Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-26T03:24:27.440Z Has data issue: false hasContentIssue false

Chapter 8 - Anti-NMDAR Encephalitis

from Section 3 - Specific Syndromes and Diseases

Published online by Cambridge University Press:  27 January 2022

Josep Dalmau
Affiliation:
Universitat de Barcelona
Francesc Graus
Affiliation:
Universitat de Barcelona
Get access

Summary

Anti-NMDAR encephalitis is the most frequent autoimmune encephalitis. It predominantly occurs in children and young females. Up to 80% of patients present with severe insomnia and psychiatric and behavioural symptoms that resemble those of psychotic episodes caused by primary psychiatric diseases. In addition to the psychiatric manifestations, patients develop neurological symptoms including seizures, abnormal movements, reduced verbal output, and dysautonomic features. Up to 50% of young females have an underlying ovarian teratoma that contains nervous tissue and NMDAR, which probably trigger the immune response. Less frequently, the encephalitis is triggered by an episode of herpes simplex encephalitis probably through the release of antigens by neurons damaged by the virus. The diagnosis of anti-NMDAR encephalitis requires the demonstration of the antibodies in CSF. Up to 14% of patients do not have detectable antibodies in serum. A positive result in serum but negative in CSF must be taken with caution as these patients do not present clinical features of encephalitis and many represent false positive results. Between 80% and 90% of patients respond to treatment which includes immunotherapy and removal of the tumour when it applies.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Buckley, C, Oger, J, Clover, L, et al. Potassium channel antibodies in two patients with reversible limbic encephalitis. Ann Neurol 2001;50:7378.CrossRefGoogle ScholarPubMed
Lai, M, Huijbers, MG, Lancaster, E, et al. Investigation of LGI1 as the antigen in limbic encephalitis previously attributed to potassium channels: a case series. Lancet Neurol 2010;9:776785.Google Scholar
Irani, SR, Alexander, S, Waters, P, et al. Antibodies to Kv1 potassium channel-complex proteins leucine-rich, glioma inactivated 1 protein and contactin-associated protein-2 in limbic encephalitis, Morvan’s syndrome and acquired neuromyotonia. Brain 2010;133:27342748.CrossRefGoogle ScholarPubMed
Darnell, RB, Posner, JB. Paraneoplastic syndromes involving the nervous system. N Engl J Med 2003;349:15431554.CrossRefGoogle ScholarPubMed
Bataller, L, Kleopa, KA, Wu, GF, et al. Autoimmune limbic encephalitis in 39 patients: immunophenotypes and outcomes. J Neurol Neurosurg Psychiatry 2007;78:381385.Google Scholar
Ances, BM, Vitaliani, R, Taylor, RA, et al. Treatment-responsive limbic encephalitis identified by neuropil antibodies: MRI and PET correlates. Brain 2005;128:17641777.Google Scholar
Vitaliani, R, Mason, W, Ances, B, et al. Paraneoplastic encephalitis, psychiatric symptoms, and hypoventilation in ovarian teratoma. Ann Neurol 2005;58:594604.Google Scholar
Dalmau, J, Tuzun, E, Wu, HY, et al. Paraneoplastic anti-N-methyl-D-aspartate receptor encephalitis associated with ovarian teratoma. Ann Neurol 2007;61:2536.Google Scholar
