Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-vsgnj Total loading time: 0 Render date: 2024-07-16T14:00:49.305Z Has data issue: false hasContentIssue false

8 - Mesoscale Meteorology

Published online by Cambridge University Press:  05 July 2017

Robert M. Haberle
Affiliation:
NASA Ames Research Center
R. Todd Clancy
Affiliation:
Space Science Institute, Boulder, Colorado
François Forget
Affiliation:
Laboratoire de Météorologie Dynamique, Paris
Michael D. Smith
Affiliation:
NASA-Goddard Space Flight Center
Richard W. Zurek
Affiliation:
NASA-Jet Propulsion Laboratory, California
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altieri, F., Spiga, A., Zasova, L. V., Bellucci, G., and Bibring, J.-P. (2012), Gravity waves mapped by the OMEGA/MEX instrument through O2 dayglow at 1.27 µm: data analysis and atmospheric modeling, J. Geophys. Res., doi:10.1029/2012JE004065, in press.CrossRefGoogle Scholar
Anthes, R. A. (1971), A numerical model of the slowly varying tropical cyclone in isentropic coordinates, Monthly Weather Review, 99(8), 617635.2.3.CO;2>CrossRefGoogle Scholar
Antic, S., Laprise, R., Denis, B., and de Elía, R. (2006), Testing the downscaling ability of a one-way nested regional climate model in regions of complex topography, Climate Dynamics, 26(2), 305325.CrossRefGoogle Scholar
Arakawa, A. (1966), Computational design for long-term numerical integration of the equations of fluid motion: two-dimensional incompressible flow, J. Computational Phys., 1(1).CrossRefGoogle Scholar
Barnes, J. R. (1990), Possible Effects of Breaking Gravity Waves on the Circulation of the Middle Atmosphere of Mars, J. Geophys. Res., 95(B2), 14011421.CrossRefGoogle Scholar
Bennetts, D. A., and Hoskins, B. J. (1979), Conditional symmetric instability – a possible explanation for frontal rainbands, Quarterly Journal of the Royal Meteorological Society, 105(446), 945962.Google Scholar
Benson, J. L., James, P. B., Cantor, B. A., and Remigio, R. (2006), Interannual variability of water ice clouds over major Martian volcanoes observed by MOC, Icarus, 184(2), 365371.CrossRefGoogle Scholar
Blumsack, S. L., Gierasch, P. J., and Wessel, W. R. (1973), An Analytical and Numerical Study of the Martian Planetary Boundary Layer Over Slopes, J. Atmos. Sci., 30(1), 6682.2.0.CO;2>CrossRefGoogle Scholar
Bridges, N. T., Greeley, R., Haldemann, A. F. C., et al. (1999), Ventifacts at the Pathfinder landing site, J. Geophys. Res., 104(E4), 85958615.CrossRefGoogle Scholar
Briggs, G. A., and Leovy, C. B. (1974), Mariner Observations of the Mars North Polar Hood, Bulletin of the American Meteorological Society, 55(4), 278296.2.0.CO;2>CrossRefGoogle Scholar
Briggs, G., Klaasen, K., Thorpe, T., Wellman, J., and Baum, W. (1977), Martian dynamical phenomena during June–November 1976: Viking Orbiter imaging results, J. Geophys. Res., 82(28), 41214149.CrossRefGoogle Scholar
Cantor, B. (2007), MOC observations of the 2001 Mars planet-encircling dust storm, Icarus, 186(1), 6096.CrossRefGoogle Scholar
Cantor, B. A., James, P. B., Caplinger, M., and Wolff, M. J. (2001), Martian dust storms: 1999 Mars Orbiter Camera observations, J. Geophys. Res., 106(E10), 2365323687.CrossRefGoogle Scholar
Cantor, B., Malin, M., and Edgett, K. S. (2002), Multiyear Mars Orbiter Camera (MOC) observations of repeated Martian weather phenomena during the northern summer season, J. Geophys. Res., 107(E3), doi:10.1029/2001JE001588.Google Scholar
Cantor, B. A., Kanak, K. M., and Edgett, K. S. (2006), Mars Orbiter Camera observations of Martian dust devils and their tracks (September 1997 to January 2006) and evaluation of theoretical vortex models, J. Geophys. Res., 111(E12), E12002.CrossRefGoogle Scholar
Charney, J. G. (1947), The dynamics of long waves in a baroclinic westerly current, Journal of Meteorology, 4(5), 136162.2.0.CO;2>CrossRefGoogle Scholar
Chojnacki, M., Burr, D. M., Moersch, J. E., and Michaels, T. I. (2011), Orbital observations of contemporary dune activity in Endeavor Crater, Meridiani Planum, Mars, J. Geophys. Res., 116, E00F19.CrossRefGoogle Scholar
Cianciolo, A., Cantor, B., Barnes, J., et al. (2013), Atmosphere Assessment for MARS Science Laboratory Entry, Descent and Landing Operations, Document ID 20140001381, http://ntrs.nas.gov.Google Scholar
Clancy, R. T., and Sandor, B. J. (1998), CO2 ice clouds in the upper atmosphere of Mars, Geophys. Res. Lett., 25(4), 489492.CrossRefGoogle Scholar
Clever, R. M., and Busse, F. H. (1992), Three-dimensional convection in a horizontal fluid layer subjected to a constant shear, Journal of Fluid Mechanics, 234, 511527.CrossRefGoogle Scholar
