction

Published online by Cambridge University Press:  07 October 2011

Vladimir V. Sychev
Affiliation:
Central Aero-Hydrodynamic Institute, Zhukovskii, Russia
Anatoly I. Ruban
Affiliation:
University of Manchester
Victor V. Sychev
Affiliation:
Central Aero-Hydrodynamic Institute, Zhukovskii, Russia
Georgi L. Korolev
Affiliation:
Central Aero-Hydrodynamic Institute, Zhukovskii, Russia
Get access

Summary

It follows from the previous chapters that one of the key elements in the analysis of flow separation from a solid body surface is the investigation of the flow behavior in the region of boundary-layer interaction with the external inviscid flow. Although the interaction region is normally very small, it plays a major role in the separation phenomenon because of the mutual influence of the near-wall viscous flow and external inviscid flow in this region, with a sharp pressure rise prior to the separation point leading to very rapid deceleration of fluid particles near the wall and ultimately to the appearance of the reverse flow downstream of the separation. The complexity of the physical processes in the interaction region is accompanied, as might be expected, by mathematical difficulties in solving the equations that describe the flow in this region. While everywhere outside the interaction region the solution may often be obtained in analytical or at least self-similar form, the analysis of the interaction region requires that special numerical methods be used.

Numerical solution of the interaction problem serves not only to provide meaningful physical information on the development of events in the interaction region, but in many cases also appears to provide the only way of being sure that the solution for this problem really exists, and hence that the entire asymptotic structure of the flow, anticipated in the course of the asymptotic analysis of the Navier–Stokes equations, is self-consistent.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×