Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-n9wrp Total loading time: 0 Render date: 2024-07-21T23:42:32.475Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  18 May 2010

Richard M. Warren
Affiliation:
University of Wisconsin, Milwaukee
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Auditory Perception
An Analysis and Synthesis
, pp. 225 - 255
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbagnaro, L. A., Bauer, B. B., and Torick, E. L. 1975. Measurements of diffraction and interaural delay of a progressive sound wave caused by the human head II. Journal of the Acoustical Society of America, 58, 693–700.CrossRefGoogle ScholarPubMed
Adrian, E. D. 1931. The microphone action of the cochlea: An interpretation of Wever and Bray's experiments. Journal of Physiology, 71, 28–29.Google Scholar
American National Standards Institute, 1969 (Reaffirmed, 1986). Methods for the Calculation of the Articulation Index, S3.5. New York: American National Standards Institute.Google Scholar
American National Standards Institute, 1976 (Reaffirmed, 1999). Acoustical Terminology, S1.1. New York: American National Standards Institute.Google Scholar
American National Standards Institute, 1997 (Reaffirmed, 2007). Methods for Calculation of the Speech Intelligibility Index, S3.5. New York: American National Standards Institute.Google Scholar
Amster, H. 1964. Semantic satiation and generation: Learning? Adaptation?Psychological Bulletin, 62, 273–286.CrossRefGoogle ScholarPubMed
Ashmore, J. F. 1987. A fast motile response in guinea-pig outer hair cells: The cellular basis of the cochlear amplifier. Journal of Physiology, 388, 323–347.CrossRefGoogle ScholarPubMed
Ayres, T., Aeschbach, S., and Walker, E. L. 1980. Psychoacoustic and experimental determinants of tonal consonance. Journal of Auditory Research, 20, 31–42.Google Scholar
Bachem, A. 1948. Chroma fixation at the ends of the musical frequency scale. Journal of the Acoustical Society of America, 20, 704–705.CrossRefGoogle Scholar
Barsz, K. 1988. Auditory pattern perception: The effect of tonal frequency range on the perception of temporal order. Perception & Psychophysics, 43, 293–303.CrossRefGoogle ScholarPubMed
Bartlett, F. C., and Mark, H. 1922–1923. A note on local fatigue in the auditory system. British Journal of Psychology, 13, 215–218.Google Scholar
Bashford, J. A. Jr., Brubaker, B. S., and Warren, R. M. 1993. Cross-modal enhancement of periodicity detection for very long period recycling frozen noise. Journal of the Acoustical Society of America, 93, 2315 (Abstract).CrossRefGoogle Scholar
Bashford, J. A. Jr., Myers, M. D., Brubaker, B. S., and Warren, R. M. 1988. Illusory continuity of interrupted speech: Speech rate determines durational limits. Journal of the Acoustical Society of America, 84, 1635–1638.CrossRefGoogle ScholarPubMed
Bashford, J. A. Jr., Riener, K. R., and Warren, R. M. 1992. Increasing the intelligibility of speech through multiple phonemic restorations. Perception & Psychophysics, 51, 211–217.CrossRefGoogle ScholarPubMed
Bashford, J. A. Jr., and Warren, R. M. 1987a. Effects of spectral alternation on the intelligibility of words and sentences. Perception & Psychophysics, 42, 431–438.CrossRefGoogle Scholar
Bashford, J. A. Jr., and Warren, R. M. 1987b. Multiple phonemic restorations follow the rules for auditory induction. Perception & Psychophysics, 42, 114–121.CrossRefGoogle Scholar
Bashford, J. A. Jr., and Warren, R. M. 1990. The pitch of odd-harmonic tones: Evidence of temporal analysis in the dominance region. Journal of the Acoustical Society of America, 88, S48 (Abstract).CrossRefGoogle Scholar
Bashford, J. A. Jr., Warren, R. M., and Brown, C. A. 1996. Use of speech-modulated noise adds strong “bottom-up” cues for phonemic restoration. Perception & Psychophysics, 58, 342–350.CrossRefGoogle ScholarPubMed
Bashford, J. A. Jr., Warren, R. M., and Lenz, P. W. 2006. Polling the effective neighborhoods of spoken words with the Verbal Transformation Effect. Journal of the Acoustical Society of America, 119, EL55.CrossRefGoogle ScholarPubMed
Batteau, D. W. 1967. The role of the pinna in human localization. In Proceedings of the Royal Society (London), Series B, 168, 158–180.CrossRefGoogle ScholarPubMed
Batteau, D. W. 1968. Listening with the naked ear. In Neuropsychology of Spatially Oriented Behavior, Freedman, S. J. (ed.). Homewood, IL: Dorsey Press, 109–133.Google Scholar
Békésy, G. 1938. Ueber die Entstehung der Entfernungsempfindung beim Hören, Akustische Zeitung, 3, 21–31.Google Scholar
Békésy, G. 1959. Similarities between hearing and skin sensation. Psychological Review, 66, 1–22.CrossRefGoogle Scholar
Békésy, G. 1960. Experiments in Hearing. New York: McGraw-Hill.Google Scholar
Belin, P., Zatorre, R. J., Hoge, R., Pike, B., and Evans, A. C. 1999. Event-related fMRI of the auditory cortex. NeuroImage, 10, 417–429.CrossRefGoogle ScholarPubMed
Bergman, M. 1957. Binaural hearing. Archives of Otolaryngology, 66, 572–578.CrossRefGoogle ScholarPubMed
Berkeley, G. 1948. An essay towards a new theory of vision, Section 143. In The Works of George Berkeley, Bishop of Cloyne, vol. 1, Luce, A. A. and Jessop, T. E. (eds.). London: Thom. Nelson & Sons (First published 1709, text from the 1732 revised edition).Google Scholar
Bertelson, P., and de Gelder, B. 2004. The psychology of multimodal perception. In Cross Modal Space and Cross Modal Attention, Spence, C. and Driver, J. (eds.). Oxford: Oxford University Press, 141–177.CrossRefGoogle Scholar
Bertelson, P., and Radeau, M. 1981. Cross-modal bias and perceptual fusion with auditory-visual spatial discordance. Perception & Psychophysics, 29, 578–584.CrossRefGoogle ScholarPubMed
Bezold, W. 1890. Urteilstauschungen nach Beseitigung einseitiger Harthörigkeit. Zeitschrift für Psychologie, 1, 486–487.Google Scholar
Bilger, R. C., Matthies, M. L., Hammel, D. R., and Demorest, M. E. 1990. Genetic implications of gender-differences in the prevalence of spontaneous otoacoustic emission. Journal of Speech and Hearing Research, 33, 418–433.CrossRefGoogle Scholar
Bilsen, F. A. 1970. Repetition pitch: Its implication for hearing theory and room acoustics. In Frequency Analysis and Periodicity Detection in Hearing, Plomp, R. and Smoorenburg, G. F. (eds.). Leiden: Sijthoff, 291–302.Google Scholar
Bilsen, F. A. 1977. Pitch of noise signals: Evidence for a “central spectrum.”Journal of the Acoustical Society of America, 61, 150–161.CrossRefGoogle ScholarPubMed
Bilsen, F. A., and Goldstein, J. L. 1974. Pitch of dichotically delayed noise and its possible spectral basis. Journal of the Acoustical Society of America, 55, 292–296.CrossRefGoogle ScholarPubMed
Bilsen, F. A., and Ritsma, R. J. 1969–1970. Repetition pitch and its implication for hearing theory. Acustica, 22, 63–73.Google Scholar
Bilsen, F. A., and Wieman, J. L. 1980. Atonal periodicity sensation for comb filtered noise signals. Proceedings of the 5th International Symposium in Hearing. Delft: Delft University Press, 379–383.Google Scholar
Blauert, J. 1969–1970. Sound localization in the median plane. Acustica, 22, 205–213.Google Scholar
Blauert, J. 1997. Spatial Hearing: The Psychophysics of Human Sound Localization. Cambridge, MA: MIT Press.Google Scholar
Bloch, E. 1893. Das binaurale Hören. Zeitschrift für Ohrenheilkunde, 24, 25–85.Google Scholar
Blodgett, H. C., Wilbanks, W. A., and Jeffress, L. A. 1956. Effects of large interaural differences upon the judgment of sidedness. Journal of the Acoustical Society of America, 28, 639–643.CrossRefGoogle Scholar
de Boer, E. 1956. On the “Residue” in Hearing. Unpublished Doctoral Dissertation, University of Amsterdam.
de Boer, E. 1976. On the “residue” and auditory pitch perception. In Handbook of Sensory Physiology, vol. V. Auditory system, Part 3: Clinical and Special Topics, Keidel, W. D. and Neff, W. D. (eds.). Berlin: Springer-Verlag, 479–583.Google Scholar
Bond, Z. S. 1976. On the specification of input units in speech perception. Brain and Language, 3, 72–87.CrossRefGoogle ScholarPubMed
Book, W. F. 1925. The Psychology of Skill with Special Reference to its Acquisition in Typewriting. New York: Gregg.Google Scholar
Borden, G. J. 1979. An interpretation of research on feedback interruption. Brain and Language, 7, 307–319.CrossRefGoogle ScholarPubMed
Boring, E. G. 1942. Sensation and Perception in the History of Experimental Psychology. New York: Appleton-Century-Crofts.Google Scholar
Brady, S. A., and Shankweiler, D. P. (eds.). 1991. Phonological Processes in Literacy. Hillsdale, NJ: Erlbaum.Google Scholar
Braun, M. 1994. Tuned hair cells for hearing, but tuned basilar membrane for overload protection: Evidence from dolphins, bats, and desert rodents. Hearing Research, 78, 98–114.CrossRefGoogle ScholarPubMed
Bregman, A. S. 1990. Auditory Scene Analysis: The Perceptual Organization of Sound. Cambridge, MA: MIT Press.Google Scholar
Bregman, A. S., and Campbell, J. 1971. Primary auditory stream segregation and perception of order in rapid sequences of tones. Journal of Experimental Psychology, 89, 244–249.CrossRefGoogle ScholarPubMed
Broadbent, D. E., and Ladefoged, P. 1959. Auditory perception of temporal order. Journal of the Acoustical Society of America, 31, 1539–1540.CrossRefGoogle Scholar
Brookshire, R. H. 1972. Visual and auditory sequencing by aphasic subjects. Journal of Communication Disorders, 5, 259–269.CrossRefGoogle Scholar
Browman, C. P. 1980. Perceptual processing: Evidence from slips of the ear. In Errors in Linguistic Performance: Slips of the Tongue, Ear, Pen, and Hand, Fromkin, V. A. (ed.). New York: Academic Press, 213–230.Google Scholar
Brown, E. L., and Deffenbacher, K. 1979. Perception and the Senses. New York: Oxford University Press.Google Scholar
Brownell, W. E., Bader, C. R., Bertrand, D., and Ribaupierre, Y. 1985. Evoked mechanical responses of isolated cochlear outer hair cells. Science, 227, 194–196.CrossRefGoogle ScholarPubMed
Bryan, W. L., and Harter, N. 1897. Studies in the physiology and psychology of the telegraphic language. Psychological Review, 4, 27–53.CrossRefGoogle Scholar
Bryan, W. L., and Harter, N. 1899. Studies on the telegraphic language: The acquisition of a hierarchy of habits. Psychological Review, 6, 345–375.Google Scholar
Bukofzer, M. F. 1947. Music in the Baroque Era. New York: Norton.Google Scholar
Burns, E. M., and Viemeister, N. F. 1976. Nonspectral pitch. Journal of the Acoustical Society of America, 60, 863–869.CrossRefGoogle Scholar
Butler, R. A. 1969. Monaural and binaural localization of noise bursts vertically in the median sagittal plane. Journal of Auditory Research, 3, 230–235.Google Scholar
Butler, R. A., Levy, E. T., and Neff, W. D. 1980. Apparent distance of sounds recorded in echoic and anechoic chambers. Journal of Experimental Psychology: Human Perception and Performance, 6, 745–750.Google ScholarPubMed
Butler, R. A., and Naunton, R. F. 1962. Some effects of unilateral auditory masking upon the localization of sound in space. Journal of the Acoustical Society of America, 34, 1100–1107.CrossRefGoogle Scholar
Butler, R. A., and Naunton, R. F. 1964. Role of stimulus frequency and duration in the phenomenon of localization shifts. Journal of the Acoustical Society of America, 36, 917–922.CrossRefGoogle Scholar
Buus, S. 1997. Auditory masking. In Encyclopedia of Acoustics, vol. 3, Crocker, M. J. (ed.). New York: Wiley, 1427–1445.Google Scholar
Carmon, A., and Nachshon, I. 1971. Effect of unilateral brain damage on perception of temporal order. Cortex, 7, 410–418.CrossRefGoogle ScholarPubMed
Cathcart, E. P., and Dawson, S. 1927–1928. Persistence: A characteristic of remembering. British Journal of Psychology, 18, 262–275.Google Scholar
Cathcart, E. P., and Dawson, S. 1928–1929. Persistence (2). British Journal of Psychology, 19, 343–356.Google Scholar
Caton, R. 1875. The electric currents of the brain. British Medical Journal, 2, 278.Google Scholar
Celce-Murcia, M. 1980. On Meringer's corpus of “slips of the ear.” In Errors in Linguistic Performances: Slips of the Tongue, Ear, Pen, and Hand, Fromkin, V. A. (ed.). New York: Academic Press, 199–211.Google Scholar
Celesia, G. G. 1976. Organization of auditory cortical areas in man. Brain, 99, 403–417.CrossRefGoogle ScholarPubMed
Chalikia, M. H., and Warren, R. M. 1991. Phonemic transformations: Mapping the illusory organization of steady-state vowel sequences. Language and Speech, 34, 109–143.CrossRefGoogle Scholar
Chalikia, M. H., and Warren, R. M. 1994. Spectral fissioning in phonemic transformations. Perception & Psychophysics, 55, 218–226.CrossRefGoogle ScholarPubMed
Chatterjee, M., and Zwislocki, J. J. 1997. Cochlear mechanisms of frequency and intensity coding. I. The place code for pitch. Hearing Research, 111, 65–75.CrossRefGoogle ScholarPubMed
Cherry, C. 1953. Some experiments on the recognition of speech, with one and two ears. Journal of the Acoustical Society of America, 25, 975–979.CrossRefGoogle Scholar
Cherry, C., and Wiley, R. 1967. Speech communications in very noisy environments. Nature, 214, 1164.CrossRefGoogle ScholarPubMed
Chistovich, L. A. 1962. Temporal course of speech sound perception. In Proceedings of the 4th International Commission on Acoustics, (Copenhagen), Article H 18.