Colaitis, A., Spiga, A., Hourdin, F., et al. (2013), A thermal plume model for the Martian convective boundary layer, J. Geophys. Res., 118, 14681487, doi:10.1002/jgre.20104.CrossRefGoogle Scholar
Colaprete, A., and Toon, O. B. (2003), Carbon dioxide clouds in an early dense Martian atmosphere, J. Geophys. Res., 108(E4), 5025.CrossRefGoogle Scholar
Colaprete, A., Haberle, R. M., and Toon, O. B. (2003), Formation of convective carbon dioxide clouds near the south pole of Mars, J. Geophys. Res., 108(E7), 5081.Google Scholar
Colaprete, A., Barnes, J. R., Haberle, R. M., and Montmessin, F. (2008), CO2 clouds, CAPE and convection on Mars: observations and general circulation modeling, Planet Space Sci., 56(2), 150180.CrossRefGoogle Scholar
Conrath, B. J., Pearl, J. C., Smith, M. D., et al. (2000), Mars Global Surveyor Thermal Emission Spectrometer (TES) observations: atmospheric temperatures during aerobraking and science phasing, J. Geophys. Res., 105(E4), 95099519.CrossRefGoogle Scholar
Creasey, J. E., Forbes, J. M., and Hinson, D. P. (2006), Global and seasonal distribution of gravity wave activity in Mars’ lower atmosphere derived from MGS radio occultation data, Geophys. Res. Lett., 33, L01803.CrossRefGoogle Scholar
Crook, N. A., and Miller, M. J. (1985), A numerical and analytical study of atmospheric undular bores, Quarterly Journal of the Royal Meteorological Society, 111(467), 225242.CrossRefGoogle Scholar
Dickinson, R. E., C. P. Lagos, R. E. Newell (1968), Dynamics of the neutral gas in the thermosphere for small Rossby number motions, J. Geophys. Res., 73, 42994313, doi:10.1029/JA073i013p04299.CrossRefGoogle Scholar
Dimitrijevic, M., and Laprise, R. (2005), Validation of the nesting technique in a regional climate model and sensitivity tests to the resolution of the lateral boundary conditions during summer, Climate Dynamics, 25(6), 555580.CrossRefGoogle Scholar
Dudhia, J. (1993), A nonhydrostatic version of the Penn State–NCAR mesoscale model: validation tests and simulation of an Atlantic cyclone and cold front, Monthly Weather Review, 121(5), 14931513.2.0.CO;2>CrossRefGoogle Scholar
Eckermann, S. D., Ma, J., and Zhu, X. (2011), Scale-dependent infrared radiative damping rates on Mars and their role in the deposition of gravity-wave momentum flux, Icarus, 211(1), 429442.CrossRefGoogle Scholar
Emanuel, K. A. (1986), An air–sea interaction theory for tropical cycles. Part 1: Steady-state maintenance, J. Atmos. Sci., 43, 585604.2.0.CO;2>CrossRefGoogle Scholar
Emanuel, K. A. (1991), The theory of hurricanes, Annual Review of Fluid Mechanics, 23(1), 179196.CrossRefGoogle Scholar
Emanuel, K. A., Fantini, M., and Thorpe, A. J. (1987), Baroclinic instability in an environment of small stability to slantwise moist convection. Part I: Two-dimensional models, J. Atmos. Sci., 44(12), 15591573.2.0.CO;2>CrossRefGoogle Scholar
Farrell, B. F. (1989), Optimal Excitation of Baroclinic Waves, J. Atmos. Sci., 46(9), 11931206.2.0.CO;2>CrossRefGoogle Scholar
Fenton, L. K., and Michaels, T. I. (2010), Characterizing the sensitivity of daytime turbulent activity on Mars with the MRAMS LES: early results, Mars, 5 (Mars Dust Cycle Special Issue), 159171.CrossRefGoogle Scholar
Fenton, L. K., Bandfield, J. L., and Ward, A. W. (2003), Aeolian processes in Proctor Crater on Mars: sedimentary history as analyzed from multiple data sets, J. Geophys. Res., 108(E12), 5129.Google Scholar
Fenton, L. K., Toigo, A. D., and Richardson, M. I. (2005), Aeolian processes in Proctor Crater on Mars: mesoscale modeling of dune-forming winds, J. Geophys. Res., 110(E6), E06005.Google Scholar
Fisher, J. A., Richardson, M. I., Newman, C. E., et al. (2005), A survey of Martian dust devil activity using Mars Global Surveyor Mars Orbiter Camera images, J. Geophys. Res., 110(E3), E03004.Google Scholar
Forget, F., Hourdin, F., Fournier, R., et al. (1999), Improved general circulation models of the Martian atmosphere from the surface to above 80 km, J. Geophys. Res, 104(24), 155176.Google Scholar
Fritts, D. C., and Alexander, M. J. (2003), Gravity wave dynamics and effects in the middle atmosphere, Rev. Geophys., 41(1), 1003.CrossRefGoogle Scholar
Fritts, D. C., Wang, L., and Tolson, R. H. (2006), Mean and gravity wave structures and variability in the Mars upper atmosphere inferred from Mars Global Surveyor and Mars Odyssey aerobraking densities, J. Geophys. Res., 111(A12), A12304.Google Scholar
Gierasch, P., and Goody, R. (1968), A study of the thermal and dynamical structure of the Martian lower atmosphere, Planet Space Sci., 16(5), 615646.CrossRefGoogle Scholar
Gierasch, P. J., and Goody, R. M. (1973), A model of a Martian great dust storm, J. Atmos. Sci., 30(2), 169179.2.0.CO;2>CrossRefGoogle Scholar