Dalmau, J, Gleichman, AJ, Hughes, EG, et al. Anti-NMDA-receptor encephalitis: case series and analysis of the effects of antibodies. Lancet Neurol 2008;7:10911098.Google Scholar
Dalmau, J. NMDA receptor encephalitis and other antibody-mediated disorders of the synapse: the 2016 Cotzias Lecture. Neurology 2016;87:24712482.Google Scholar
DeLong, GR, Bean, SC, Brown, FR, III. Acquired reversible autistic syndrome in acute encephalopathic illness in children. Arch Neurol 1981;38:191194.CrossRefGoogle ScholarPubMed
Sebire, G, Devictor, D, Huault, G, et al. Coma associated with intense bursts of abnormal movements and long-lasting cognitive disturbances: an acute encephalopathy of obscure origin. J Pediatr 1992;121:845851.Google Scholar
Haimi-Cohen, Y, Soen, G, Amir, J, Kimia, A, Varsano, I. Coma with abnormal movements and prolonged cognitive disturbances: a new subset of acute encephalopathy. Neuropediatrics 1996;27:270272.CrossRefGoogle ScholarPubMed
Hartley, LM, Ng, SY, Dale, RC, et al. Immune mediated chorea encephalopathy syndrome in childhood. Dev Med Child Neurol 2002;44:273277.Google Scholar
Poloni, C, Korff, CM, Ricotti, V, et al. Severe childhood encephalopathy with dyskinesia and prolonged cognitive disturbances: evidence for anti-N-methyl-d-aspartate receptor encephalitis. Dev Med Child Neurol 2010;52:e7882.Google Scholar
Sansing, LH, Tuzun, E, Ko, MW, et al. A patient with encephalitis associated with NMDA receptor antibodies. Nat Clin Pract Neurol 2007;3:291296.CrossRefGoogle ScholarPubMed
Lejuste, F, Thomas, L, Picard, G, et al. Neuroleptic intolerance in patients with anti-NMDAR encephalitis. Neurol Neuroimmunol Neuroinflamm 2016;3:e280.Google Scholar
Lim, SY, Panikkath, R, Mankongpaisarnrung, C, et al. Anti-N-methyl-D-aspartate receptor encephalitis. Am J Med Sci 2013;345:491493.Google Scholar
Salehi, N, Yuan, AK, Stevens, G, Koshy, R, Klein, WF. A case of severe anti-n-methyl d-aspartate (anti-nmda) receptor encephalitis with refractory autonomic instability and elevated intracranial pressure. Am J Case Rep 2018;19:12161221.Google Scholar
Mammele, S, Thompson, KS, Abe, KK. A rapidly fatal case of anti-NMDA receptor encephalitis due to acute brain edema and herniation. Neurology 2019;92:10141016.Google Scholar
Iizuka, T, Sakai, F, Ide, T, et al. Anti-NMDA receptor encephalitis in Japan: long-term outcome without tumor removal. Neurology 2008;70:504511.Google Scholar
Sebire, G. In search of lost time from ‘Demonic Possession’ to anti-N-methyl-D-aspartate receptor encephalitis. Ann Neurol 2010;67:141142.CrossRefGoogle ScholarPubMed
Bickerstaff, ER, Cloake, PC. Mesencephalitis and rhombencephalitis. Br Med J 1951;2:7781.CrossRefGoogle ScholarPubMed
Merwick, A, Dalmau, J, Delanty, N. Insights into antibody-associated encephalitis: Bickerstaff’s 1950’s papers revisted. J Neurol Sci 2013;334:167168.CrossRefGoogle Scholar
Odaka, M, Yuki, N, Yamada, M, et al. Bickerstaff’s brainstem encephalitis: clinical features of 62 cases and a subgroup associated with Guillain-Barre syndrome. Brain 2003;126:22792290.Google Scholar
Titulaer, MJ, Hoftberger, R, Iizuka, T, et al. Overlapping demyelinating syndromes and anti-N-methyl-D-aspartate receptor encephalitis. Ann Neurol 2014;75:411428.CrossRefGoogle ScholarPubMed