Chocholle, R., and Legouix, J. P. 1957a. On the inadequacy of the method of beats as a measure of aural harmonics. Journal of the Acoustical Society of America, 29, 749–750.CrossRefGoogle Scholar
Chocholle, R., and Legouix, J. P. 1957b. About the sensation of beats between two tones whose frequencies are nearly in a simple ratio. Journal of the Acoustical Society of America, 29, 750.CrossRefGoogle Scholar
Chomsky, N., and Halle, M. 1968. The Sound Patterns of English. New York: Harper & Row.Google Scholar
Christman, R. J. 1954. Shifts in pitch as a function of prolonged stimulation with pure tones. American Journal of Psychology, 67, 484–491.CrossRefGoogle ScholarPubMed
Ciocca, V., and Bregman, A. S., 1987. Perceived continuity of gliding and steady-state tones through interrupting noise. Perception & Psychophysics, 42, 476–484.CrossRefGoogle ScholarPubMed
Colavita, F. B., Szeligo, F. V., and Zimmer, S. D. 1974. Temporal pattern discrimination in cats with insular-temporal lesions. Brain Research, 79, 153–156.CrossRefGoogle ScholarPubMed
Cole, R. A., Rudnicky, A. I., Zue, V. W., and Reddy, D. R. 1980. Speech as patterns on paper. In Perception and Production of Fluent Speech, Cole, R. A. (ed.). Hillsdale, NJ: Erlbaum, 3–50.Google Scholar
Cole, R. A., and Scott, B. 1973. Perception of temporal order in speech: The role of vowel transitions. Canadian Journal of Psychology, 27, 441–449.CrossRefGoogle ScholarPubMed
Cole, R. A., and Scott, B. 1974. The phantom in the phoneme: Invariant cues for stop consonants. Perception & Psychophysics, 15, 101–107.CrossRefGoogle Scholar
Coleman, P. D. 1963. An analysis of cues to auditory depth perception in free space. Psychological Bulletin, 60, 302–315.CrossRefGoogle ScholarPubMed
Collet, L., Kemp, D. T., Veuillet, E., Duclaux, R., Moulin, A., and Morgon, A. 1990. Effect of contralateral auditory stimuli on active cochlear micromechanical properties in human subjects. Hearing Research, 43, 251–262.CrossRefGoogle Scholar
Connine, C. M., and Titone, D. 1996. Phoneme monitoring. Language and Cognitive Processes, 11, 635–645.Google Scholar
Cooper, N. P. 1999. An improved heterodyne laser interferometer for use in studies of cochlear mechanics. Journal of the Neuroscience Methods, 88, 93–102.CrossRefGoogle ScholarPubMed
Cooper, N. P., and Rhode, W. S. 1993. Nonlinear mechanics at the base and apex of the mammalian cochlea; in vivo observations using a displacement-sensitive laser interferometer. In Biophysics of Hair Cell Sensory Systems, Duifhuis, H., Horst, J. W., Dijk, P., and Netten, S. M. (eds.). Singapore: World Scientific, 249–257.CrossRefGoogle Scholar
Cooper, W. E. 1974. Contingent feature analysis in speech perception. Perception & Psychophysics, 16, 201–204.CrossRefGoogle Scholar
Cooper, W. E. 1979. Speech Perception and Production: Studies in Selective Adaptation. Norwood, NJ: Ablex.Google Scholar
Cowan, N., Lichty, W., and Grove, T. R. 1990. Properties of memory for unattended spoken syllables. Journal of Experimental Psychology: Learning, Memory, and Cognition, 16, 258–269.Google ScholarPubMed
Cramer, E. M., and Huggins, W. H. 1958. Creation of pitch through binaural interaction. Journal of the Acoustical Society of America, 30, 413–417.CrossRefGoogle Scholar
Crompton, A. 1982. Syllables and segments in speech production. In Slips of the Tongue and Language Production, Cutler, A. (ed.). Berlin: Mouton, 109–162.CrossRefGoogle Scholar
Cullinan, W. L., Erdos, E., Schaefer, R., and Tekieli, M. E. 1977. Perception of temporal order of vowels and consonant-vowel syllables. Journal of Speech and Hearing Research, 20, 742–751.CrossRefGoogle ScholarPubMed
Cutting, J. E. 1973. Levels of Processing in Phonological Fusion. Doctoral dissertation, Yale University (see p. 7).
Dallos, P. 1973. The Auditory Periphery: Biophysics and Physiology. New York: Academic Press.Google Scholar
Dallos, P. 1978. Biophysics of the cochlea. In Handbook of Perception, vol. 4, Carterette, E. C. and Freedman, M. P. (eds.). New York: Academic Press, 125–162.Google Scholar
Dallos, P. 1981. Cochlear physiology. Annual Review of Psychology, 32, 153–190.CrossRefGoogle ScholarPubMed
Dancer, A. 1992. Experimental look at cochlear mechanics. Audiology, 31, 301–312.CrossRefGoogle Scholar
Daneman, M., and Merikle, P. M. 1996. Working memory and language comprehension: A meta-analysis. Psychonomic Bulletin & Review, 3, 422–433.CrossRefGoogle ScholarPubMed
Dannenbring, G. L. 1976. Perceived auditory continuity with alternately rising and falling frequency transitions. Canadian Journal of Psychology, 30, 99–114.CrossRefGoogle ScholarPubMed
David, E. E., Guttman, N., and Bergeijk, W. A. 1958. On the mechanism of binaural fusion. Journal of the Acoustical Society of America, 30, 801–802.CrossRefGoogle Scholar
Davis, H. 1961. Some principles of sensory receptor action. Physiological Review, 41, 391–416.CrossRefGoogle ScholarPubMed
Davis, H. 1965. A model for transducer action in the cochlea. In Cold Spring Harbor Symposium on Quantitative Biology, 30, 181–190.CrossRefGoogle ScholarPubMed
Davis, H. 1968. Discussion of Batteau's contribution. In Hearing Mechanisms in Vertebrates, CIBA Foundation Symposium, Reuck, A. V. S. and Knight, J. (eds.). Boston, MA: Little, Brown, 241–242.CrossRefGoogle Scholar
Davis, H., Benson, R. W., Covell, W. P., Fernandez, C., Goldstein, R., Katsuki, Y., Legouix, J.-P., McAuliffe, D. R., and Tasaki, I. 1953. Acoustic trauma in the guinea pig. Journal of the Acoustical Society of America, 25, 1180–1189.CrossRefGoogle Scholar
Davis, H., Fernandez, C., and McAuliffe, D. R. 1950. The excitatory process in the cochlea. In Proceedings of the National Academy of Sciences (USA), 36, 580–587.CrossRefGoogle ScholarPubMed
Deinse, J. B. van 1981. Registers. Folia Phoniatrica, 33, 37–50.CrossRefGoogle ScholarPubMed
DelCastillo, D. M., and Gumenik, W. E. 1972. Sequential memory for familiar and unfamiliar forms. Journal of Experimental Psychology, 95, 90–96.CrossRefGoogle Scholar
Deutsch, D. 1974. An auditory illusion. Nature, 251, 307–309.CrossRefGoogle Scholar
Deutsch, D. 1975. Two-channel listening to musical scales. Journal of the Acoustical Society of America, 57, 1156–1160.CrossRefGoogle ScholarPubMed
Deutsch, D. 1981. The octave illusion and auditory perceptual integration. In Hearing Research and Theory, vol. 1, Tobias, J. V. and Schubert, E. D. (eds.). New York: Academic Press, 99–142.Google Scholar
Deutsch, D., and Roll, P. L. 1976. Separate “what” and “where” decision mechanisms in processing a dichotic tonal sequence. Journal of Experimental Psychology: Human Perception and Performance, 2, 23–29.Google Scholar
Dewson, J. H. III 1964. Speech sound discrimination by cats. Science, 144, 555–556.CrossRefGoogle ScholarPubMed
Dewson, J. H. III 1968. Efferent olivocochlear bundle: Some relationships to stimulus discrimination in noise. Journal of Neurophysiology, 31, 122–130.CrossRefGoogle Scholar
Dewson, J. H. III, and Cowey, A. 1969. Discrimination of auditory sequences by monkeys. Nature, 222, 695–697.CrossRefGoogle ScholarPubMed
Diehl, R. L. 1981. Feature detectors for speech: A critical reappraisal. Psychological Bulletin, 89, 1–18.CrossRefGoogle ScholarPubMed
Dirks, D. D., and Bower, D. 1970. Effect of forward and backward masking on speech intelligibility. Journal of the Acoustical Society of America, 47, 1003–1008.CrossRefGoogle ScholarPubMed
Divenyi, P. L., and Hirsh, I. J. 1974. Identification of temporal order in three-tone sequences. Journal of the Acoustical Society of America, 56, 144–151.CrossRefGoogle ScholarPubMed
Dodd, B. 1977. The role of vision in the perception of speech. Perception, 6, 31–40.CrossRefGoogle Scholar
Dodd, B. 1980. Interaction of auditory and visual information in speech perception. British Journal of Psychology, 71, 541–549.CrossRefGoogle ScholarPubMed
Don, V. J., and Weld, H. P. 1924. Minor studies from the psychological laboratory of Cornell University. LXX. Lapse of meaning with visual fixation. American Journal of Psychology, 35, 446–450.CrossRefGoogle Scholar
Dorman, M. F., Cutting, J. E., and Raphael, L. J. 1975. Perception of temporal order in vowel sequences with and without formant transitions. Journal of Experimental Psychology: Human Perception and Performance, 104, 121–129.Google ScholarPubMed
Dowling, W. J. 1973. The perception of interleaved melodies. Cognitive Psychology, 5, 322–337.CrossRefGoogle Scholar
Durlach, N. I., and Braida, L. D. 1969. Intensity perception. I: Preliminary theory of intensity resolution. Journal of the Acoustical Society of America, 46, 372–383.CrossRefGoogle ScholarPubMed
Efron, R. 1963. Temporal perception, aphasia, and déjà vu. Brain, 86, 403–424.CrossRefGoogle Scholar
Efron, R. 1973. Conservation of temporal information by perceptual systems. Perception & Psychophysics, 14, 518–530.CrossRefGoogle Scholar
Efron, R., and Yund, E. W. 1976. Ear dominance and intensity independence in the perception of dichotic chords. Journal of the Acoustical Society of America, 59, 889–898.CrossRefGoogle ScholarPubMed
Egan, J. P. 1948. The effect of noise in one ear upon the loudness of speech in the other. Journal of the Acoustical Society of America, 20, 58–62.CrossRefGoogle Scholar
Egan, J. P., and Hake, H. W. 1950. On the masking pattern of a simple auditory stimulus. Journal of the Acoustical Society of America, 20, 622–630.CrossRefGoogle Scholar
Eimas, P. D., and Corbit, J. D. 1973. Selective adaptation of linguistic feature detectors. Cognitive Psychology, 4, 99–109.CrossRefGoogle Scholar
Eimas, P. D., and Miller, J. L. 1978. Effects of selective adaptation on the perception of speech and visual patterns: Evidence for feature detectors. In Perception and Experience, Walk, R. D. and Pick, H. L. (eds.). New York: Plenum, 307–345.CrossRefGoogle Scholar
Elfner, L. F. 1969. Continuity in alternately sounded tone and noise signals in a free field. Journal of the Acoustical Society of America, 46, 914–917.CrossRefGoogle Scholar
Elfner, L. F. 1971. Continuity in alternately sounded tonal signals in a free field. Journal of the Acoustical Society of America, 49, 447–449.CrossRefGoogle Scholar
Elfner, L. F., and Caskey, W. E. 1965. Continuity effects with alternately sounded noise and tone signals as a function of manner of presentation. Journal of the Acoustical Society of America, 38, 543–547.CrossRefGoogle ScholarPubMed
Elfner, L. F., and Homick, J. L. 1966. Some factors affecting the perception of continuity in alternately sounded tone and noise signals. Journal of the Acoustical Society of America, 40, 27–31.CrossRefGoogle ScholarPubMed
Elfner, L. F., and Homick, J. L. 1967a. Continuity effects with alternately sounding tones under dichotic presentation. Perception & Psychophysics, 2, 34–36.CrossRefGoogle Scholar
Elfner, L. F., and Homick, J. L. 1967b. Auditory continuity effects as a function of the duration and temporal location of the interpolated signal. Journal of the Acoustical Society of America, 42, 576–579.CrossRefGoogle Scholar
Elman, J. L. 1979. Perceptual origins of the phoneme boundary effect and selective adaptation to speech: A signal detection analysis. Journal of the Acoustical Society of America, 65, 190–207.CrossRefGoogle Scholar
Evans, E. F. 1986. Cochlear nerve fiber temporal discharge patterns, cochlear frequency selectivity and the dominant region for pitch. In Auditory Frequency Selectivity, Moore, B. C. J. and Patterson, R. D. (eds.). New York: Plenum, 253–264.CrossRefGoogle Scholar
Fant, C. G. M. 1962. Descriptive analysis of the acoustic aspects of speech. Logos, 5, 3–17.Google Scholar
Fastl, H. 1975. Pulsation patterns of sinusoids vs. critical band noise. Perception & Psychophysics, 18, 95–97.CrossRefGoogle Scholar
Fay, W. H. 1966. Temporal Sequence in the Perception of Speech. The Hague: Mouton.Google Scholar
Fechner, G. T. 1860. Elemente der Psychophysik. Leipzig: Breitkopf und Härtel.Google Scholar
Feddersen, W. E., Sandel, T. T., Teas, D. C., and Jeffress, L. A. 1957. Localization of high frequency tones. Journal of the Acoustical Society of America, 29, 988–991.CrossRefGoogle Scholar
Ferrand, L., Segui, J., and Grainger, J. 1996. Masked priming of word and picture naming: The role of syllabic units. Journal of Memory & Language, 35, 708–723.CrossRefGoogle Scholar
Ferrand, L., Segui, J., and Humphreys, G. W. 1997. The syllable's role in word naming. Memory & Cognition, 25, 458–470.CrossRefGoogle ScholarPubMed
Fettiplace, R., and Crawford, A. C. 1980. The origin of tuning in turtle cochlear hair cells. Hearing Research, 2, 447–454.CrossRefGoogle ScholarPubMed
Fieandt, K. 1951. Loudness invariance in sound perception. Acta Psychologica Fennica, 1, 9–20.Google Scholar
Flanagan, J. L. 1972. Speech Analysis, Synthesis, and Perception, 2nd edition. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Flanagan, J. L., and Guttman, N. 1960a. On the pitch of periodic pulses. Journal of the Acoustical Society of America, 32, 1308–1319.CrossRefGoogle Scholar
Flanagan, J. L., and Guttman, N. 1960b. Pitch of periodic pulses without fundamental component. Journal of the Acoustical Society of America, 32, 1319–1328.CrossRefGoogle Scholar
Fletcher, H. 1924. The physical criterion for determining the pitch of a musical tone. Physical Review, 23, 427–437.CrossRefGoogle Scholar
Fletcher, H. 1930. A space-time pattern theory of hearing. Journal of the Acoustical Society of America, 1, 311–343.CrossRefGoogle Scholar
Fletcher, H. 1940. Auditory patterns. Review of Modern Physics, 12, 47–65.CrossRefGoogle Scholar
Fletcher, H. 1953. Speech and Hearing in Communication. New York: Van Nostrand.Google Scholar
Flock, Å., Flock, B., and Murray, E. 1977. Studies on the sensory hairs of receptor cells in the inner ear. Acta Oto-Laryngologica, 83, 85–91.CrossRefGoogle ScholarPubMed
Flügel, J. C. 1920–1921. On local fatigue in the auditory system. British Journal of Psychology, 11, 105–134.Google Scholar
Foss, D. J. 1969. Decision processes during sentence comprehension: Effects of lexical item difficulty and position upon decision times. Journal of Verbal Learning and Verbal Behavior, 8, 457–462.CrossRefGoogle Scholar
Foss, D. J., and Lynch, R. H., Jr. 1969. Decision processes during sentence comprehension: Effects of surface structure on decision times. Perception & Psychophysics, 5, 145–148.CrossRefGoogle Scholar
Foulke, E., and Sticht, T. G. 1969. Review of research on the intelligibility and comprehension of accelerated speech. Psychological Bulletin, 72, 50–62.CrossRefGoogle ScholarPubMed
Fourcin, A. J. 1965. The pitch of noise with periodic spectral peaks. In Reports of the 5th International Congress on Acoustics (Liège), lA, B42.