Gierasch, P., and Sagan, C. (1971), A preliminary assessment of Martian wind regimes, Icarus, 14(3), 312318.CrossRefGoogle Scholar
Golombek, M., Robinson, K., McEwen, A., et al. (2010), Constraints on ripple migration at Meridiani Planum from Opportunity and HiRISE observations of fresh craters, J. Geophys. Res., 115, E00F08Google Scholar
Gómez-Elvira, J., Armiens, C., Castañer, L., et al. (2012), REMS: the environmental sensor suite for the Mars Science Laboratory Rover, Space Science Reviews 170(1–4): 583640.CrossRefGoogle Scholar
Greeley, R., Skypeck, A., and Pollack, J. B. (1993), Martian aeolian features and deposits: comparisons with general circulation model results, J. Geophys. Res., 98(E2), 31833196.CrossRefGoogle Scholar
Greeley, R., Kuzmin, R. O., Rafkin, S. C. R., Michaels, T. I., and Haberle, R. (2003), Wind-related features in Gusev Crater, Mars, J. Geophys. Res., 108(E12), 8077.Google Scholar
Greeley, R., Whelley, P. L., Neakrase, L. D. V., et al. (2008), Columbia Hills, Mars: aeolian features seen from the ground and orbit, J. Geophys. Res., 113(E6), E06S06.CrossRefGoogle Scholar
Haberle, R. M. (1993), Mars atmospheric dynamics as simulated by the NASA/Ames general circulation model, J. Geophys. Res., 98, 30933124.CrossRefGoogle Scholar
Haberle, R. M., Leovy, C. B., and Pollack, J. B. (1982), Some effects of global dust storms on the atmospheric circulation of Mars, Icarus, 50, 322367.CrossRefGoogle Scholar
Haberle, R. M., Houben, H. C., Hertenstein, R., and Herdtle, T. (1993), A boundary layer model for Mars: comparison with Viking entry and lander data, J. Atmos. Sci., 50, 15441559.2.0.CO;2>CrossRefGoogle Scholar
Haberle, R. M., Gómez-Elvira, J., de la Torre Juárez, M., et al. (2014), Preliminary interpretation of the REMS pressure data from the first 100 sols of the MSL mission, J. of Geophys. Res., 119(3), 440453.CrossRefGoogle Scholar
Haltiner, G., and Williams, R. T. (1980), Numerical Prediction and Dynamic Meteorology, 2nd ed., Wiley.Google Scholar
Harri, A. M., Genzer, M., Kemppinen, O., et al. (2014), Pressure observations by the Curiosity Rover: initial results, J. of Geophys. Res., 119, 8292.CrossRefGoogle Scholar
Harrison, E. J., and Elsberry, R. L. (1972), A Method for Incorporating Nested Finite Grids in the Solution of Systems of Geophysical Equations, J. Atmos. Sci., 29(7), 12351245.2.0.CO;2>CrossRefGoogle Scholar
Hayne, P. O. (2010), Snow clouds on Mars and ice on the Moon: thermal infrared observations and models, Thesis, UCLA, Los Angeles.Google Scholar
Hayward, R. K., Titus, T. N., Michaels, T. I., et al. (2009), Aeolian dunes as ground truth for atmospheric modeling on Mars, J. Geophys. Res., 114(E11), E11012.Google Scholar
He, Y., Monahan, A. H., Jones, C. G., et al.(2010), Probability distributions of land surface wind speeds over North America, J. Geophys. Res., 115(D4), D04103.Google Scholar
Heavens, N. G. (2010), The impact of mesoscale processes on the atmospheric circulation of Mars, California Institute of Technology.Google Scholar
Hinson, D. P., and Wilson, R. J. (2004), Temperature inversions, thermal tides, and water ice clouds in the atmosphere of Mars, J. Geophys. Res., 109(E01002).Google Scholar
Hinson, D. P., Simpson, R. A., Twicken, J. D., Tyler, G. L., and Flasar, F. M. (1999), Initial results from radio occultation measurements with Mars Global Surveyor, J. Geophys. Res.-Planets, 104(E11), 2699727012.CrossRefGoogle Scholar
Hoffman, M. J., Greybush, S. J., J. Wilson, R., et al. (2010), An ensemble Kalman filter data assimilation system for the Martian atmosphere: implementation and simulation experiments, Icarus, 209(2), 470481.CrossRefGoogle Scholar
Holstein-Rathlou, C., Gunnlaugsson, H. P., Merrison, J. P., et al. (2010), Winds at the Phoenix landing site, J. Geophys. Res., 115(E5) doi:10.1029/2009JE003411.Google Scholar
Hoskins, B. J. (1975), The geostrophic momentum approximation and the semi-geostrophic equations, J. Atmos. Sci., 32, 233242.2.0.CO;2>CrossRefGoogle Scholar
Hoskins, B. J., and Simmons, A. J. (1975), A multi-layer spectral model and the semi-implicit method, Quart. J. R. Meteorol. Soc., 101, 637655.Google Scholar
Hourdin, F., Le Van, P., Forget, F., and Talagrand, O. (1993), Meteorological Variability and the Annual Surface Pressure Cycle on Mars, J. Atmos. Sci., 50(21), 36253640.2.0.CO;2>CrossRefGoogle Scholar
Hunt, G. E., Pickersgill, A. O., James, P. B., and Evans, N. (1981), Daily and seasonal Viking observations of Martian bore wave systems, Nature, 293(5834), 630633.CrossRefGoogle Scholar
Ivanov, A. B., and Muhleman, D. O. (2001), Cloud reflection observations: results from the Mars Orbiter Laser Altimeter, Icarus, 154(1), 190206.CrossRefGoogle Scholar