Hacohen, Y, Absoud, M, Hemingway, C, et al. NMDA receptor antibodies associated with distinct white matter syndromes. Neurol Neuroimmunol Neuroinflamm 2014;1:e2.CrossRefGoogle ScholarPubMed
Tenyi, D, Szucs, A, Kovacs, N, Illes, Z, Janszky, J. Paraneoplastic anti-NMDA receptor encephalitis in 1830? Neurol Neuroimmunol Neuroinflamm 2020;7:e887.Google Scholar
van Sonderen, A, Petit-Pedrol, M, Dalmau, J, Titulaer, MJ. The value of LGI1, Caspr2 and voltage-gated potassium channel antibodies in encephalitis. Nat Rev Neurol 2017;13:290301.CrossRefGoogle ScholarPubMed
Granerod, J, Ambrose, HE, Davies, NW, et al. Causes of encephalitis and differences in their clinical presentations in England: a multicentre, population-based prospective study. Lancet Infect Dis 2010;10:835844.CrossRefGoogle Scholar
Gable, MS, Sheriff, H, Dalmau, J, Tilley, DH, Glaser, CA. The frequency of autoimmune N-methyl-D-aspartate receptor encephalitis surpasses that of individual viral etiologies in young individuals enrolled in the California Encephalitis Project. Clin Infect Dis 2012;54:899904.Google Scholar
Pruss, H, Dalmau, J, Harms, L, et al. Retrospective analysis of NMDA receptor antibodies in encephalitis of unknown origin. Neurology 2010;75:17351739.Google Scholar
Armangue, T, Spatola, M, Vlagea, A, et al. Frequency, symptoms, risk factors, and outcomes of autoimmune encephalitis after herpes simplex encephalitis: a prospective observational study and retrospective analysis. Lancet Neurol 2018;17:760772.CrossRefGoogle ScholarPubMed
Erickson, TA, Muscal, E, Munoz, FM, et al. Infectious and autoimmune causes of encephalitis in children. Pediatrics 2020;145:e20192543.Google Scholar
Titulaer, MJ, McCracken, L, Gabilondo, I, et al. Treatment and prognostic factors for long-term outcome in patients with anti-NMDA receptor encephalitis: an observational cohort study. Lancet Neurol 2013;12:157165.CrossRefGoogle ScholarPubMed
Viaccoz, A, Desestret, V, Ducray, F, et al. Clinical specificities of adult male patients with NMDA receptor antibodies encephalitis. Neurology 2014;82:556563.Google Scholar
Irani, SR, Bera, K, Waters, P, et al. N-methyl-D-aspartate antibody encephalitis: temporal progression of clinical and paraclinical observations in a predominantly non-paraneoplastic disorder of both sexes. Brain 2010;133:16551667.Google Scholar
Florance, NR, Davis, RL, Lam, C, et al. Anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis in children and adolescents. Ann Neurol 2009;66:1118.Google Scholar
Titulaer, MJ, McCracken, L, Gabilondo, I, et al. Late-onset anti-NMDA receptor encephalitis. Neurology 2013;81:10581063.Google Scholar
Bost, C, Chanson, E, Picard, G, et al. Malignant tumors in autoimmune encephalitis with anti-NMDA receptor antibodies. J Neurol 2018;265:21902200.Google Scholar
Chefdeville, A, Treilleux, I, Mayeur, ME, et al. Immunopathological characterization of ovarian teratomas associated with anti-N-methyl-D-aspartate receptor encephalitis. Acta Neuropathol Commun 2019;7:38.Google Scholar
Dai, Y, Zhang, J, Ren, H, et al. Surgical outcomes in patients with anti-N-methyl D-aspartate receptor encephalitis with ovarian teratoma. Am J Obstet Gynecol 2019;221:e481-485.Google Scholar
Afanasiev, V, Brechemier, ML, Boisseau, W, et al. Anti-NMDA receptor antibody encephalitis and neuroendocrine pancreatic tumor: causal link? Neurology 2016;87:112113.CrossRefGoogle ScholarPubMed