Fourcin, A. J. 1970. Central pitch and auditory lateralization. In Frequency Analysis and Periodicity Detection in Hearing, Plomp, R. and Smoorenburg, G. F. (eds.). Leiden: Sijthoff, 319–328.Google Scholar
Fraisse, P. 1963. The Psychology of Time, J. Leith, translator. New York: Harper & Row.Google Scholar
Freedman, S. J., and Fisher, H. G. 1968. The role of the pinna in auditory localization. In Neuropsychology of Spatially Oriented Behavior, Freedman, S. J. (ed.). Homewood, IL: Dorsey Press, 135–152.Google Scholar
Fromkin, V. A. 1971. The non-anomalous nature of anomalous utterances. Language, 7, 27–52.CrossRefGoogle Scholar
Fromkin, V. A. 1973. Speech Errors as Linguistic Evidence. The Hague: Mouton.Google Scholar
Fromkin, V. A. 1980. Introduction. In Errors in Linguistic Performance: Slips of the Tongue, Ear, Pen, and Hand, Fromkin, V. A. (ed.). New York: Academic Press, 1–12.Google Scholar
Gacek, R. R. 1972. Neuroanatomy of the auditory system. In Foundations of Modern Auditory Theory, vol. 2, Tobias, J. V. (ed.). New York: Academic Press, 241–262.Google Scholar
Gamble, E. A. McC. 1909. Minor studies from the psychological laboratory of Wellesley College, I. Intensity as a criterion in estimating the distance of sounds. Psychological Review, 16, 416–426.CrossRefGoogle Scholar
Ganong, W. F. III 1976. Amplitude contingent selective adaptation to speech. Journal of the Acoustical Society of America, 59, S26 (Abstract).CrossRefGoogle Scholar
Gardner, M. B. 1968. Historical background of the Haas and/or precedence effect. Journal of the Acoustical Society of America, 43, 1243–1248.CrossRefGoogle ScholarPubMed
Gardner, M. B. 1969. Distance estimation of 0° or apparent 0° oriented speech signals in anechoic space. Journal of the Acoustical Society of America, 45, 47–53.CrossRefGoogle Scholar
Gardner, M. B., and Gardner, R. S. 1973. Problem of localization in the median plane: Effect of pinnae cavity occlusion. Journal of the Acoustical Society of America, 53, 400–408.CrossRefGoogle ScholarPubMed
Garner, W. R. 1951. The accuracy of counting repeated short tones. Journal of Experimental Psychology, 41, 310–316.CrossRefGoogle ScholarPubMed
Garner, W. R. 1954. Context effects and the validity of loudness scales. Journal of Experimental Psychology, 48, 218–224.CrossRefGoogle ScholarPubMed
Garner, W. R., and Gottwald, R. L. 1967. Some perceptual factors in the learning of sequential patterns of binary events. Journal of Verbal Learning and Verbal Behavior, 6, 582–589.CrossRefGoogle Scholar
Garner, W. R., and Gottwald, R. L. 1968. The perception and learning of temporal patterns. Quarterly Journal of Experimental Psychology, 20, 97–109.CrossRefGoogle ScholarPubMed
Garnes, S., and Bond, Z. S. 1980. A slip of the ear: A snip of the ear? A slip of the year? In Errors in Linguistic Performance: Slips of the Tongue, Ear, Pen, and Hand, Fromkin, V. A. (ed.). New York: Academic Press, 231–239.Google Scholar
Gibson, J. J. 1937. Adaptation with negative after-effect. Psychological Review, 44, 222–244.CrossRefGoogle Scholar
Gibson, J. J. 1966. The Senses Considered as Perceptual Systems. Boston, MA: Houghton Mifflin.Google Scholar
Gilkey, R., and Anderson, T. (eds.) 1997. Binaural and Spatial Hearing in Real and Virtual Environments. Hillsdale, NJ: Erlbaum.Google Scholar
Goldinger, S. D., Luce, P. A., and Pisoni, D. B. 1989. Priming lexical neighbors of spoken words: Effects of competition and inhibition. Journal of Memory and Language, 28, 501–518.CrossRefGoogle Scholar
Goldstein, J. L. 1973. An optimum processor theory for the central formation of the pitch of complex tones. Journal of the Acoustical Society of America, 54, 1496–1516.CrossRefGoogle ScholarPubMed
Goldstein, J. L. 1978. Mechanisms of signal analysis and pattern perception in periodicity pitch. Audiology, 17, 421–445.CrossRefGoogle ScholarPubMed
Goswami, U., and Bryant, P. 1990. Phonological Skills and Learning to Read. Hillsdale, NJ: Erlbaum.Google Scholar
Gray, G. W. 1942. Phonemic microtomy: The minimum duration of perceptible speech sounds. Speech Monographs, 9, 75–90.CrossRefGoogle Scholar
Graybiel, A., Kerr, W. A., and Bartley, S. H. 1948. Stimulus thresholds of the semicircular canals as a function of angular acceleration. American Journal of Psychology, 61, 21–36.CrossRefGoogle ScholarPubMed
Green, D. M. 1976. An Introduction to Hearing. Hillsdale, NJ: Erlbaum.Google Scholar
Green, D. M., and Yost, W. A. 1975. Binaural analysis. In Handbook of Sensory Physiology, vol. 2, Keidel, W. D. and Neff, W. D. (eds.). Berlin: Springer-Verlag, 461–480.Google Scholar
Green, K. P., and Norrix, L. W. 1997. Acoustic cues to place of articulation and the McGurk effect: The role of release bursts, aspiration, and formant transitions. Journal of Speech, Language, and Hearing Research, 40, 646–665.CrossRefGoogle ScholarPubMed
Greenberg, S., and Ainsworth, W. A. (eds.) 2006. Listening to Speech: An Auditory Perspective. Mahwah, NJ: Erlbaum. (Chapters on various topics were assembled to provide “a multi-tier framework” for understanding spoken language.)Google Scholar
Greenwood, D. D. 1961. Critical bandwidth and the frequency coordinates of the basilar membrane. Journal of the Acoustical Society of America, 33, 1344–1356.CrossRefGoogle Scholar
Greenwood, D. D. 1990. A cochlear frequency-position function for several species – 29 years later. Journal of the Acoustical Society of America, 87, 2592–2605.CrossRefGoogle ScholarPubMed
Greenwood, D. D. 1997. The mel scale's disqualifying bias and a consistency of pitch-difference equisections in 1956 with equal cochlear distances and equal frequency ratios. Hearing Research, 103, 199–224.CrossRefGoogle Scholar
Guttman, N., and Julesz, B. 1963. Lower limit of auditory periodicity analysis. Journal of the Acoustical Society of America, 35, 610.CrossRefGoogle Scholar
Hafter, E. R., and Carrier, S. C. 1972. Binaural interaction in low-frequency stimuli: The inability to trade time and intensity completely. Journal of the Acoustical Society of America, 51, 1852–1862.CrossRefGoogle ScholarPubMed
Hafter, E. R., Dye, R. H., Jr., and Gilkey, R. H. 1979. Lateralization of tonal signals which have neither onsets nor offsets. Journal of the Acoustical Society of America, 65, 471–477.CrossRefGoogle ScholarPubMed
Hafter, E. R., and Jeffress, L. A. 1968. Two-image lateralization of tones and clicks. Journal of the Acoustical Society of America, 44, 563–569.CrossRefGoogle ScholarPubMed
Hall, D. A., Haggard, M. P., Akeroyd, M. A., Palmer, A. R., Summerfield, Q. A., Elliott, M. R., Gurney, E. M., and Bowtell, R. W. 1999. “Sparse” temporal sampling in auditory fMRI. Human Brain Mapping, 7, 213–223.3.0.CO;2-N>CrossRefGoogle ScholarPubMed
Hall, J. W., Haggard, M. P., and Fernandes, M. A. 1984. Detection in noise by spectro-temporal pattern analysis. Journal of the Acoustical Society of America, 76, 50–56.CrossRefGoogle ScholarPubMed
Hall, L. L., and Blumstein, S. E. 1978. The effect of syllabic stress and syllabic organization on the identification of speech sounds. Perception & Psychophysics, 24, 137–144.CrossRefGoogle Scholar
Halle, M., and Stevens, K. N. 1972. Speech recognition: A model and a program for research. In The Structure of Language, Fodor, J. A. and Katz, J. J. (eds.). Englewood Cliffs, NJ: Prentice Hall, 604–612.Google Scholar
Ham, L. B., and Parkinson, J. S. 1932. Loudness and intensity relations. Journal of the Acoustical Society of America, 3, 511–534.CrossRefGoogle Scholar
Harris, G. G. 1960. Binaural interactions of impulsive stimuli and pure tones. Journal of the Acoustical Society of America, 32, 685–692.CrossRefGoogle Scholar
Hartmann, W. M. 1983. Localization of sound in rooms. Journal of the Acoustical Society of America, 74, 1380–1391.CrossRefGoogle ScholarPubMed
Hartmann, W. M. 1998. Signals, Sound, and Sensation. New York: Springer-Verlag.Google Scholar
Hartmann, W. M., and Wittenberg, A. 1996. On the externalization of sound images. Journal of the Acoustical Society of America, 99, 3678–3688.CrossRefGoogle ScholarPubMed
Held, R. 1955. Shifts in binaural localization after prolonged exposures to atypical combinations of stimuli. American Journal of Psychology, 68, 526–548.CrossRefGoogle ScholarPubMed
Helmholtz, H. L. F. 1863. Die Lehre von. den Tonempfindunger als physiologischeGrundlage für die Theorie der Musik. Braunschweig: Fr. Viewig und Sohn.Google Scholar
Helmholtz, H. L. F. 1954. On the Sensations of Tone as a Physiological Basis for the Theory of Music. New York: Dover, 1954. (Reprint of 2nd English edition of 1885, Ellis, A. J., translator, based upon the 3rd German edition (1870) and rendered conformal with the 4th German edition (1877)).Google Scholar
Helson, H. 1964. Adaptation Level Theory: An Experimental and Systematic Approach to Behavior. New York: Harper & Row.Google Scholar
Henning, G. B. 1974. Detectability of interaural delay in high-frequency complex waveforms. Journal of the Acoustical Society of America, 55, 84–90.CrossRefGoogle ScholarPubMed
Hirano, M., Ohala, J., and Vennard, W. 1969. The function of laryngeal muscles in regulating fundamental frequency and intensity of phonation. Journal of Speech and Hearing Research, 12, 616–628.CrossRefGoogle ScholarPubMed
Hirsh, I. J. 1948a. The influence of interaural phase on interaural summation and inhibition. Journal of the Acoustical Society of America, 20, 536–544.CrossRefGoogle Scholar
Hirsh, I. J. 1948b. Binaural summation and interaural inhibition as a function of the level of the masking noise. American Journal of Psychology, 61, 205–213.CrossRefGoogle Scholar
Hirsh, I. J. 1959. Auditory perception of temporal order. Journal of the Acoustical Society of America, 31, 759–767.CrossRefGoogle Scholar
Hirsh, I. J., and Sherrick, C. E. 1961. Perceived order in different sense modalities. Journal of Experimental Psychology, 62, 423–432.CrossRefGoogle ScholarPubMed
Holcombe, A. O., Kanwisher, N., and Treisman, A. 2001. The midstream order deficit. Perception & Psychophysics, 63, 322–329.CrossRefGoogle ScholarPubMed
Holloway, C. M. 1970. Passing the strongly voiced components of noisy speech. Nature, 226, 178–179.CrossRefGoogle ScholarPubMed
Houtgast, T. 1972. Psychophysical evidence for lateral inhibition in hearing. Journal of the Acoustical Society of America, 51, 1885–1894.CrossRefGoogle ScholarPubMed
Houtgast, T. 1973. Psychophysical experiments on “tuning curves” and “two-tone inhibition.”Acustica, 29, 168–179.Google Scholar
Houtgast, T. 1974a. Lateral Suppression in Hearing. Unpublished Doctoral Dissertation, Free University, Amsterdam.