Janjic, Z. I., Gerrity, J. P., and Nickovic, S. (2001), An Alternative Approach to Nonhydrostatic Modeling, Monthly Weather Review, 129(5), 11641178.2.0.CO;2>CrossRefGoogle Scholar
Justus, C. G., James, B. F., Bougher, S. W., et al. (2002), Mars-GRAM 2000: a Mars atmospheric model for engineering applications, Advances in Space Research, 29(2), 193202.CrossRefGoogle Scholar
Kahn, R., and Gierasch, P. (1982), Long Cloud Observations on Mars and Implications for Boundary Layer Characteristics Over Slopes, J. Geophys. Res., 87(A2), 867880.CrossRefGoogle Scholar
Kahre, M. A., Murphy, J. R., and Haberle, R. M. (2006), Modelling the Martian dust cycle and surface dust reservoirs with the NASA Ames general circulation model, Journal of Geophysical Research E: Planets, 111(6).Google Scholar
Kass, D. M., Schofield, J. T., Michaels, T. I., et al. (2003), Analysis of atmospheric mesoscale models for entry, descent, and landing, J. Geophys. Res., 108(E12), 8090.Google Scholar
Kauhanen, J., Siili, T., Järvenoja, S., and Savijärvi, H. (2008), The Mars limited area model and simulations of atmospheric circulations for the Phoenix landing area and season of operation, J. Geophys. Res., 113(E3), E00A14.Google Scholar
Keating, G. M., Bougher, S. W., Zurek, R. W., et al. (1998), The structure of the upper atmosphere of Mars: in situ accelerometer measurements from Mars Global Surveyor, Science, 279(5357), 16721676.CrossRefGoogle ScholarPubMed
Kieffer, H. H., Chase, S. C., Miner, E. D., et al. (1976), Infrared thermal mapping of the Martian surface and atmosphere: first results, Science, 193(4255), 780786.CrossRefGoogle ScholarPubMed
Kuzmin, R. O., Greeley, R., Rafkin, S. C. R., and Haberle, R. (2001), Wind-related modification of some small impact craters on Mars, Icarus, 153(1), 6170.CrossRefGoogle Scholar
Larsen, S. E., Jørgensen, H. E., Landberg, L., and Tillman, J. E. (2002), Aspects of the atmospheric surface layers on Mars and Earth, Boundary-Layer Meteorology, 105(3), 451470.CrossRefGoogle Scholar
Leovy, C. (1985), The General Circulation of Mars – Models and Observations, Academic Press, Orlando, FL.CrossRefGoogle Scholar
Lewis, S. R., Read, P. L., Conrath, B. J., Pearl, J. C., and Smith, M. D. (2007), Assimilation of thermal emission spectrometer atmospheric data during the Mars Global Surveyor aerobraking period, Icarus, 192(2), 327347.CrossRefGoogle Scholar
Lilly, D. K., and Petersen, E. L. (1983), Aircraft measurements of atmospheric kinetic energy spectra, Tellus A, 35A(5), 379382.CrossRefGoogle Scholar
Lindzen, R. S. (1981), Turbulence and stress owing to gravity wave and tidal breakdown, J. Geophys. Res., 86(C10), 97079714.CrossRefGoogle Scholar
Lorenz, R. D. (1996), Martian surface wind speeds described by the Weibull distribution, J. Spacecraft and Rockets, 33, 754756.CrossRefGoogle Scholar
Lott, F., and Miller, M. (1997), A new sub-grid scale orographic drag parameterization: its formulation and testing, Q. J. R. Met. Soc., 123.Google Scholar
Määttänen, A., Vehkamäki, H., Lauri, A., et al. (2005), Nucleation studies in the Martian atmosphere, J. Geophys. Res., 110(E2), E02002.Google Scholar
Määttänen, A., Fouchet, T., Forni, O., et al. (2009), A study of the properties of a local dust storm with Mars Express OMEGA and PFS data, Icarus, 201(2), 504516.CrossRefGoogle Scholar
Magalhães, J. A., Schofield, J. T., and Seiff, A. (1999), Results of the Mars Pathfinder atmospheric structure investigation, J. Geophys. Res., 104(E4), 89438955.CrossRefGoogle Scholar
Mahrer, Y., and Pielke, R. A. (1977), A numerical study of the airflow over irregular terrain, Beitrage zur Physik der Atmosphere, 50, 98113.Google Scholar
Mahrt, L. (1982), Momentum Balance of Gravity Flows, J. Atmos. Sci., 39(12), 27012711.2.0.CO;2>CrossRefGoogle Scholar
Martínez-Alvarado, O., Montabone, L., Lewis, S. R., Moroz, I. M., and Read, P. L. (2009), Transient teleconnection event at the onset of a planet-encircling dust storm on Mars, Ann. Geophys., 27(9), 36633676.CrossRefGoogle Scholar
McWilliams, J. C., and Gent, P. R. (1980), Intermediate Models of Planetary Circulations in the Atmosphere and Ocean, J. Atmos. Sci., 37(8), 16571678.2.0.CO;2>CrossRefGoogle Scholar
Medvedev, A. S., and Hartogh, P. (2007), Winter polar warmings and the meridional transport on Mars simulated with a general circulation model, Icarus, 186(1), 97110.CrossRefGoogle Scholar
Mellor, G., and Yamada, T. (1974), A hierarchy of turbulence closure models for planetary boundary layers, J. Atmos. Sci., 31, 17911806.2.0.CO;2>CrossRefGoogle Scholar
Melo, S. M. L., Chiu, O., Garcia-Munoz, A., et al. (2006), Using airglow measurements to observe gravity waves in the Martian atmosphere, Advances in Space Research, 38(4), 730738.CrossRefGoogle Scholar