Hara, M, Morita, A, Kamei, S, et al. Anti-N-methyl-D-aspartate receptor encephalitis associated with carcinosarcoma with neuroendocrine differentiation of the uterus. J Neurol 2011;258:13511353.Google Scholar
Kobayashi, M, Nishioka, K, Takanashi, M, et al. Anti-NMDA receptor encephalitis due to large-cell neuroendocrine carcinoma of the uterus. J Neurol Sci 2017;383:7274.Google Scholar
Jeraiby, M, Depince-Berger, A, Bossy, V, Antoine, JC, Paul, S. A case of anti-NMDA receptor encephalitis in a woman with a NMDA-R(+) small cell lung carcinoma (SCLC). Clin Immunol 2016;166–167:9699.Google Scholar
Coban, A, Gundogdu, G, Poyraz, M, et al. NMDA receptor encephalitis with cancer of unknown primary origin. Tumori 2016;102(Suppl. 2). doi: 10.5301/tj.5000447.CrossRefGoogle ScholarPubMed
Kobayashi, Y, Sato, M, Kinoshita, M, et al. An elderly case of paraneoplastic anti-NMDA receptor encephalitis associated with small-cell lung cancer expressing NR1 subunits. Intern Med 2020;59:23072309.Google Scholar
Boangher, S, Mespouille, P, Filip, CM, Goffette, S. Small-cell lung cancer with positive anti-NMDAR and anti-AMPAR antibodies paraneoplastic limbic encephalitis. Case Rep Neurol Med 2016;2016:3263718.Google Scholar
Wu, YY, He, XJ, Zhang, ML, Shi, YY, Zhang, JW. Anti-N-methyl-D-aspartate receptor encephalitis with lung adenocarcinoma. Neurol Sci 2016;37:15731575.Google Scholar
Lim, JA, Lee, ST, Jung, KH, et al. Anti-N-methyl-d-aspartate receptor encephalitis in Korea: clinical features, treatment, and outcome. J Clin Neurol 2014;10:157161.Google Scholar
Gill, A, Perez, MA, Perrone, CM, et al. A case series of PD-1 inhibitor-associated paraneoplastic neurologic syndromes. J Neuroimmunol 2019;334:576980.CrossRefGoogle ScholarPubMed
Shalhout, SZ, Emerick, KS, Sadow, PM, Linnoila, JJ, Miller, DM. Regionally metastatic Merkel cell carcinoma associated with paraneoplastic anti-N-methyl-D-aspartate receptor encephalitis. Case Rep Oncol Med 2020;2020:1257587.Google Scholar
Lim, EW, Yip, CW. Anti-N-methyl-D-aspartate receptor encephalitis associated with hepatic neuroendocrine carcinoma: a case report. J Clin Neurosci 2017;41:7072.Google Scholar
Zandi, MS, Irani, SR, Follows, G, et al. Limbic encephalitis associated with antibodies to the NMDA receptor in Hodgkin lymphoma. Neurology 2009;73:20392040.CrossRefGoogle Scholar
Park, BS, Son, GM, Kim, HS, Medina, J, Cho, JW. Anti-N-methyl-D-aspartate receptor encephalitis in a patient with colon cancer. Clin Neurol Neurosurg 2019;177:114116.Google Scholar
Ding, L, Tan, H, Li, Z, Ji, J, Song, X. Case report: anaesthetic management of radical gastrectomy for gastric cancer associated with anti-N-methyl-D-aspartate receptor encephalitis. BMC Anesthesiol 2017;17:90.Google Scholar
Williams, TJ, Benavides, DR, Patrice, KA, et al. Association of autoimmune encephalitis with combined immune checkpoint inhibitor treatment for metastatic cancer. JAMA Neurol 2016;73:928933.Google Scholar
Cho, EH, Byun, JM, Park, HY, et al. The first case of anti-N-methyl-D-aspartate receptor encephalitis (anti-NMDAR encephalitis) associated with ovarian mucinous cystadenoma: a case report. Taiwan J Obstet Gynecol 2019;58:557559.Google Scholar