Houtgast, T. 1974b. Masking patterns and lateral inhibition. In Facts and Models in Hearing, Zwicker, E. and Terhardt, E. (eds.). Berlin: Springer-Verlag, 258–265.CrossRefGoogle Scholar
Houtgast, T. 1974c. The slopes of masking patterns. In Facts and Models in Hearing, Zwicker, E. and Terhardt, E. (eds.). Berlin: Springer-Verlag, 269–272.CrossRefGoogle Scholar
Houtgast, T. 1976. Subharmonic pitches of a pure tone at low S/N ratio. Journal of the Acoustical Society of America, 60, 405–409.CrossRefGoogle ScholarPubMed
Houtsma, A. J. M., and Goldstein, J. L. 1972. The central origin of the pitch of complex tones: Evidence from musical interval recognition. Journal of the Acoustical Society of America, 51, 520–529.CrossRefGoogle Scholar
Huey, E. B. 1968. The Psychology and Pedagogy of Reading. Cambridge, MA: MIT Press.Google Scholar
Huggins, A. W. F. 1964. Distortion of the temporal pattern of speech: Interruption and alternation. Journal of the Acoustical Society of America, 36, 1055–1064.CrossRefGoogle Scholar
Huizing, E. H., and Spoor, A. 1973. An unusual type of tinnitus. Archives of Otolaryngology, 98, 134–136.CrossRefGoogle ScholarPubMed
Hunt, H. V. 1978. Origins in Acoustics: The Science of Sound from Antiquity to the Age of Newton. New Haven, CT: Yale University Press.Google Scholar
Husain, F. T., Lozito, T. P., Ulloa, A., and Horwitz, B. 2005. Investigating the neural basis of the auditory continuity illusion. Journal of Cognitive Neuroscience, 17, 1275–1292.CrossRefGoogle ScholarPubMed
Jakobson, R., Fant, C. G. M., and Halle, M. 1963. Preliminaries to Speech Analysis: The Distinctive Features and Their Correlates. Cambridge, MA: MIT Press.Google Scholar
Javel, E. 1986. Basic response properties of auditory fibers. In Neurobiology of Hearing: The Cochlea, Altschuler, R. A., Bobbin, R. P., and Hoffman, D. W. (eds.). New York: Raven Press, 213–245.Google Scholar
Johnstone, B. M., and Boyle, A. J. F. 1967. Basilar membrane vibration examined with the Mössbauer technique. Science, 158, 389–390.CrossRefGoogle ScholarPubMed
Johnstone, B. M., Taylor, K. J., and Boyle, A. J. 1970. Mechanics of the guinea pig cochlea. Journal of the Acoustical Society of America, 47, 504–509.CrossRefGoogle Scholar
Jones, M. R. 1978. Auditory patterns: Studies in the perception of structure. In Handbook of Perception, vol. 8, Perceptual Coding, Carterette, E. C. and Friedman, M. P. (eds.). New York: Academic Press, 255–288.Google Scholar
Jongkees, L. B. W., and Veer, R. A. 1957. Directional hearing capacity in hearing disorders. Acta Oto-Laryngologica, 48, 465–474.CrossRefGoogle ScholarPubMed
Joos, M. 1948. Acoustic phonetics. Supplement to Language, 24, 1–136 (Language Monograph No. 23).
Jusczyk, P. W., Smith, L. B., and Murphy, C. 1981. The perceptual classification of speech. Perception & Psychophysics, 30, 10–23.CrossRefGoogle Scholar
Kaernbach, C. 1992. On the consistency of tapping to repeated noise. Journal of the Acoustical Society of America, 92, 788–793.CrossRefGoogle ScholarPubMed
Kaernbach, C. 1993. Temporal and spectral basis of the features perceived in repeated noise. Journal of the Acoustical Society of America, 94, 91–97.CrossRefGoogle ScholarPubMed
Kaernbach, C. 2004. The memory of noise. Experimental Psychology, 51, 240–248.CrossRefGoogle ScholarPubMed
Kashino, M., and Warren, R. M. 1996. Binaural release from temporal induction. Perception & Psychophysics, 58, 899–905.CrossRefGoogle ScholarPubMed
Kemp, D. T. 1978. Stimulated acoustic emissions from within the human auditory system. Journal of the Acoustical Society of America, 64, 1386–1391.CrossRefGoogle ScholarPubMed
Kiang, N. Y. -S. 1965. Discharge Patterns of Single Fibers in the Cat's Auditory Nerve (Research Monograph No. 35). Cambridge, MA: MIT Press.Google Scholar
Kim, D. O. 1980. Cochlear mechanics: Implications of electrophysiological and acoustical observations. Hearing Research, 2, 297–317.CrossRefGoogle ScholarPubMed
Kimura, D. 1967. Functional asymmetry of the brain in dichotic listening. Cortex, 3, 163–178.CrossRefGoogle Scholar
Kinney, J. A. S. 1961. Discrimination of auditory and visual patterns. American Journal of Psychology, 74, 529–541.CrossRefGoogle ScholarPubMed
Klatt, D. H. 1979. Speech perception: A model of acoustic-phonetic analysis and lexical access. Journal of Phonetics, 7, 279–312.Google Scholar
Kluender, K. R., Diehl, R. L., and Killeen, P. R. 1987. Japanese quail can learn phonetic categories. Science, 237, 1195–1197.CrossRefGoogle ScholarPubMed
Klumpp, R. G., and Eady, H. R. 1956. Some measurements of interaural time-difference thresholds. Journal of the Acoustical Society of America, 28, 859–860.CrossRefGoogle Scholar
Kock, W. E. 1950. Binaural localization and masking. Journal of the Acoustical Society of America, 22, 801–804.CrossRefGoogle Scholar
Kohllöffel, L. U. E. 1972a. A study of basilar membrane vibrations. I. Fuzziness detection: A new method for the analysis of microvibrations with laser light. Acustica, 27, 49–65.Google Scholar
Kohllöffel, L. U. E. 1972b. A study of basilar membrane vibrations. II. The vibratory amplitude and phase pattern along the basilar membrane (post mortem). Acustica, 27, 66–81.Google Scholar
Kohllöffel, L. U. E. 1972c. A study of basilar membrane vibrations. III. The basilar membrane frequency response curve in the living guinea pig. Acustica, 27, 82–89.Google Scholar
von Kries, J. 1962. Commentary. In Helmholtz's Treatise on Physiological Optics, vol. 3, Southall, J. P. C. (ed.). New York: Dover, p. 239. (Translated from the 3rd German edition originally published in 1910.)Google Scholar
Kryter, K. D. 1960. Speech bandwidth compression through spectrum selection. Journal of the Acoustical Society of America, 32, 547–556.CrossRefGoogle Scholar
Kuhl, P., and Miller, J. D. 1974. Discrimination of speech sounds by the chinchilla: /t/ vs. /d/ in CV syllables. Journal of the Acoustical Society of America, 56, S52 (Abstract).CrossRefGoogle Scholar
Kuhl, P., and Miller, J. D. 1978. Speech perception by the chinchilla: Identification functions for synthetic VOT stimuli. Journal of the Acoustical Society of America, 63, 905–917.CrossRefGoogle Scholar
Kuhn, G. F. 1977. Model for the interaural time differences in the azimuthal plane. Journal of the Acoustical Society of America, 62, 157–167.CrossRefGoogle Scholar
Kunov, H., and Abel, S. 1981. Effects of rise/decay time on the lateralization of interaurally delayed 1-kHz tones. Journal of the Acoustical Society of America, 69, 769–773.CrossRefGoogle ScholarPubMed
Laird, D. A., Taylor, E., and Wille, H. H. 1932. The apparent reduction of loudness. Journal of the Acoustical Society of America, 3, 393–401.CrossRefGoogle Scholar
Lane, C. E. 1925. Binaural beats. Physical Review, 26, 401–412.CrossRefGoogle Scholar
Lane, H. L., Catania, A. C., and Stevens, S. S. 1961. Voice level: Autophonic scale, perceived loudness, and effects of sidetone. Journal of the Acoustical Society of America, 33, 160–167.CrossRefGoogle Scholar
Langmuir, I., Schaefer, V. J., Ferguson, C. V., and Hennelly, E. F. 1944. A study of binaural perception of the direction of a sound source. OSRD Report No. 4079, Publ. No. 31014. (Available from the United States Department of Commerce.)
Lashley, K. S. 1951. The problem of serial order in behavior. In Cerebral Mechanisms in Behavior: The Hixon Symposium, Jeffress, L. A. (ed.). New York: Wiley, 112–136.Google Scholar
Lawrence, M. 1965. Middle ear muscle influence on binaural hearing. Archives of Otolaryngology, 82, 478–482.CrossRefGoogle ScholarPubMed
Lawrence, M., and Yantis, P. A. 1956. Onset and growth of aural harmonics in the overloaded ear. Journal of the Acoustical Society of America, 28, 852–858.CrossRefGoogle Scholar
Layton, B. 1975. Differential effects of two nonspeech sounds on phonemic restoration. Bulletin of the Psychonomic Society, 6, 487–490.CrossRefGoogle Scholar
Levelt, W. J. M. 1992. Accessing words in speech production: Stages, processes and representations. Cognition, 42, 1–22.CrossRefGoogle ScholarPubMed
Levelt, W. J. M., and Wheeldon, L. 1994. Do speakers have access to a mental syllabary?Cognition, 50, 239–269.CrossRefGoogle ScholarPubMed
Levy, E. T., and Butler, R. A. 1978. Stimulus factors which influence the perceived externalization of sound presented through headphones. Journal of Auditory Research, 18, 41–50.Google ScholarPubMed
Lewis, B., and Coles, R. 1980. Sound localization in birds. Trends in NeuroSciences, 3, 102–105.CrossRefGoogle Scholar
Liberman, A. M., Cooper, F. S., Shankweiler, D. P., and Studdert-Kennedy, M. 1967. Perception of the speech code. Psychological Review, 74, 431–461.CrossRefGoogle ScholarPubMed
Liberman, A. M., Delattre, P., and Cooper, F. S. 1952. The role of selected stimulus-variables in the perception of the unvoiced stop consonants. American Journal of Psychology, 65, 497–516.CrossRefGoogle ScholarPubMed
Liberman, A. M., and Mattingly, I. G. 1985. The motor theory of speech perception revisited. Cognition, 21, 1–36.CrossRefGoogle Scholar
Liberman, I. Y., Shankweiler, D., Fischer, F. W., and Carter, B. 1974. Reading and the awareness of linguistic segments. Journal of Experimental Child Psychology, 18, 201–212.CrossRefGoogle Scholar
Licklider, J. C. R. 1951. A duplex theory of pitch perception. Experientia, 7, 128–134.CrossRefGoogle ScholarPubMed
Licklider, J. C. R. 1954. “Periodicity” pitch and “place” pitch. Journal of the Acoustical Society of America, 26, 945 (Abstract).CrossRefGoogle Scholar
Lieberman, P. 1963. Some effects of semantic and grammatical context on the production and perception of speech. Language and Speech, 6, 172–187.CrossRefGoogle Scholar
Lim, D. J. 1980. Cochlear anatomy related to cochlear micromechanics. A review. Journal of the Acoustical Society of America, 67, 1686–1695.CrossRefGoogle ScholarPubMed
Lindsay, P. H., and Norman, D. A. 1977. Human Information Processing: An Introduction to Psychology, 2nd edition. New York: Academic Press.Google Scholar
Litovsky, R. Y., Colburn, H. S., Yost, W. A., and Guzman, S. J. 1999. The precedence effect. Journal of the Acoustical Society of America, 106, 1633–1654.CrossRefGoogle ScholarPubMed
Locke, J. 1690. Concerning Human Understanding. London: Holt. Book 2, Chapter 14, Section 13 (Reprinted Oxford: Clarendon, 1894).Google Scholar
Luce, P. A., Goldinger, S. D., Auer, E. T. J., and Vitevitch, M. S. 2000. Phonetic priming, neighborhood activation, and PARSYN. Perception & Psychophysics, 62, 615–662.CrossRefGoogle ScholarPubMed
Luce, P. A., and Pisoni, D. B. 1998. Recognizing spoken words: The neighborhood activation model. Ear and Hearing, 19, 1–36.CrossRefGoogle ScholarPubMed
Luce, P. A., Pisoni, D. B., and Goldinger, S. D. 1990. Similarity neighborhoods of spoken words. In Cognitive Models of Speech Processing: Psycholinguistic and Computational Perspectives, Altmann, G. T. M. (ed.). Cambridge, MA: MIT Press.Google Scholar
MacNeilage, P. F. 1970. Motor control of serial ordering in speech. Psychological Review, 77, 182–196.CrossRefGoogle Scholar
MacNeilage, P. F., and Ladefoged, P. 1976. The production of speech and language. In Handbook of Perception, vol. 7, Carterette, E. C. and Friedman, M. P. (eds.). New York: Academic Press, 75–120.Google Scholar
Mammano, F., and Ashmore, J. F. 1995. A laser interferometer for subnanometer measurements in the cochlea. Journal of Neuroscience Methods, 60, 89–94.CrossRefGoogle Scholar
Marks, L. E. 1978. The Unity of the Senses: Interrelations Among the Modalities. New York: Academic Press.CrossRefGoogle Scholar
Massaro, D. W. 1987. Speech Perception by Ear and Eye: A Paradigm for Psychological Inquiry. Hillsdale, NJ: Erlbaum.Google Scholar