MEPAG (2010). Science Goals, Objectives, Investigations, and Priorities: 2010. Mars Exploration Program and Assessment Group. Report available at http://mepag.nasa.gov/reports/MEPAG_Goals_Document_2010_v17.pdf.Google Scholar
Michaels, T. I. (2006), Numerical modeling of Mars dust devils: albedo track generation, Geophys. Res. Lett., 33(19), L19S08.CrossRefGoogle Scholar
Michaels, T. (2011), Modeling aeolian surface interaction phenomena at Nili and Meroe Paterae, in Joint AAS Division of Planetary Science and European Planetary Science Conference, edited, Nantes, France.Google Scholar
Michaels, T. I., and Rafkin, S. C. R. (2004), Large-eddy simulation of atmospheric convection on Mars, Quarterly Journal of the Royal Meteorological Society, 130(599), 12511274.CrossRefGoogle Scholar
Michaels, T. I., and Rafkin, S. C. R. (2008), Meteorological predictions for candidate 2007 Phoenix Mars Lander sites using the Mars Regional Atmospheric Modeling System (MRAMS), J. Geophys. Res. Planets, 113(E3).CrossRefGoogle Scholar
Michaels, T. I., Colaprete, A., and Rafkin, S. C. R. (2006), Significant vertical water transport by mountain-induced circulations on Mars, Geophysical Research Letters, 33(16).CrossRefGoogle Scholar
Miller, M. J., Palmer, P. M., and Swinbank, R. (1989), Parametrisation and influence of sub-grid scale orography in general circulation and numerical weather prediction models, Meteorol. Atmos. Phys., 40.CrossRefGoogle Scholar
Montabone, L., Lewis, S. R., and Read, P. L. (2005), Interannual variability of Martian dust storms in assimilation of several years of Mars global surveyor observations, Advances in Space Research, 36(11), 21462155.CrossRefGoogle Scholar
Montabone, L., Lewis, S. R., Read, P. L., and Hinson, D. P. (2006), Validation of Martian meteorological data assimilation for MGS/TES using radio occultation measurements, Icarus, 185(1), 113132.CrossRefGoogle Scholar
Montmessin, F., Gondet, B., Bibring, J. P., et al. (2007), Hyperspectral imaging of convective CO2 ice clouds in the equatorial mesosphere of Mars, J. Geophys. Res., 112(E11), E11S90.Google Scholar
Moores, J. E., Lemmon, M. T., Kahanpää, H., et al. (2014), Observational evidence of a suppressed planetary boundary layer in northern Gale Crater, Mars as seen by the Navcam instrument onboard the Mars Science Laboratory Rover, Icarus, 249, 129142.CrossRefGoogle Scholar
Moudden, Y., and McConnell, J. C. (2005), A new model for multiscale modeling of the Martian atmosphere, GM3, J. Geophys. Res., 110(E4), E04001.Google Scholar
Nayvelt, L., Gierasch, P. J., and Cook, K. H. (1997), Modeling and Observations of Martian Stationary Waves, J. Atmos. Sci., 54(8), 9861013.2.0.CO;2>CrossRefGoogle Scholar
Neumann, G. A., Smith, D. E., and Zuber, M. T. (2003), Two Mars years of clouds detected by the Mars Orbiter Laser Altimeter, J. Geophys. Res., 108(E4), 5023.Google Scholar
Newman, C. E., Lewis, S. R., Read, P. L., and Forget, F. (2002), Modeling the Martian dust cycle 2. Multiannual radiatively active dust transport simulations, J. Geophys. Res., 107(E12), 5124.Google Scholar
Nicholls, M. E., and Pielke, R. A. (1994), Thermal compression waves. I: Total-energy transfer, Quarterly Journal of the Royal Meteorological Society, 120(516), 305332.Google Scholar
Ooyama, K. V. (1982), Conceptual evolution of the theory and modeling of the tropical cyclone, J. Meteor. Soc. Japan, 6, 369380.CrossRefGoogle Scholar
Panofsky, H. A., and van der Hoven, I. (1955), Spectra and cross-spectra of velocity components in the mesometeorological range, Quarterly Journal of the Royal Meteorological Society, 81(350), 603606.CrossRefGoogle Scholar
Parish, T. R. (2003), Katabatic Winds, in Encyclopedia of Atmospheric Sciences, edited by Holton, J. R., Pyle, J. and Curry, J. A., Academic Press.Google Scholar
Parish, T. R., and Bromwich, D. H. (2007), Reexamination of the near-surface airflow over the Antarctic continent and implications on atmospheric circulations at high southern latitudes, Monthly Weather Review, 135(5), 19611973.CrossRefGoogle Scholar
Pettengill, G. H., and Ford, P. G. (2000), Winter clouds over the North Martian Polar Cap, Geophys. Res. Lett., 27(5), 609612.CrossRefGoogle Scholar
Pickersgill, A. O., and Hunt, G. E. (1979), The formation of Martian lee waves generated by a crater, J. Geophys Res., 84(B14).CrossRefGoogle Scholar
Pickersgill, A. O., and Hunt, G. E. (1981), An Examination of the Formation of Linear Lee Waves Generated by Giant Martian Volcanoes, J. Atmos. Sci., 38(1), 4051.2.0.CO;2>CrossRefGoogle Scholar
Pielke, R. A. (2002), Mesoscale Meteorological Modeling, 2nd ed., Academic Press, San Diego.Google Scholar