Yang, J, Li, B, Li, X, Lai, Z. Anti-N-Methyl-D-aspartate receptor encephalitis associated with clear cell renal carcinoma: a case report. Front Oncol 2020;10:350.Google Scholar
Kaddu-Mulindwa, D, Roth, S, Klees-Rollmann, A, Fassbender, K, Fousse, M. Primary HIV infection presenting with Kaposi sarcoma and limbic encephalitis. J Neurovirol 2020;26:292296.Google Scholar
Mahadeen, A, Mullaguri, N, George, P, Rabinowitz, L, Newey, CR. Anti-N-methyl-D-aspartate encephalitis concomitantly with tall-cell variant papillary thyroid carcinoma. Cureus 2019;11:e5415.Google Scholar
Hattori, Y, Yamashita, Y, Mizuno, M, et al. Anti-N-methyl-D-aspartate receptor limbic encephalitis associated with mature cystic teratoma of the fallopian tube. J Obstet Gynaecol Res 2017;43:412415.Google Scholar
Nosadini, M, Mohammad, SS, Corazza, F, et al. Herpes simplex virus-induced anti-N-methyl-D-aspartate receptor encephalitis: a systematic literature review with analysis of 43 cases. Dev Med Child Neurol 2017;59:796805.Google Scholar
Ma, J, Han, W, Jiang, L. Japanese encephalitis-induced anti-N-methyl-D-aspartate receptor encephalitis: a hospital-based prospective study. Brain Dev 2020;42:179184.Google Scholar
Mueller, SH, Farber, A, Pruss, H, et al. Genetic predisposition in anti-LGI1 and anti-NMDA receptor encephalitis. Ann Neurol 2018;83:863869.Google Scholar
Shu, Y, Qiu, W, Zheng, J, et al. HLA class II allele DRB1*16:02 is associated with anti-NMDAR encephalitis. J Neurol Neurosurg Psychiatry 2019;90:652658.Google Scholar
Konen, FF, Schwenkenbecher, P, Jendretzky, KF, et al. Severe anti-N-methyl-D-aspartate receptor encephalitis under immunosuppression after liver transplantation. Front Neurol 2019;10:987.Google Scholar
Randall, A, Huda, S, Jacob, A, Larner, AJ. Autoimmune encephalitis (NMDAR antibody) in a patient receiving chronic post-transplant immunosuppression. Pract Neurol 2018;18:320322.Google Scholar
Zhao, CZ, Erickson, J, Dalmau, J. Clinical reasoning: agitation and psychosis in a patient after renal transplantation. Neurology 2012;79:e41e44.Google Scholar
Garre, J, Sprengers, M, Van Melkebeke, D, Laureys, G. EBV-NMDA double positive encephalitis in an immunocompromised patient. J Neurol Sci 2019;396:7677.Google Scholar
Derksen, SJ, Goraj, B, Molenaar, JP, Hoeven, J. Severe anti NMDA encephalitis and EBV infection. Neth J Crit Care 2013;17:1921.Google Scholar
Cohen, DA, Lopez-Chiriboga, AS, Pittock, SJ, et al. Posttransplant autoimmune encephalitis. Neurol Neuroimmunol Neuroinflamm 2018;5:e497.Google Scholar
Toda, J, Maeda, T, Akuta, K, et al. Limbic encephalitis with antibodies to N-methyl-D-aspartate (NMDA)-type glutamate receptor after allogeneic transplantation. Int J Hematol 2020;112:254257.Google Scholar
Lowas, SR, Lettieri, CK. A case of anti-NMDA receptor encephalitis during dinutuximab therapy for neuroblastoma. J Pediatr Hematol Oncol 2021;43:e127e129.Google Scholar
Tominaga, N, Kanazawa, N, Kaneko, A, et al. Prodromal headache in anti-NMDAR encephalitis: an epiphenomenon of NMDAR autoimmunity. Brain Behav 2018;8:e01012.Google Scholar
Kayser, MS, Dalmau, J. Anti-NMDA receptor encephalitis in psychiatry. Curr Psychiatry Rev 2011;7:189193.Google Scholar
Warren, N, Siskind, D, O’Gorman, C. Refining the psychiatric syndrome of anti-N-methyl-d-aspartate receptor encephalitis. Acta Psychiatr Scand 2018;138:401408.Google Scholar