Massaro, D. W., and Cohen, M. M. 1995. Perceiving talking faces. Current Directions in Psychological Science, 4, 104–109.CrossRefGoogle Scholar
Matsumoto, M. 1897. Researches on acoustic space. Studies from the Yale Psychological Laboratory, 5, 1–75.Google Scholar
Maxfield, J. P. 1930. Acoustic control of recording for talking motion pictures. Journal of the Society of Motion Picture Engineers, 14, 85–95.CrossRefGoogle Scholar
Maxfield, J. P. 1931. Some physical factors affecting the illusion in sound motion pictures. Journal of the Acoustical Society of America, 3, 69–80.CrossRefGoogle Scholar
McClelland, J. L. and Elman, J. L. 1986. The TRACE model of speech perception. Cognitive Psychology, 18, 1–86.CrossRefGoogle ScholarPubMed
McFadden, D., and Pasanen, E. G. 1975. Binaural beats at high frequencies. Science, 190, 394–396.CrossRefGoogle ScholarPubMed
McGurk, H., and MacDonald, J. 1976. Hearing lips and seeing voices. Nature, 264, 746–748.CrossRefGoogle ScholarPubMed
McKenna, T. M., Weinberger, N. M., and Diamond, D. M. 1989. Responses of single auditory cortical neurons to tone sequences. Brain Research, 481, 142–153.CrossRefGoogle ScholarPubMed
Meddis, R., and Hewitt, M. J. 1991a. Virtual pitch and phase sensitivity of a computer model of the auditory periphery. I. Pitch identification. Journal of the Acoustical Society of America, 89, 2866–2882.CrossRefGoogle Scholar
Meddis, R., and Hewitt, M. J. 1991b. Virtual pitch and phase sensitivity of a computer model of the auditory periphery. II. Phase sensitivity. Journal of the Acoustical Society of America, 89, 2883–2894.CrossRefGoogle Scholar
Meringer, R., and Mayer, C. 1895. Versprechen und Verlesen: Eine psychologische-linguistische Studie. Stuttgart: Göschensche Verlagsbuschhandlung.Google Scholar
Mershon, D. H., and King, L. E. 1975. Intensity and reverberation as factors in the auditory perception of egocentric distance. Perception & Psychophysics, 18, 409–415.CrossRefGoogle Scholar
Meyer, M. F. 1957. Aural harmonics are fictitious. Journal of the Acoustical Society of America, 29, 749.CrossRefGoogle Scholar
Micheyl, C., Carlyon, R. P., Shtyrov, Y., Hauk, O., Dodson, T., and Pullvermüller, F. 2003. The neurophysiological basis of the auditory continuity illusion: A mismatch negativity study. Journal of Cognitive Neuroscience, 15, 747–758.CrossRefGoogle ScholarPubMed
Miller, G. A. 1947. Sensitivity to changes in the intensity of white noise and its relation to masking and loudness. Journal of the Acoustical Society of America, 19, 609–619.CrossRefGoogle Scholar
Miller, G. A. 1962. Decision units in the perception of speech. IRE Transactions on Information Theory, 8, 81–83.CrossRefGoogle Scholar
Miller, G. A. 1991. The Science of Words. New York: Freeman.Google Scholar
Miller, G. A., and Licklider, J. C. R. 1950. The intelligibility of interrupted speech. Journal of the Acoustical Society of America, 22, 167–173.CrossRefGoogle Scholar
Miller, J. L., and Jusczyk, P. W. 1989. Seeking the neurobiological bases of speech perception. Cognition, 33, 111–137.CrossRefGoogle ScholarPubMed
Miller, R. L. 1947. Masking effects of periodically pulsed tones as a function of time and frequency. Journal of the Acoustical Society of America, 19, 798–807.CrossRefGoogle Scholar
Mills, A. W. 1958. On the minimum audible angle. Journal of the Acoustical Society of America, 30, 237–246.CrossRefGoogle Scholar
Mills, A. W. 1972. Auditory localization. In Foundations of Modern Auditory Theory, vol. 2, Tobias, J. V. (ed.). New York: Academic Press, 303–348.Google Scholar
Mohrmann, K. 1939. Lautheitskonstanz im Entfernungswechsel. Zeitschrift für Psychologie, 145, 145–199.Google Scholar
Møller, A. 2006. Hearing: Anatomy, Physiology, and Disorders of the Auditory System, 2nd edition. San Diego, CA: Academic Press.Google Scholar
Monroe, M. 1932. Children who Cannot Read. Chicago, IL: University of Chicago Press.Google Scholar
Moore, B. C. J. 1974. Relation between the critical bandwidth and the frequency-difference limen. Journal of the Acoustical Society of America, 55, 359.CrossRefGoogle ScholarPubMed
Moore, B. C. J. 2003. An introduction to the Psychology of Hearing, 5th edition. San Diego, CA: Academic Press.Google Scholar
Moore, M. W., and Bliss, J. C. 1975. The Optacon reading system. Education of the Visually Handicapped, 7, 15–21.Google Scholar
Moore, T. J., and Mundie, J. R. 1971. Specification of the minimum number of glottal pulses necessary for reliable identification of selected speech sounds. Aerospace Medical Research Laboratory Report, TR-70–104.Google Scholar
Morais, J., Cary, L., Alegria, J., and Bertelson, P. 1979. Does awareness of speech as a sequence of phones arise spontaneously?Cognition, 7, 323–331.CrossRefGoogle Scholar
Morais, J., and Kolinsky, R. 1994. Perception and awareness in phonological processing: The case of the phoneme. Cognition, 50, 287–297.CrossRefGoogle ScholarPubMed
Müsch, H., and Buus, S. 2001a. Using statistical decision theory to predict speech intelligibility. I. Model structure. Journal of the Acoustical Society of America, 109, 2896–2909.CrossRefGoogle Scholar
Müsch, H., and Buus, S. 2001b. Using statistical decision theory to predict speech intelligibility. II. Measurement and prediction of consonant-discrimination performance. Journal of the Acoustical Society of America, 109, 2910–2920.CrossRefGoogle Scholar
Näätänen, R., and Winkler, I. 1999. The concept of auditory stimulus representation in cognitive neuroscience. Psychological Bulletin, 125, 826–859.CrossRefGoogle ScholarPubMed
Necker, L. A. 1832. Observations on some remarkable phenomena seen in Switzerland; and on an optical phenomenon which occurs on viewing of a crystal or geometrical solid. Philosophical Magazine (Series 1), 3, 239–337.Google Scholar
Negus, V. E. 1949. The Comparative Anatomy and Physiology of the Larynx. New York: Grune & Stratton.Google Scholar
Neisser, U., and Hirst, W. 1974. Effect of practice on the identification of auditory sequences. Perception & Psychophysics, 15, 391–398.CrossRefGoogle Scholar
Newton, I. 1730. Opticks, or a Treatise of the Reflections, Refractions, Inflections & Colours of Light, 4th edition. London (Reprinted New York: Dover, 1952).Google Scholar
van Noorden, L. P. A. S. 1975. Temporal Coherence in the Perception of Tone Sequences. Unpublished Doctoral Dissertation, Eindhoven University of Technology.
Noorden, L. P. A. S. 1977. Minimum differences of level and frequency for perceptual fission of tone sequences ABAB. Journal of the Acoustical Society of America, 61, 1041–1045.CrossRefGoogle Scholar
Nordmark, J. O. 1968. Mechanisms of frequency discrimination. Journal of the Acoustical Society of America, 44, 1533–1540.CrossRefGoogle ScholarPubMed
Norris, D. 1994. Shortlist: A connectionist model of continuous speech recognition. Cognition, 52, 189–234.CrossRefGoogle Scholar
Norris, D., McQueen, J. M., and Cutler, A. 2000. Merging information in speech recognition: Feedback is never necessary. Behavioral and Brain Sciences, 23, 299–325.CrossRefGoogle ScholarPubMed
Obusek, C. J., and Warren, R. M. 1973. Relation of the verbal transformation and the phonemic restoration effects. Cognitive Psychology, 5, 97–107.CrossRefGoogle Scholar
Oertel, D. 1999. The role of timing in the brain stem auditory nuclei of vertebrates. Annual Review of Physiology, 61, 497–519.CrossRefGoogle ScholarPubMed
Ohm, G. S. 1843. Ueber die Definition des Tones, nebst daran geknüpfter Theorie der Sirene und ähnlicher tonbildender Vorrichtungen. Annalen der Physik und Chemie, 59, 513–565.CrossRefGoogle Scholar
Ohm, G. S. 1844. Noch ein Paar Worte über die Definition des Tones. Annalen der Physik und Chemie, 62, 1–18.CrossRefGoogle Scholar
Öhman, S. E. G. 1966. Perception of segments of VCCV utterances. Journal of the Acoustical Society of America, 40, 979–988.CrossRefGoogle ScholarPubMed
Opheim, O., and Flottorp, G. 1955. The aural harmonics in normal and pathological hearing. Acta Oto-Laryngologica, 45, 513–531.CrossRefGoogle ScholarPubMed
Ortmann, O. 1926. On the melodic relativity of tones. Psychological Monographs, 35 (1, No. 162).CrossRefGoogle Scholar
Paivio, A. 1971. Imagery and Verbal Processes. New York: Holt, Rinehart & Winston.Google Scholar
Paivio, A., and Csapo, K. 1969. Concrete-image and verbal memory codes. Journal of Experimental Psychology, 80, 279–285.CrossRefGoogle Scholar
Patterson, J. H., and Green, D. M. 1970. Discrimination of transient signals having identical energy spectra. Journal of the Acoustical Society of America, 48, 894–905.CrossRefGoogle ScholarPubMed
Patterson, R. D. 1969. Noise masking of a change in residue pitch. Journal of the Acoustical Society of America, 45, 1520–1524.CrossRefGoogle ScholarPubMed
Patterson, R. D., and Wightman, F. L. 1976. Residue pitch as a function of component spacing. Journal of the Acoustical Society of America, 59, 1450–1459.CrossRefGoogle ScholarPubMed
Peake, W. T., and Ling, A. Jr. 1980. Basilar-membrane motion in the alligator lizard: Its relation to tonotopic organization and frequency selectivity. Journal of the Acoustical Society of America, 67, 1736–1745.CrossRefGoogle ScholarPubMed
Peterson, G. E. 1946. Influence of voice quality. Volta Review, 48, 640–641.Google Scholar
Peterson, G. E., and Barney, H. L. 1952. Control methods used in a study of the vowels. Journal of the Acoustical Society of America, 24, 115–184.CrossRefGoogle Scholar
Petkov, C. I., O'Connor, K. N., and Sutter, M. I. 2003. Illusory sound perception in Macaque monkeys. Journal of Neuroscience, 23, 9155–9161.CrossRefGoogle ScholarPubMed
Philipchalk, R., and Rowe, F. J. 1971. Sequential and nonsequential memory for verbal and nonverbal auditory stimuli. Journal of Experimental Psychology, 91, 341–343.CrossRefGoogle ScholarPubMed
Pickles, J. O. 1988. An Introduction to the Physiology of Hearing, 2nd edition. San Diego, CA: Academic Press.Google Scholar
Pierce, A. H. 1901. Studies in Auditory and Visual Space Perception. New York: Longmans, Green.Google Scholar
Piston, W. 1947. Counterpoint. New York: Norton.Google Scholar
Plack, C. J., Oxenham, A. J., Fay, R., and Popper, A. N. (eds.) 2005. Pitch: Neural Coding and Perception. New York: Springer-Verlag.
Plateau, J. 1872. Sur la mesure des sensations physiques, et sur la loi qui lie l'intensité de ces sensations à l'intensité de la cause excitante. Bulletins de l'Académie Royale des Sciences, des Lettres et des Beaux-Arts de Belgique, 33, 376–388 (Série 2).Google Scholar
Plenge, G. 1974. On the differences between localization and lateralization. Journal of the Acoustical Society of America, 56, 944–951.CrossRefGoogle ScholarPubMed
Plomp, R. 1964. The ear as a frequency analyzer. Journal of the Acoustical Society of America, 36, 1628–1636.CrossRefGoogle Scholar
Plomp, R. 1966. Experiments on Tone Perception. Unpublished Doctoral Dissertation, University of Utrecht.
Plomp, R. 1967a. Pitch of complex tones. Journal of the Acoustical Society of America, 41, 1526–1533.CrossRefGoogle Scholar
Plomp, R. 1967b. Beats of mistuned consonances. Journal of the Acoustical Society of America, 42, 462–474.CrossRefGoogle Scholar
Plomp, R. 1968. Pitch, timbre, and hearing theory. International Audiology, 7, 322–344.CrossRefGoogle Scholar
Plomp, R. 1976. Aspects of Tone Sensation: A Psychophysical Study. New York: Academic Press.Google Scholar
Plomp, R. 1981. Perception of sound signals at low signal-to-noise ratio. In Auditory and Visual Pattern Recognition, Getty, D. J. and Howard, J. H. (eds.). Hillsdale, NJ: Erlbaum, 27–35.Google Scholar
Plomp, R. 2002. The Intelligent Ear. Mahwah, NJ: Erlbaum (see Chapter 3 for a discussion on sequence perception).