Pielke, R. A., Cotton, W. R., Walko, R. L., et al. (1992), A comprehensive meteorological modeling system – RAMS, Meteorology and Atmospheric Physics, 49(1), 6991.CrossRefGoogle Scholar
Pirraglia, J. A. (1976), Martian atmospheric Lee waves, Icarus, 27(4), 517530.CrossRefGoogle Scholar
Putzig, N. E., and Mellon, M. T. (2007), Apparent thermal inertia and the surface heterogeneity of Mars, Icarus, 191(1), 6894.CrossRefGoogle Scholar
Rafkin, S. C. R. (2003a), The Effect of Convective Adjustment on the Global Circulation of Mars as Simulated by a General Circulation Model, in 6th International Conference on Mars, edited, Lunar and Planetary Institute, Pasadena, CA.Google Scholar
Rafkin, S. C. R. (Ed.) (2003b), Reflections on Mars Global Climate Modeling from a Mesoscale Meteorologist, Granada, Spain.Google Scholar
Rafkin, S. C. R. (2009), A positive radiative-dynamic feedback mechanism for the maintenance and growth of Martian dust storms, J. Geophys. Res., 114(E1), E01009.Google Scholar
Rafkin, S. C. R. (2012), The potential importance of non-local, deep transport on the energetics, momentum, chemistry, and aerosol distributions in the atmospheres of Earth, Mars, and Titan, Planet. Space Sci., 60(1), 147154.CrossRefGoogle Scholar
Rafkin, S. C. R., and Michaels, T. I. (2003), Meteorological predictions for 2003 Mars Exploration Rover high-priority landing sites, J. Geophys. Res., 108(E12), 8091, doi:10.1029/2002JE002027.Google Scholar
Rafkin, S. C. R., Haberle, R. M., and Michaels, T. I. (2001), The Mars Regional Atmospheric Modeling System: model description and selected simulations, Icarus, 151(2), 228256.CrossRefGoogle Scholar
Rafkin, S. C. R., Sta. Maria, M. R. V., and Michaels, T. I. (2002), Simulation of the atmospheric thermal circulation of a Martian volcano using a mesoscale numerical model, Nature, 419(6908), 697699.CrossRefGoogle ScholarPubMed
Rafkin, S. C. R., Michaels, T. I., and Haberle, R. M. (2004), Meteorological predictions for the Beagle 2 mission to Mars, Geophys. Res. Lett., 31(1), L01703.CrossRefGoogle Scholar
Rafkin, S. C. R, Pla-Garcia, J., Kahre, M., et al. (2016), The Meteorology of Gale Crater as Determined from Rover Environmental Monitoring Station Observations and Numerical Modeling. Part II: Interpretation, Icarus, 280, 114138.CrossRefGoogle Scholar
Richardson, M. I., Toigo, A. D., and Newman, C. E. (2007), A general purpose, local to global numerical model for planetary atmospheric and climate dynamics, J. Geophys. Res., 112, E09001.Google Scholar
Richardson, M. I., and Wilson, R. J. (2010), A topographically forced asymmetry in the Martian circulation and climate, Nature, 416, 298301, doi:10.1038/416298a.CrossRefGoogle Scholar
Rogberg, P., P. L. Read, S. R. Lewis, and L. Montabone (2010), Assessing atmospheric predictability on Mars using numerical weather prediction and data assimilation, Quarterly Journal of the Royal Meteorological Society 136, 16141635CrossRefGoogle Scholar
Rossby, C.-G. (1938), On the mutual adjustment of pressure and velocity in certain simple current systems, II, J. of Marine Res., 7.Google Scholar
Rottman, J. W., and Grimshaw, R. (2003), Atmospheric Internal Solitary Waves in Environmental Stratified Flows, edited by Grimshaw, R., Springer, New York, 6188.Google Scholar
Rottman, J. W., and Simpson, J. E. (1989), The formation of internal bores in the atmosphere: a laboratory model, Quarterly Journal of the Royal Meteorological Society, 115(488), 941963.CrossRefGoogle Scholar
Savijärvi, H., and Kauhanen, J. (2008), Surface and boundary-layer modelling for the Mars Exploration Rover sites, Quarterly Journal of the Royal Meteorological Society, 134(632), 635641.CrossRefGoogle Scholar
Savijärvi, H., and Siili, T. (1993), The Martian Slope Winds and the Nocturnal PBL Jet, J. Atmos. Sci., 50(1), 7788.2.0.CO;2>CrossRefGoogle Scholar
Schofield, J. T., Barnes, J. R., Crisp, D., et al. (1997), The Mars Pathfinder Atmospheric Structure Investigation/Meteorology (ASI/MET) Experiment, Science, 278(5344), 17521758.CrossRefGoogle ScholarPubMed
Siebesma, A. P., and Cuijpers, J. W. M. (1995), Evaluation of Parametric Assumptions for Shallow Cumulus Convection, J. Atmos. Sci., 52(6), 650666.2.0.CO;2>CrossRefGoogle Scholar
Siili, T., Haberle, R. M., Murphy, J. R., and Savijärvi, H. (1999), Modelling of the combined late-winter ice cap edge and slope winds in Mars Hellas and Argyre regions, Planet Space Sci., 47(8–9), 951970.CrossRefGoogle Scholar
Siili, T., Kauhanen, J., Savijärvi, H., et al. (2006), Simulations of atmospheric circulations for the Phoenix landing area and season-of-operation with the Mars limited area model (MLAM), paper presented at Fourth International Conference on Mars Polar Science and Exploration, Lunar and Planetary Institute, Davos, Switzerland.Google Scholar
Silvestro, S., Fenton, L. K., Vaz, D. A., Bridges, N. T., and Ori, G. G. (2010), Ripple migration and dune activity on Mars: evidence for dynamic wind processes, Geophys. Res. Lett., 37(20), L20203.CrossRefGoogle Scholar
Skamarock, W. C., and Klemp, J. B. (2008), A time-split nonhydrostatic atmospheric model for weather research and forecasting applications, Journal of Computational Physics, 227(7), 34653485.CrossRefGoogle Scholar
Smith, M. D., Pearl, J. C., Conrath, B. J., and Christensen, P. R. (2001), Thermal Emission Spectrometer results: Mars atmospheric thermal structure and aerosol distribution, J. Geophys. Res, 106, 2392923945.CrossRefGoogle Scholar
Smith, M. D., Conrath, B. J., Pearl, J. C., and Christensen, P. R. (2002), Thermal Emission Spectrometer Observations of Martian Planet-Encircling Dust Storm 2001A, Icarus, 157(1), 259263.CrossRefGoogle Scholar
Spiga, A. (2011), Elements of comparison between Martian and terrestrial mesoscale meteorological phenomena: katabatic winds and boundary layer convection, Planet Space Sci., 59(10), 915922.CrossRefGoogle Scholar
Spiga, A., and Forget, F. (2008), Fast and accurate estimation of solar irradiance on Martian slopes, Geophys. Res. Lett., 35(15), L15201.CrossRefGoogle Scholar
Spiga, A., and Forget, F. (2009), A new model to simulate the Martian mesoscale and microscale atmospheric circulation: validation and first results., J. Geophys Res., 114(E02009).Google Scholar
Spiga, A., and Lewis, S. R. (2010), Martian mesoscale and microscale wind variability of relevance for dust lifting, International Journal of Mars Science and Exploration, 5, 146158.Google Scholar
Spiga, A., Forget, F., Dolla, B., et al. (2007), Remote sensing of surface pressure on Mars with the Mars Express/OMEGA spectrometer: 2. Meteorological maps, J. Geophys. Res., 112(E8), E08S16.Google Scholar
Spiga, A., Teitelbaum, H., and Zeitlin, V. (2008), Identification of the sources of inertia–gravity waves in the Andes Cordillera region, Ann. Geophys., 26.CrossRefGoogle Scholar
Spiga, A., Forget, F., Madeleine, J.-B., et al. (2011a), The impact of Martian mesoscale winds on surface temperature and on the determination of thermal inertia, Icarus, 212(2), 504519.CrossRefGoogle Scholar
Spiga, A., Forget, F., Madeleine, J.-B., et al. (2011b), Elements of comparison between Martian and terrestrial mesoscale meteorological phenomena: katabatic winds and boundary layer convection, Planet Space Sci., 59(10), 915922.CrossRefGoogle Scholar
Spiga, A., González-Galindo, F., López-Valverde, M. Á., and Forget, F. (2012), Gravity waves, cold pockets and CO2 clouds in the Martian mesosphere, Geophys. Res. Lett., 39(2), L02201.CrossRefGoogle Scholar
Sta. Maria, M. R. V., Rafkin, S. C. R., and Michaels, T. I. (2006), Numerical simulation of atmospheric bore waves on Mars, Icarus, 185(2), 383394.CrossRefGoogle Scholar
Sutton, J. L., Leovy, C. B., and Tillman, J. E. (1978), Diurnal variations of the Martian surface layer meteorological parameters during the first 45 sols at two Viking Lander sites, J. Atmos. Sci., 35(12), 23462355.2.0.CO;2>CrossRefGoogle Scholar
Tamppari, L. K., Barnes, J., Bonfiglio, E., et al. (2008), Expected atmospheric environment for the Phoenix landing season and location, J. Geophys. Res. – Planets, 113, E00A20, doi:10.1029/2007JE003034.CrossRefGoogle Scholar
Taylor, P. A., Catling, D. C., Daly, M., et al. (2008), Temperature, pressure, and wind instrumentation in the Phoenix meteorological package, J. Geophys. Res., 113(E3), E00A10.Google Scholar
Thomas, P., and Veverka, J. (1979), Seasonal and secular variation of wind streaks on Mars: an analysis of Mariner 9 and Viking data, J. Geophys. Res., 84(B14), 81318146.CrossRefGoogle Scholar
Thomas, P., Veverka, J., Lee, S., and Bloom, A. (1981), Classification of wind streaks on Mars, Icarus, 45(1), 124153.CrossRefGoogle Scholar
Thomas, P., Veverka, J., Gineris, D., and Wong, L. (1984), “Dust” streaks on Mars, Icarus, 60(1), 161179.CrossRefGoogle Scholar
Tillman, J. E., Landberg, L., and Larsen, S. E. (1994), The boundary layer of Mars: fluxes, stability, turbulent spectra, and growth of the mixed layer, J. Atmos. Sci., 51(12), 17091727.2.0.CO;2>CrossRefGoogle Scholar
Tobie, G., Forget, F., and Lott, F. (2003), Numerical simulation of the winter polar wave clouds observed by Mars Global Surveyor Mars Orbiter Laser Altimeter, Icarus, 164(33).CrossRefGoogle Scholar
Toigo, A. D., and Richardson, M. I. (2003), Meteorology of proposed Mars Exploration Rover landing sites, J. Geophys. Res., 108(E12), 8092.Google Scholar