Plomp, R., and Levelt, W. J. M. 1965. Tonal consonance and critical bandwidth. Journal of the Acoustical Society of America, 38, 548–560.CrossRefGoogle ScholarPubMed
Polanyi, M. 1958. Personal Knowledge. Chicago, IL: Chicago University Press.Google Scholar
Polanyi, M. 1968. Logic and psychology. American Psychologist, 23, 27–43.CrossRefGoogle Scholar
Pollack, I. 1952. On the measurement of the loudness of speech. Journal of the Acoustical Society of America, 24, 323–324.CrossRefGoogle Scholar
Potter, R. K., Kopp, G. A., and Kopp, H. G. 1947. Visible Speech. New York: Van Nostrand (Reprinted New York: Dover, 1966).Google Scholar
Poulton, E. C., and Freeman, P. R. 1966. Unwanted asymmetrical transfer effects with balanced experimental designs. Psychological Bulletin, 66, 1–8.CrossRefGoogle ScholarPubMed
Powers, G. L., and Wilcox, J. C. 1977. Intelligibility of temporally interrupted speech with and without intervening noise. Journal of the Acoustical Society of America, 61, 195–199.CrossRefGoogle ScholarPubMed
Pravdich-Neminsky, V. V. 1913. Ein Versuch der Registrierung der elektrischen Gehirnerscheinungen (in German). Zentralblatt Physiology, 27, 951–960.Google Scholar
Preusser, D. 1972. The effect of structure and rate on the recognition and description of auditory temporal patterns. Perception & Psychophysics, 11, 233–240.CrossRefGoogle Scholar
Probst, R., Lonsbury-Martin, B. L., and Martin, G. K. 1991. A review of otoacoustic emissions. Journal of the Acoustical Society of America, 89, 2027–2067.CrossRefGoogle ScholarPubMed
Puel, J. L. 1995. Chemical synaptic transmission in the cochlea. Progress in Neurobiology, 47, 449–476.CrossRefGoogle ScholarPubMed
Pujol, R., Lenoir, M., Ladrech, S., Tribillac, F., and Rebillard, G. 1992. Correlation between the length of the outer hair cells and the frequency coding of the cochlea. In Auditory Physiology and Perception, Cazals, Y., Horner, K., and Demany, L. (eds.). Oxford: Pergamon, 45–52.Google Scholar
Rasmussen, G. L. 1946. The olivary peduncle and other fiber projections of the superior olivary complex. Journal of Comparative Neurology, 84, 141–219.CrossRefGoogle ScholarPubMed
Rasmussen, G. L. 1953. Further observations of the efferent cochlear bundle. Journal of Comparative Neurology, 99, 61–74.CrossRefGoogle ScholarPubMed
Rayleigh, Lord 1907. On our perception of sound direction. Philosophical Magazine, 13, 214–232.Google Scholar
Read, C. A., Zhang, Y., Nie, H., and Ding, B. 1986. The ability to manipulate speech sounds depends on knowing alphabetic writing. Cognition, 24, 31–44.CrossRefGoogle ScholarPubMed
Reisz, R. R. 1928. Differential sensitivity of the ear for pure tones. Physical Review, 31, 867–875.CrossRefGoogle Scholar
Relkin, E. M., and Ducet, J. R. 1997. Is loudness simply proportional to the auditory nerve spike count?Journal of the Acoustical Society of America, 101, 2735–2740.CrossRefGoogle ScholarPubMed
Remez, R. E. 1979. Adaptation of the category boundary between speech and nonspeech: A case against feature detectors. Cognitive Psychology, 11, 38–57.CrossRefGoogle ScholarPubMed
Remez, R. E., Rubin, P. E., Berns, S. M., Pardo, J. S., and Lang, J. M. 1994. On the perceptual organization of speech. Psychological Review, 101, 129–156.CrossRefGoogle Scholar
Repp, B. H. 1992. Perceptual restoration of a “missing” speech sound: Auditory induction or illusion. Perception & Psychophysics, 51, 14–32.CrossRefGoogle ScholarPubMed
Rhode, W. S. 1971. Observations of the vibration of the basilar membrane in squirrel monkeys using the Mössbauer technique. Journal of the Acoustical Society of America, 49, 1218–1231.CrossRefGoogle ScholarPubMed
Rhode, W. S. 1973. An investigation of post-mortem cochlear mechanics using the Mössbauer effect. In Basic Mechanisms in Hearing, Møller, A. R. M. (ed.). New York: Academic Press, 49–67.Google Scholar
Rhode, W. S., and Robles, L. 1974. Evidence from Mössbauer experiments for non-linear vibration in the cochlea. Journal of the Acoustical Society of America, 55, 588–596.CrossRefGoogle Scholar
Richardson, L. F., and Ross, J. S. 1930. Loudness and telephone current. Journal of General Psychology, 3, 288–306.CrossRefGoogle Scholar
Riesen, A. H. (ed.) 1975. The Developmental Neuropsychology of Sensory Deprivation. New York: Academic Press.Google Scholar
Ritsma, R. J. 1962. Existence region of the tonal residue. I. Journal of the Acoustical Society of America, 34, 1224–1229.CrossRefGoogle Scholar
Ritsma, R. J. 1963. Existence region of the tonal residue. II. Journal of the Acoustical Society of America, 35, 1241–1245.CrossRefGoogle Scholar
Ritsma, R. J. 1970. Periodicity detection. In Frequency Analysis and Periodicity Detection in Hearing, Plomp, R. and Smoorenburg, G. F. (eds.). Leiden: Sijthoff, 250–266.Google Scholar
Roffler, S. K., and Butler, R. A. 1968. Factors that influence the localization of sound in the vertical plane. Journal of the Acoustical Society of America, 43, 1255–1259.CrossRefGoogle ScholarPubMed
Rose, J. E., Brugge, J. F., Anderson, D. J., and Hind, J. E. 1967. Phase-locked response to low-frequency tones in single auditory nerve fibers of the squirrel monkey. Journal of Neurophysiology, 30, 769–793.CrossRefGoogle ScholarPubMed
Rose, J. E., Hind, J. E., Anderson, D. J., and Brugge, J. F. 1971. Some effects of stimulus intensity on response of auditory nerve fibers in the squirrel monkey. Journal of Neurophysiology, 34, 685–699.CrossRefGoogle ScholarPubMed
Rosen, S. M. 1979. Range and frequency effects in consonant categorization. Journal of Phonetics, 7, 393–402.Google Scholar
Rosen, S. M., Fourcin, A. J., and Moore, B. C. J. 1981. Voice pitch as an aid to lipreading. Nature, 291, 150–152.CrossRefGoogle ScholarPubMed
Roth, G. L., Kochhar, R. K., and Hind, J. E. 1980. Interaural time differences: Implications regarding the neurophysiology of sound localization. Journal of the Acoustical Society of America, 68, 1643–1651.CrossRefGoogle ScholarPubMed
Rowe, E. J., and Cake, L. J. 1977. Retention of order information for sounds and words. Canadian Journal of Psychology, 31, 14–23.CrossRefGoogle Scholar
Rowley, R. R., and Studebaker, G. A. 1969. Monaural loudness-intensity relationships for a 1,000-Hz tone. Journal of the Acoustical Society of America, 45, 1186–1192.CrossRefGoogle Scholar
Royer, F. L., and Garner, W. R. 1970. Perceptual organization of nine-element auditory temporal patterns. Perception & Psychophysics, 7, 115–120.CrossRefGoogle Scholar
Rozin, P., Poritsky, S., and Sotsky, R. 1971. American children with reading problems can easily learn to read English represented by Chinese characters. Science, 171, 1264–1267.CrossRefGoogle ScholarPubMed
Sachs, C. 1953. Rhythm and Tempo. New York: Norton.Google Scholar
Sams, M., Hari, R., Rif, J., and Knuutila, J. 1993. The human auditory trace persists about 10s: Neuromagnetic evidence. Journal of Cognitive Neurosciences, 5, 363–370.CrossRefGoogle Scholar
Samuel, A. G. 1987. Lexical uniqueness effects on phonemic restoration. Journal of Memory and Language, 26, 36–56.CrossRefGoogle Scholar
Sandel, T. T., Teas, D. C., Feddersen, W. E., and Jeffress, L. A. 1955. Localization of sound from single and paired sources. Journal of the Acoustical Society of America, 27, 842–852.CrossRefGoogle Scholar
Sasaki, T. 1980. Sound restoration and temporal localization of noise in speech and music sounds. Tohoku Psychologica Folia, 39, 79–88.Google Scholar
Savin, H. B. 1972. What the child knows about speech when he starts to learn to read. In Language by Ear and by Eye, Kavanagh, J. F. and Mattingly, I. G. (eds.). Cambridge, MA: MIT Press, 319–329.Google Scholar
Savin, H. B., and Bever, T. G. 1970. The nonperceptual reality of the phoneme. Journal of Verbal Learning and Verbal Behavior, 9, 295–302.CrossRefGoogle Scholar
Sawusch, J. R., and Nusbaum, H. C. 1979. Contextual effects in vowel perception. l: Anchor-induced contrast effects. Perception & Psychophysics, 25, 292–302.CrossRefGoogle Scholar
Scharf, B. 1970. Critical bands. In Foundations of Modern Auditory Theory, vol. I, Tobias, J. V. (ed.). New York: Academic Press, 157–202.Google Scholar
Schouten, J. F. 1938. The perception of subjective tones. K Akademie van Wetenschappen, Amsterdam. Afdeeling Natuurkunde (Proceedings), 41, 1086–1093.Google Scholar
Schouten, J. F. 1939. Synthetic sound. Philips Technical Review, 4, 153–180.Google Scholar
Schouten, J. F. 1940a. The residue, a new component in subjective sound analysis. K. Akademie van Wetenschappen, Amsterdam. Afdeeling Natuurkunde (Proceedings), 43, 356–365.Google Scholar
Schouten, J. F. 1940b. The perception of pitch. Philips Technical Review, 5, 286–294.Google Scholar
Schouten, J. F. 1940c. The residue and the mechanism of hearing. K. Akademie van Wetenschappen, Amsterdam. Afdeeling Natuurkunde (Proceedings), 43, 991–999.Google Scholar
Schouten, J. F. 1970. The residue revisited. In Frequency Analysis and Periodicity Detection in Hearing, Plomp, R. and Smoorenburg, G. F. (eds.). Leiden: Sijthoff, 41–58.Google Scholar
Schouten, J. F., Ritsma, R. J., and Cardozo, B. L. 1962. Pitch of the residue. Journal of the Acoustical Society of America, 34, 1418–1424.CrossRefGoogle Scholar
Schreiner, C., Gottlob, D., and Mellert, V. 1977. Influences of the pulsation threshold method on psychoacoustical tuning curves. Acustica, 37, 29–36.Google Scholar
Schröger, E. 1996. Interaural time and level differences: Integrated or separated processing?Hearing Research, 96, 191–198.CrossRefGoogle ScholarPubMed
Schultz, D. P. 1965. Sensory Restriction: Effects on Behavior. New York: Academic Press.Google Scholar
Searle, C. L., Jacobson, J. Z., and Rayment, S. G. 1979. Stop consonant discrimination based on human audition. Journal of the Acoustical Society of America, 65, 799–809.CrossRefGoogle ScholarPubMed
Seebeck, A. 1841. Beobachtungen über einige Bedingungen der Enstehung von. Tönen. Annalen der Physik und Chemie, 53, 417–437.CrossRefGoogle Scholar
Seebeck, A. 1843. Ueber die Sirene. Annalen der Physik und Chemie, 60, 449–481.CrossRefGoogle Scholar
Seebeck, A. 1844. Ueber die Definition des Tones. Annalen der Physik und Chemie, 63, 353–368.CrossRefGoogle Scholar
Sellick, P. M., Patuzzi, R., and Johnstone, B. M. 1982. Measurement of basilar membrane motion in the guinea pig using the Mössbauer technique. Journal of the Acoustical Society of America, 72, 131–141.CrossRefGoogle ScholarPubMed
Semal, C., and Demany, L. 1990. The upper limit of “musical” pitch. Music Perception, 8, 165–176.CrossRefGoogle Scholar
Severance, E., and Washburn, M. F. 1907. Minor studies from the psychological laboratory of Vassar College. IV. The loss of associative power in words after long fixation. American Journal of Psychology, 18, 182–186.CrossRefGoogle Scholar
Shankweiler, D., and Liberman, I. Y. 1972. Misreading: A search for causes. In Language by Ear and by Eye, Kavanaugh, J. F. and Mattingly, I. G. (eds.). Cambridge, MA: MIT Press, 293–317.Google Scholar
Shattuck, S. R. 1975. Speech Errors and Sentence Production. Unpublished Doctoral Dissertation, Massachusetts Institute of Technology.
Shaxby, J. H., and Gage, F. H. 1932. Studies in the localisation of sound. Medical Research Council Special Report, Series No. 166, 1–32.Google Scholar
Sherman, G. L. 1971. The Phonemic Restoration Effect: An Insight into the Mechanisms of Speech Perception. Unpublished Master's Thesis, University of Wisconsin-Milwaukee.
Shigenaga, S. 1965. The constancy of loudness and of acoustic distance. Bulletin of the Faculty of Literature, Kyushu University, 9, 289–333.Google Scholar
Shore, S. E., Godfrey, D. A., Helfert, R. H., Altschuler, R. A., and Bledsoe, S. C. Jr. 1992. Connections between the cochlea nuclei in guinea pig. Hearing Research, 62, 16–26.CrossRefGoogle Scholar
Shriberg, E. E. 1992. Perceptual restoration of filtered vowels with added noise. Language and Speech, 35, 127–136.CrossRefGoogle ScholarPubMed
Shutt, C. E. 1898. Experiments in judging the distance of sound. Kansas University Quarterly, 7A, 1–8.Google Scholar
Siegel, R. J. 1965. A replication of the mel scale of pitch. American Journal of Psychology, 78, 615–620.CrossRefGoogle Scholar
Silverman, S. R., and Hirsh, I. J. 1955. Problems related to the use of speech in clinical audiometry. Annals of Otology, Rhinology, and Laryngology, 64, 1234–1245.CrossRefGoogle ScholarPubMed
Simmons, F. B. 1964. Perceptual theories of middle ear function. Annals of Otology, Rhinology, and Laryngology, 73, 724–740.CrossRefGoogle Scholar
Simon, H. J., and Studdert-Kennedy, M. 1978. Selective anchoring and adaptation of phonetic and nonphonetic continua. Journal of the Acoustical Society of America, 64, 1338–1357.CrossRefGoogle ScholarPubMed
Sinnott, J. M., Beecher, M. D., Moody, D. B., and Stebbins, W. C. 1976. Speech sound discrimination by monkeys and humans. Journal of the Acoustical Society of America, 60, 687–695.CrossRefGoogle ScholarPubMed
Small, A. M. Jr., and Campbell, R. A. 1961. Masking of pulsed tones by bands of noise. Journal of the Acoustical Society of America, 33, 1570–1576.CrossRefGoogle Scholar
Smith, R. L. 1988. Encoding of sound intensity by auditory neurons. In Auditory Function: Neurological Bases of Hearing, Edelman, G. M., Gall, W. E., and Cowan, W. M. (eds.). New York: Wiley, 243–274.Google Scholar
Sorkin, R. D. 1987. Temporal factors in the discrimination of tonal sequences. Journal of the Acoustical Society of America, 82, 1218–1226.CrossRefGoogle ScholarPubMed
Sperling, G., and Reeves, G. 1980. Measuring the reaction time of a shift of visual attention. In Attention and Performance VIII, Nickerson, R. S. (ed.). Hillsdale, NJ: Erlbaum, 347–360.Google Scholar
Spiegel, M. F. 1981. Thresholds for tones in maskers of various bandwidths as a function of signal frequency. Journal of the Acoustical Society of America, 69, 791–795.CrossRefGoogle ScholarPubMed
Springer, S. P., and Deutsch, G. 1993. Left Brain, Right Brain, 4th edition. New York: Freeman.Google Scholar
Starch, D., and Crawford, A. L. 1909. The perception of the distance of sound. Psychological Review, 16, 427–430.CrossRefGoogle Scholar
Starr, A., and Don, M. 1988. Brain potentials evoked by acoustic stimuli. In Human Event-Related Potentials, vol. 3, Picton, T. W. (ed.). Amsterdam: Elsevier, 97–157.Google Scholar
Steeneken, H. J. M., and Houtgast, T. 1980. A physical method for measuring speech - transmission quality. Journal of the Acoustical Society of America, 67, 318–326.CrossRefGoogle ScholarPubMed
Steeneken, H. J. M., and Houtgast, T. 2002. Phoneme-group specific octave-band weights in predicting speech intelligibility. Speech Communication, 38, 399–411.CrossRefGoogle Scholar
Stein, B. E., and Meredith, M. A. 1993. The Merging of the Senses. Cambridge, MA: MIT Press.Google Scholar
Steinberg, J. C., and Snow, W. B. 1934. Physical factors. Bell System Technical Journal, 13, 245–258.CrossRefGoogle Scholar
Stevens, K. N. 1960. Toward a model of speech recognition. Journal of the Acoustical Society of America, 32, 47–55.CrossRefGoogle Scholar
Stevens, K. N. 1971. The role of rapid spectrum changes in the production and perception of speech. In Form and Substance: Festschrift for Eli Fischer-Jørgensen, Hammerlich, L. L. and Jakobson, R. (eds.). Copenhagen: Akademisk Forlag, 95–101.Google Scholar
Stevens, K. N., and Blumstein, S. E. 1981. The search for invariant acoustic correlates of phonetic features. In Perspectives on the Study of Speech, Eimas, P. D. and Miller, J. L. (eds.). Hillsdale, NJ: Erlbaum, 1–38.Google Scholar
Stevens, K. N., and Halle, M. 1967. Remarks on analysis by synthesis and distinctive features. In Models for the Perception of Speech and Visual Form, Wathen-Dunn, W. (ed.). Cambridge, MA: MIT Press, 88–102.Google Scholar
Stevens, S. S. 1936. A scale for the measurement of a psychological magnitude: Loudness. Psychological Review, 43, 405–416.CrossRefGoogle Scholar
Stevens, S. S. 1955. The measurement of loudness. Journal of the Acoustical Society of America, 27, 815–829.CrossRefGoogle Scholar
Stevens, S. S. 1961. The psychophysics of sensory function. In Sensory Communication, Rosenblith, W. A. (ed.). New York: Wiley, 1–33.Google Scholar
Stevens, S. S. 1972. Perceived level of noise by Mark VII and decibels (E). Journal of the Acoustical Society of America, 51, 575–601.CrossRefGoogle Scholar
Stevens, S. S. 1975. Psychophysics: Introduction to its Perceptual, Neural and Social Prospects. Stevens, G. (ed.). New York: Wiley.Google Scholar
Stevens, S. S., and Davis, H. 1938. Hearing, its Psychology and Physiology. New York: Wiley.Google Scholar
Stevens, S. S., and Guirao, M. 1962. Loudness, reciprocality and partition scales. Journal of the Acoustical Society of America, 34, 1466–1471.CrossRefGoogle Scholar
Stevens, S. S., and Newman, E. B. 1936. The localization of actual sources of sound. American Journal of Psychology, 48, 297–306.CrossRefGoogle Scholar
Stevens, S. S., Volkmann, J., and Newman, E. B. 1937. A scale for the measurement of the psychological magnitude pitch. Journal of the Acoustical Society of America, 8, 185–190.CrossRefGoogle Scholar
Stuart, A., Kalinowski, J., Rastatter, M. P., and Lynch, K. 2002. Effect of delayed auditory feedback on normal speakers at two speech rates. Journal of the Acoustical Society of America, 111, 2237–2241.CrossRefGoogle ScholarPubMed
Stuhlman, O. Jr. 1943. An Introduction to Biophysics. New York: Wiley.Google Scholar
Sugita, Y. 1997. Neuronal correlates of auditory induction in the cat cortex. Cognitive Neuroscience and Neuropsychology, NeuroReport, 8, 1155–1159.Google ScholarPubMed
Supa, M., Cotzin, M., and Dallenbach, K. M. 1944. “Facial vision”: The perception of obstacles by the blind. American Journal of Psychology, 57, 133–183.CrossRefGoogle Scholar
Swisher, L., and Hirsh, I. J. 1972. Brain damage and the ordering of two temporally successive stimuli. Neuropsychologia, 10, 137–152.CrossRefGoogle ScholarPubMed
Tallal, P., and Piercy, M. 1973. Defects of non-verbal auditory perception in children with developmental aphasia. Nature, 241, 468–469.CrossRefGoogle ScholarPubMed
Talley, C. H. 1937. A comparison of conversational and audience speech. Archives of Speech, 2, 28–40.Google Scholar
Teranishi, R. 1977. Critical rate for identification and information capacity in hearing system. Journal of the Acoustical Society of Japan, 33, 136–143.Google Scholar
Terhardt, E. 1974. Pitch, consonance, and harmony. Journal of the Acoustical Society of America, 55, 1061–1069.CrossRefGoogle Scholar
Thomas, I. B., Cetti, R. P., and Chase, P. W. 1971. Effect of silent intervals on the perception of temporal order for vowels. Journal of the Acoustical Society of America, 49, 85 (Abstract).CrossRefGoogle Scholar
Thomas, I. B., Hill, P. B., Carroll, F. S., and Garcia, B. 1970. Temporal order in the perception of vowels. Journal of the Acoustical Society of America, 48, 1010–1013.CrossRefGoogle ScholarPubMed
Thompson, R. K. R. 1976. Performance of the Bottlenose Dolphin (Tursiops truncatus) on Delayed Auditory Sequences and Delayed Auditory Successive Discriminations. Unpublished Doctoral Dissertation, University of Hawaii.
Thompson, S. P. 1882. On the function of two ears in the perception of space. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science (Series 5), 13, 406–416.CrossRefGoogle Scholar
Thurlow, W. R. 1957. An auditory figure-ground effect. American Journal of Psychology, 70, 653–654.CrossRefGoogle ScholarPubMed
Thurlow, W. R. 1963. Perception of low auditory pitch: A multicue, mediation theory. Psychological Review, 70, 461–470.CrossRefGoogle ScholarPubMed
Thurlow, W. R., and Elfner, L. F. 1959. Continuity effects with alternately sounding tones. Journal of the Acoustical Society of America, 31, 1337–1339.CrossRefGoogle Scholar
Thurlow, W. R., and Erchul, W. P. 1978. Understanding continuity effects with complex stimuli. Journal of the American Auditory Society, 4, 113–116.Google ScholarPubMed
Thurlow, W. R., and Jack, C. E. 1973. Certain determinants of the “ventriloquism” effect. Perceptual and Motor Skills, 36, 1171–1184.CrossRefGoogle ScholarPubMed
Thurlow, W. R., and Marten, A. E. 1962. Perception of steady and intermittent sound with alternating noise-burst stimuli. Journal of the Acoustical Society of America, 34, 1853–1858.CrossRefGoogle Scholar
Thurlow, W. R., and Rosenthal, T. M. 1976. Further study of the existence regions for the “ventriloquism” effect. Journal of the American Audiological Society, 1, 280–286.Google ScholarPubMed
Titchener, E. B. 1915. A Beginner's Psychology. New York: Macmillan.Google Scholar
Tobias, J. V., and Schubert, E. D. 1959. Effective onset duration of auditory stimuli. Journal of the Acoustical Society of America, 31, 1595–1605.CrossRefGoogle Scholar
Tonndorf, J. 1960. Shearing motion in scala media of cochlear models. Journal of the Acoustical Society of America, 32, 238–244.CrossRefGoogle Scholar
Tonndorf, J. 1970. Cochlear mechanics and hydro-dynamics. In Foundations of Modern Auditory Theory, vol. I, Tobias, J. V. (ed.). New York: Academic Press, 203–254.Google Scholar
Tonndorf, J., and Khanna, S. M. 1972. Tympanic-membrane vibrations in human cadaver ears studied by time-averaged holography. Journal of the Acoustical Society of America, 52, 1221–1233.CrossRefGoogle ScholarPubMed
Vernon, J. 1963. Inside the Black Room. New York: Potter.Google Scholar
Verschuure, J. 1978. Auditory Excitation Patterns: The Significance of the Pulsation Threshold Method for the Measurement of Auditory Nonlinearity. Unpublished Doctoral Dissertation, Erasmus University, Rotterdam.
Verschuure, J., Rodenburg, M., and Maas, A. J. J. 1974. Frequency selectivity and temporal effects of the pulsation threshold method. In Proceedings of the 8th International Congress on Acoustics (London), 1, 131.Google Scholar
Vicario, G. 1960. L'effetto tunnel acustico. Rivista di Psicologia, 54, 41–52.Google Scholar
Voldrich, L. 1978. Mechanical properties of basilar membrane. Acta Oto-Laryngologica, 86, 331–335.CrossRefGoogle ScholarPubMed
Ward, W. D. 1954. Subjective musical pitch. Journal of the Acoustical Society of America, 26, 369–380.CrossRefGoogle Scholar
Warfield, D., Ruben, R. J., and Glackin, R. 1966. Word discrimination in cats. Journal of Auditory Research, 6, 97–119.Google Scholar
Warren, R. M. 1958. A basis for judgments of sensory intensity. American Journal of Psychology, 71, 675–687.CrossRefGoogle ScholarPubMed
Warren, R. M. 1961a. Illusory changes of distinct speech upon repetition – the verbal transformation effect. British Journal of Psychology, 52, 249–258.CrossRefGoogle Scholar
Warren, R. M. 1961b. Illusory changes in repeated words: Differences between young adults and the aged. American Journal of Psychology, 74, 506–516.CrossRefGoogle Scholar
Warren, R. M. 1962. Are ‘autophonic’ judgments based on loudness?American Journal of Psychology, 75, 452–456.CrossRefGoogle ScholarPubMed
Warren, R. M. 1968a. Vocal compensation for change in distance. In Proceedings of the 6th International Congress of Acoustics (Tokyo), A, 61–64.Google Scholar
Warren, R. M. 1968b. Relation of verbal transformations to other perceptual phenomena. Conference Publication No. 42, Institution of Electrical Engineers (London), Supplement No. 1, 1–8.Google Scholar
Warren, R. M. 1968c. Verbal transformation effect and auditory perceptual mechanisms. Psychological Bulletin, 70, 261–270.CrossRefGoogle Scholar
Warren, R. M. 1969. Visual intensity judgments: An empirical rule and a theory. Psychological Review, 76, 16–30.CrossRefGoogle Scholar
Warren, R. M. 1970a. Elimination of biases in loudness judgments for tones. Journal of the Acoustical Society of America, 48, 1397–1403.CrossRefGoogle Scholar
Warren, R. M. 1970b. Perceptual restoration of missing speech sounds. Science, 167, 392–393.CrossRefGoogle Scholar
Warren, R. M. 1971. Identification times for phonemic components of graded complexity and for spelling of speech. Perception & Psychophysics, 9, 345–349.CrossRefGoogle Scholar
Warren, R. M. 1972. Perception of temporal order: Special rules for initial and terminal sounds of sequences. Journal of the Acoustical Society of America, 52, 167 (Abstract).CrossRefGoogle Scholar
Warren, R. M. 1973a. Quantification of loudness. American Journal of Psychology, 86, 807–825.CrossRefGoogle Scholar
Warren, R. M. 1973b. Anomalous loudness function of speech. Journal of the Acoustical Society of America, 54, 390–396.CrossRefGoogle Scholar
Warren, R. M. 1974a. Auditory temporal discrimination by trained listeners. Cognitive Psychology, 6, 237–256.CrossRefGoogle Scholar
Warren, R. M. 1974b. Auditory pattern discrimination by untrained listeners. Perception & Psychophysics, 15, 495–500.CrossRefGoogle Scholar
Warren, R. M. 1976. Auditory perception and speech evolution. In Origins and Evolution of Language and Speech, Harnad, S. R., Steklis, H. D., and Lancaster, J. (eds.). New York: New York Academy of Sciences, 708–717.Google Scholar
Warren, R. M. 1977a. Subjective loudness and its physical correlate. Acustica, 37, 334–346.Google Scholar
Warren, R. M. 1977b. Les illusions verbales. La Recherche, 8, 538–543.Google Scholar
Warren, R. M. 1981a. Measurement of sensory intensity. Behavioral and Brain Sciences, 4, 175–189 (target article); 213–223 (response to open peer commentaries).CrossRefGoogle Scholar
Warren, R. M. 1981b. Perceptual transformations in vision and hearing. International Journal of Man-Machine Studies, 14, 123–132.CrossRefGoogle Scholar
Warren, R. M. 1984. Perceptual restoration of obliterated sounds. Psychological Review, 96, 371–385.Google ScholarPubMed
Warren, R. M. 1985. Criterion shift rule and perceptual homeostasis. Psychological Review, 92, 574–584.CrossRefGoogle ScholarPubMed
Warren, R. M. 1988. Perceptual basis for the evolution of speech. In The Genesis of Language: A Different Judgement of Evidence, Landsberg, M. E. (ed.). Berlin: Mouton de Gruyter, 101–110.Google Scholar
Warren, R. M., and Ackroff, J. M. 1976a. Two types of auditory sequence perception. Perception & Psychophysics, 20, 387–394.CrossRefGoogle Scholar