Toigo, A. D., Richardson, M. I., Wilson, R. J., Wang, H., and Ingersoll, A. P. (2002), A first look at dust lifting and dust storms near the south pole of Mars with a mesoscale model, J. Geophys. Res., 107(E7), 5050.Google Scholar
Toigo, A. D., Richardson, M. I., Ewald, S. P., and Gierasch, P. J. (2003), Numerical simulation of Martian dust devils, J. Geophys. Res., 108(E6), 5047.Google Scholar
Toon, O. B., McKay, C., Accerman, T. P., and Santhanam, K. (1989), Rapid calculation of radiative heating rates and photodissociation rates in inhomogeneous multiple scattering atmospheres, J. Geophys Res., 94, 1628716301.CrossRefGoogle Scholar
Toyota, T., Kurita, K., and Spiga, A. (2011), Distribution and time-variation of spire streaks at Pavonis Mons on Mars, Planet Space Sci., 59(8), 672682.CrossRefGoogle Scholar
Tsoar, H., Greeley, R., and Peterfreund, A. R. (1979), Mars: the north polar sand sea and related wind patterns, J. Geophys. Res., 84(B14), 81678180.CrossRefGoogle Scholar
Tuller, S. E., and Brett, A. C. (1984), The characteristics of wind velocity that favor the fitting of a Weibull distribution in wind speed analysis, Journal of Climate and Applied Meteorology, 23(1), 124134.2.0.CO;2>CrossRefGoogle Scholar
Tyler, D., and Barnes, J. R. (2005), A mesoscale model study of summertime atmospheric circulations in the north polar region of Mars, J. Geophys. Res. – Planets, 110(E6).CrossRefGoogle Scholar
Tyler, D. and Barnes, J. (2013), Mesoscale modeling of the circulation in the Gale Crater region: an investigation into the complex forcing of convective boundary layer depths, Mars, 8, 5877.Google Scholar
Tyler, D., Barnes, J. R., and Haberle, R. M. (2002), Simulation of surface meteorology at the Pathfinder and VL1 sites using a Mars mesoscale model, J. Geophys. Res. – Planets, 107(E4).CrossRefGoogle Scholar
Tyler, D., Jr., Barnes, J. R., and Skyllingstad, E. D. (2008), Mesoscale and large-eddy simulation model studies of the Martian atmosphere in support of Phoenix, J. Geophys. Res., 113(E3), E00A12.Google Scholar
Vasavada, A., Chen, A., Barnes, J., et al. (2012), Assessment of environments for Mars Science Laboratory entry, descent, and surface operations. Space Science Reviews 170(1–4): 793835.CrossRefGoogle Scholar
Veverka, J., Gierasch, P., and Thomas, P. (1981), Wind streaks on Mars: meteorological control of occurence and mode of formation, Icarus, 45(1), 154166.CrossRefGoogle Scholar
Vincendon, M., Pilorget, C., Gondet, B., Murchie, S., and Bibring, J.-P. (2011), New near-IR observations of mesospheric CO2 and H2O clouds on Mars, J. Geophys. Res., 116, E00J02.Google Scholar
Vinnichenko, N. K. (1970), The kinetic energy spectrum in the free atmosphere – 1 second to 5 years, Tellus, 22(2), 158166.CrossRefGoogle Scholar
Wang, H. (2007), Dust storms originating in the northern hemisphere during the third mapping year of Mars Global Surveyor, Icarus, 189(2), 325343.CrossRefGoogle Scholar
Wang, H., and Ingersoll, A. P. (2002), Martian clouds observed by Mars Global Surveyor Mars Orbiter Camera, J. Geophys. Res., 107(E10), 5078.Google Scholar
Wang, H., Richardson, M. I., Wilson, R. J., et al. (2003), Cyclones, tides, and the origin of a cross-equatorial dust storm on Mars, Geophys. Res. Lett., 30(9), 1488.CrossRefGoogle Scholar
Wang, H., and Fisher, J. A. (2009), North polar frontal clouds and dust storms on Mars during spring and summer, Icarus, 204, 103113, doi:10.1016/j.icarus,.2009.05.028CrossRefGoogle Scholar
Ward, A. W. (1979), Yardangs on Mars: evidence of recent wind erosion, J. Geophys. Res., 84(B14), 81478166.CrossRefGoogle Scholar
Wilson, R. J. (1997), A general circulation model simulation of the Martian polar warming, Geophys. Res. Lett., 24, 123126.CrossRefGoogle Scholar
Wilson, R. J., and Hamilton, K. P. (1996), Comprehensive model simulation of thermal tides in the Martian atmosphere, J. Atmos. Sci., 53, 12901326.2.0.CO;2>CrossRefGoogle Scholar
Wilson, R. J., Neumann, G. A., and Smith, M. D. (2007), Diurnal variation and radiative influence of Martian water ice clouds, Geophys. Res. Lett., 34(2), L02710.CrossRefGoogle Scholar
Wing, D. R., and Austin, G. L. (2006), Global Mars mesoscale meteorological model, Icarus, 185.CrossRefGoogle Scholar
Wood, S. (1999), Nucleation and growth of CO2 ice crystals in the Martian atmosphere, Thesis, UCLA, Los Angeles.Google Scholar
Wyngaard, J. C. (2004), Toward numerical modeling in the “Terra Incognita”, J. Atmos. Sci., 61(14), 18161826.2.0.CO;2>CrossRefGoogle Scholar
Ye, Z. J., Segal, M., and Pielke, R. A. (1990), A comparative study of daytime thermally induced upslope flow on Mars and Earth, J. Atmos. Sci., 47(5), 612628.2.0.CO;2>CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×