Warren, R. M., and Ackroff, J. M. 1976b. Dichotic verbal transformations and evidence of separate processors for identical stimuli. Nature, 259, 475–477.CrossRefGoogle Scholar
Warren, R. M., and Bashford, J. A. Jr. 1976. Auditory contralateral induction: An early stage in binaural processing. Perception & Psychophysics, 20, 380–386.CrossRefGoogle Scholar
Warren, R. M., and Bashford, J. A. Jr. 1981. Perception of acoustic iterance: Pitch and infrapitch. Perception & Psychophysics, 29, 395–402.CrossRefGoogle ScholarPubMed
Warren, R. M., and Bashford, J. A. Jr. 1988. Broadband repetition pitch: Spectral dominance or pitch averaging?Journal of the Acoustical Society of America, 84, 2058–2062.CrossRefGoogle Scholar
Warren, R. M., and Bashford, J. A. Jr. 1993. When acoustic sequences are not perceptual sequences: The global perception of auditory patterns. Perception & Psychophysics, 54, 121–126.CrossRefGoogle Scholar
Warren, R. M., and Bashford, J. A. Jr. 1999. Intelligibility of 1/3-octave speech: Greater contribution of frequencies outside than inside the nominal passband. Journal of the Acoustical Society of America, 106, L47–L52.CrossRefGoogle ScholarPubMed
Warren, R. M., Bashford, J. A. Jr., Cooley, J. M., and Brubaker, B. S. 2001. Detection of acoustic repetition for very long stochastic patterns. Perception & Psychophysics, 63, 175–182.CrossRefGoogle ScholarPubMed
Warren, R. M., Bashford, J. A. Jr., and Gardner, D. A. 1990. Tweaking the lexicon: Organization of vowel sequences into words. Perception & Psychophysics, 47, 423–432.CrossRefGoogle ScholarPubMed
Warren, R. M., Bashford, J. A. Jr., and Healy, E. W. 1992. The subtractive nature of auditory continuity: Reciprocal changes in alternating sounds. Journal of the Acoustical Society of America, 91, 2334 (Abstract).CrossRefGoogle Scholar
Warren, R. M., Bashford, J. A. Jr., Healy, E. W., and Brubaker, B. S. 1994. Auditory induction: Reciprocal changes in alternating sounds. Perception & Psychophysics, 55, 313–322.CrossRefGoogle ScholarPubMed
Warren, R. M., Bashford, J. A. Jr., and Lenz, P. W. 2004. Intelligibility of bandpass filtered speech: Steepness of slopes required to eliminate transition band contributions. Journal of the Acoustical Society of America, 115, 1292–1295.CrossRefGoogle ScholarPubMed
Warren, R. M., Bashford, J. A. Jr., and Lenz, P. W. 2005. Intelligibility of 1-octave rectangular bands spanning the speech spectrum when heard separately and paired. Journal of the Acoustical Society of America, 118, 3261–3266.CrossRefGoogle ScholarPubMed
Warren, R. M., Bashford, J. A. Jr., and Wrightson, J. M. 1979. Infrapitch echo. Journal of the Acoustical Society of America, 65, S38 (Abstract).CrossRefGoogle Scholar
Warren, R. M., Bashford, J. A. Jr., and Wrightson, J. M. 1980. Infrapitch echo. Journal of the Acoustical Society of America, 68, 1301–1305.CrossRefGoogle Scholar
Warren, R. M., Bashford, J. A. Jr., and Wrightson, J. M. 1981. Detection of long interaural delays for broadband noise. Journal of the Acoustical Society of America, 69, 1510–1514.CrossRefGoogle ScholarPubMed
Warren, R. M., and Byrnes, D. L. 1975. Temporal discrimination of recycled tonal sequences: Pattern matching and naming of order by untrained listeners. Perception & Psychophysics, 18, 273–280.CrossRefGoogle Scholar
Warren, R. M., and Gardner, D. A. 1995. Aphasics can distinguish permuted orders of phonemes – but only if presented rapidly. Journal of Speech and Hearing Research, 38, 473–476.CrossRefGoogle ScholarPubMed
Warren, R. M., Gardner, D. A., Brubaker, B. S., and Bashford, J. A. Jr. 1991. Melodic and nonmelodic sequence of tones: Effects of duration on perception. Music Perception, 8, 277–290.CrossRefGoogle Scholar
Warren, R. M., and Gregory, R. L. 1958. An auditory analogue of the visual reversible figure. American Journal of Psychology, 71, 612–613.CrossRefGoogle ScholarPubMed
Warren, R. M., Hainsworth, K. R., Brubaker, B. S., Bashford, J. A. Jr., and Healy, E. W. 1997. Spectral restoration of speech: Intelligibility is increased by inserting noise in spectral gaps. Perception & Psychophysics, 59, 275–283.CrossRefGoogle ScholarPubMed
Warren, R. M., Healy, E. W., and Chalikia, M. H. 1996. The vowel-sequence illusion: Intrasubject stability and intersubject agreement of syllabic forms. Journal of the Acoustical Society of America, 100, 2452–2461.CrossRefGoogle ScholarPubMed
Warren, R. M., and Obusek, C. J. 1971. Speech perception and phonemic restorations. Perception & Psychophysics, 9, 358–362.CrossRefGoogle Scholar
Warren, R. M., and Obusek, C. J. 1972. Identification of temporal order within auditory sequences. Perception & Psychophysics, 12, 86–90.CrossRefGoogle Scholar
Warren, R. M., Obusek, C. J., and Ackroff, J. M. 1972. Auditory induction: Perceptual synthesis of absent sounds. Science, 176, 1149–1151.CrossRefGoogle ScholarPubMed
Warren, R. M., Obusek, C. J., Farmer, R. M., and Warren, R. P. 1969. Auditory sequence: Confusion of patterns other than speech or music. Science, 164, 586–587.CrossRefGoogle ScholarPubMed
Warren, R. M., Riener, K. R., Bashford, J. A. Jr., and Brubaker, B. S. 1995. Spectral redundancy: Intelligibility of sentences heard through narrow spectral slits. Perception & Psychophysics, 57, 175–182.CrossRefGoogle ScholarPubMed
Warren, R. M., Sersen, E., and Pores, E. 1958. A basis for loudness-judgments. American Journal of Psychology, 71, 700–709.CrossRefGoogle ScholarPubMed
Warren, R. M., and Sherman, G. L. 1974. Phonemic restorations based on subsequent context. Perception & Psychophysics, 16, 150–156.CrossRefGoogle Scholar
Warren, R. M., and Warren, R. P. 1958. Basis for judgments of relative brightness. Journal of the Optical Society of America, 48, 445–450.CrossRefGoogle ScholarPubMed
Warren, R. M., and Warren, R. P. 1963. A critique of S. S. Stevens' “New psychophysics.”Perceptual and Motor Skills, 16, 797–810.CrossRefGoogle Scholar
Warren, R. M., and Warren, R. P. 1966. A comparison of speech perception in childhood, maturity, and old age by means of the verbal transformation effect. Journal of Verbal Learning and Verbal Behavior, 5, 142–146.CrossRefGoogle Scholar
Warren, R. M., and Warren, R. P. 1968. Helmholtz on Perception: Its Physiology and Development. New York: Wiley.Google Scholar
Warren, R. M., and Warren, R. P. 1970. Auditory illusions and confusions. Scientific American, 223, 30–36 (December).CrossRefGoogle ScholarPubMed
Warren, R. M., and Wrightson, J. M. 1981. Stimuli producing conflicting temporal and spectral cues to frequency. Journal of the Acoustical Society of America, 70, 1020–1024.CrossRefGoogle Scholar
Watson, C. S. 1987. Uncertainty, informational masking, and the capacity of immediate memory. In Auditory Processing of Complex Sounds, Yost, W. A. and Watson, C. S. (eds.). Hillsdale, NJ: Erlbaum, 267–277.Google Scholar
Watson, C. S., Kelly, W. J., and Wroton, H. W. 1976. Factors in the discrimination of tonal patterns. II. Selective attention and learning under various levels of stimulus uncertainty. Journal of the Acoustical Society of America, 60, 1176–1186.CrossRefGoogle ScholarPubMed
Watson, C. S., Wroton, H. W., Kelly, W. J., and Benbassat, C. A. 1975. Factors in the discrimination of tonal patterns. I. Component frequency, temporal position, and silent intervals. Journal of the Acoustical Society of America, 57, 1175–1185.CrossRefGoogle ScholarPubMed
Wegel, R. L., and Lane, C. E. 1924. The auditory masking of one pure tone by another and its probable relation to the dynamics of the inner ear. Physical Review, 23, 266–285.CrossRefGoogle Scholar
Weinberger, N. M., and McKenna, T. M. 1988. Sensitivity of single neurons in auditory cortex to contour: Toward a theory of neurophysiology of music perception. Music Perception, 5, 355–390.CrossRefGoogle Scholar
Welford, A. T. 1958. Ageing and Human Skill. London: Oxford University Press.Google Scholar
Wever, E. G. 1949. Theory of Hearing. New York: Wiley.Google Scholar
Wever, E. G., and Bray, C. 1930. Action currents in the auditory nerve in response to acoustical stimulation. In Proceedings of the National Academy of Sciences (USA), 16, 344–350.CrossRefGoogle ScholarPubMed
Wheeldon, L. R., and Levelt, W. J. M. 1995. Monitoring the time course of phonological encoding. Journal of Memory and Language, 34, 311–334.CrossRefGoogle Scholar
Whitfield, I. C. 1970. Central nervous system processing in relation to spatio-temporal discrimination of auditory patterns. In Frequency Analysis and Periodicity Detection in Hearing, Plomp, R. and Smoorenburg, G. F. (eds.). Leiden: Sijthoff, 136–152.Google Scholar
Whitworth, R. H., and Jeffress, L. A. 1961. Time vs. intensity in the localization of tones. Journal of the Acoustical Society of America, 33, 925–929.CrossRefGoogle Scholar
Wickelgren, W. A. 1969. Context-sensitive coding, associative memory, and serial order in (speech) behavior. Psychological Review, 76, 1–15.CrossRefGoogle Scholar
Wiener, F. 1947. On the diffraction of a progressive wave by the human head. Journal of the Acoustical Society of America, 19, 143–146.CrossRefGoogle Scholar
Wightman, F. L. 1973. The pattern transformation model of pitch. Journal of the Acoustical Society of America, 54, 407–416.CrossRefGoogle Scholar
Wightman, F. L., and Kistler, D. J. 1989a. Headphone simulation of free-field listening. I: Stimulus synthesis. Journal of the Acoustical Society of America, 85, 858–867.CrossRefGoogle Scholar
Wightman, F. L., and Kistler, D. J. 1989b. Headphone simulation of free-field listening. II: Psychophysical validation. Journal of the Acoustical Society of America, 85, 868–878.CrossRefGoogle Scholar
Wilcox, G. W., Neisser, U., and Roberts, J. 1972. Recognition of auditory temporal order. Paper presented at the Eastern Psychological Association, Boston, MA (Spring).
Wiley, R. L. 1968. Speech Communication using the Strongly Voiced Components Only. Unpublished Doctoral Dissertation, Imperial College, University of London.
Willey, C. F., Inglis, E., and Pearce, C. H. 1937. Reversal of auditory localization. Journal of Experimental Psychology, 20, 114–130.CrossRefGoogle Scholar
Wilson, J. P., and Johnstone, J. R. 1975. Basilar membrane and middle-ear vibration in guinea pig measured by capacitive probe. Journal of the Acoustical Society of America, 57, 705–723.CrossRefGoogle ScholarPubMed
Winckel, F. 1967. Music, Sound and Sensation: A Modern Exposition. New York: Dover.Google Scholar
Winkler, I., Korzyukov, O., Gumenyuk, V., Cowan, N., Linkenkaer-Hansenk, K., Illmoniemi, R. J., Alho, K., and Näätänen, R. 2002. Temporary and longer term retention of acoustic information. Psychophysiology, 39, 530–534.CrossRefGoogle ScholarPubMed
Winslow, R. L., and Sachs, M. B. 1988. Single-tone intensity discrimination based on auditory-nerve rate responses in backgrounds of quiet, noise, and with stimulation of the crossed olivocochlear bundle. Hearing Research, 35, 165–190.CrossRefGoogle ScholarPubMed
Wohlgemuth, A. 1911. On the after-effect of seen movement. British Journal of Psychology, Monograph Supplement. Cambridge: Cambridge University Press.Google Scholar
Woodworth, R. S. 1938. Experimental Psychology. New York: Holt.Google Scholar
Worchel, P., and Dallenbach, K. M. 1947. “Facial vision”: Perception of obstacles by the deaf-blind. American Journal of Psychology, 60, 502–553.CrossRefGoogle ScholarPubMed
Worden, F. G. 1971. Hearing and the neural detection of acoustic patterns. Behavioral Science, 16, 20–30.CrossRefGoogle ScholarPubMed
Wright, D., Hebrank, J. H., and Wilson, B. 1974. Pinna reflections as cues for localization. Journal of the Acoustical Society of America, 56, 957–962.CrossRefGoogle ScholarPubMed
Wrightson, J. M., and Warren, R. M. 1981. Incomplete auditory induction of tones alternated with noise: Effects occurring below the pulsation threshold. Journal of the Acoustical Society of America, 69, 5105–5106 (Abstract).CrossRefGoogle Scholar
Yates, A. J. 1963. Delayed auditory feedback. Psychological Bulletin, 60, 213–232.CrossRefGoogle ScholarPubMed
Yost, W. A., and Hill, R. 1978. Strength of pitches associated with ripple noise. Journal of the Acoustical Society of America, 64, 485–492.CrossRefGoogle ScholarPubMed
Yost, W. A., and Hill, R. 1979. Models of the pitch and pitch strength of ripple noise. Journal of the Acoustical Society of America, 66, 400–410.CrossRefGoogle Scholar
Yost, W. A., Hill, R., and Perez-Falcon, T. 1978. Pitch and pitch discrimination of broadband signals with rippled power spectra. Journal of the Acoustical Society of America, 63, 1166–1173.CrossRefGoogle ScholarPubMed
Young, P. T. 1928. Auditory localization with acoustical transposition of the ears. Journal of Experimental Psychology, 11, 399–429.CrossRefGoogle Scholar
Yund, E. W., and Efron, R. 1974. Dichoptic and dichotic micropattern discrimination. Perception & Psychophysics, 15, 383–390.CrossRefGoogle Scholar
Zemlin, W. R. 1998. Speech and Hearing Science: Anatomy and Physiology, 4th edition. Needham Heights, MA: Allyn & Bacon.Google Scholar
Zimmerman, G., Brown, C., Kelso, J. A. S., Hurtig, R., and Forest, K. 1988. The association between articulatory events in a delayed auditory feedback paradigm. Journal of Phonetics, 16, 437–451.Google Scholar
Zurek, P. M. 1981. Spontaneous narrowband acoustic signals emitted by human ears. Journal of the Acoustical Society of America, 69, 514–523.CrossRefGoogle ScholarPubMed
Zwicker, E. 1970. Masking and psychological excitation as consequences of the ear's frequency analysis. In Frequency Analysis and Periodicity Detection in Hearing, Plomp, R. and Smoorenburg, G. F. (eds.). Leiden: Sijthoff, 376–396.
Zwislocki, J. J. 1980. Five decades of research on cochlear mechanics. Journal of the Acoustical Society of America, 67, 1679–1685.Google ScholarPubMed
Zwislocki, J. J., and Kletsky, E. J. 1979. Tectorial membrane: A possible effect on frequency analysis in the cochlea. Science, 204, 639–641.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Richard M. Warren, University of Wisconsin, Milwaukee
  • Book: Auditory Perception
  • Online publication: 18 May 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511754777.010
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Richard M. Warren, University of Wisconsin, Milwaukee
  • Book: Auditory Perception
  • Online publication: 18 May 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511754777.010
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Richard M. Warren, University of Wisconsin, Milwaukee
  • Book: Auditory Perception
  • Online publication: 18 May 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511754777.010
Available formats
×