Xu, X, Lu, Q, Huang, Y, et al. Anti-NMDAR encephalitis: A single-center, longitudinal study in China. Neurol Neuroimmunol Neuroinflamm 2020;7:e633.Google Scholar
Sabbula, BR, Yemmanur, S, Sanivarapu, R, Kagolanu, D, Shadab, A. Finding the cause of psychosis: a challenging case of anti-NMDAR encephalitis. Case Rep Med 2020;2020:2074704.Google Scholar
Guasp, M, Gine-Serven, E, Maudes, E, et al. Clinical, neuro-immunological, and CSF investigations in first episode psychosis. Neurology 2021;97:e61e75.Google Scholar
Pollak, TA, Lennox, BR, Muller, S, et al. Autoimmune psychosis: an international consensus on an approach to the diagnosis and management of psychosis of suspected autoimmune origin. Lancet Psychiatry 2020;7:93108.Google Scholar
Arino, H, Munoz-Lopetegi, A, Martinez-Hernandez, E, et al. Sleep disorders in anti-NMDAR encephalitis. Neurology 2020;95:e671e684.Google Scholar
Munoz-Lopetegi, A, Graus, F, Dalmau, J, Santamaria, J. Sleep disorders in autoimmune encephalitis. Lancet Neurol 2020;19:10101022.CrossRefGoogle ScholarPubMed
Liu, X, Yan, B, Wang, R, et al. Seizure outcomes in patients with anti-NMDAR encephalitis: a follow-up study. Epilepsia 2017;58:21042111.Google Scholar
Haberlandt, E, Ensslen, M, Gruber-Sedlmayr, U, et al. Epileptic phenotypes, electroclinical features and clinical characteristics in 17 children with anti-NMDAR encephalitis. Eur J Paediatr Neurol 2017;21:457464.CrossRefGoogle ScholarPubMed
de Bruijn, M, van Sonderen, A, van Coevorden-Hameete, MH, et al. Evaluation of seizure treatment in anti-LGI1, anti-NMDAR, and anti-GABABR encephalitis. Neurology 2019;92:e2185e2196.Google Scholar
Schmitt, SE, Pargeon, K, Frechette, ES, et al. Extreme delta brush: a unique EEG pattern in adults with anti-NMDA receptor encephalitis. Neurology 2012;79:10941100.Google Scholar
Qu, XP, Vidaurre, J, Peng, XL, et al. Seizure characteristics, outcome, and risk of epilepsy in pediatric anti-N-methyl-D-aspartate receptor encephalitis. Pediatr Neurol 2020;105:3540.Google Scholar
Chavez-Castillo, M, Ruiz-Garcia, M, Herrera-Mora, P. Characterization and outcomes of epileptic seizures in Mexican pediatric patients with anti-N-methyl-D-aspartate receptor encephalitis. Cureus 2020;12:e8211.Google Scholar
Geis, C, Planaguma, J, Carreno, M, Graus, F, Dalmau, J. Autoimmune seizures and epilepsy. J Clin Invest 2019;129:926940.Google Scholar
Steriade, C, Britton, J, Dale, RC, et al. Acute symptomatic seizures secondary to autoimmune encephalitis and autoimmune-associated epilepsy: conceptual definitions. Epilepsia 2020;61:13411351.Google Scholar
Shen, CH, Fang, GL, Yang, F, et al. Seizures and risk of epilepsy in anti-NMDAR, anti-LGI1, and anti-GABAB R encephalitis. Ann Clin Transl Neurol 2020;7:13921399.Google Scholar
Baizabal-Carvallo, JF, Stocco, A, Muscal, E, Jankovic, J. The spectrum of movement disorders in children with anti-NMDA receptor encephalitis. Mov Disord 2013;28:543547.Google Scholar
Varley, JA, Webb, AJS, Balint, B, et al. The movement disorder associated with NMDAR antibody-encephalitis is complex and characteristic: an expert video-rating study. J Neurol Neurosurg Psychiatry 2019;90:724726.Google Scholar
Frechette, ES, Zhou, L, Galetta, SL, Chen, L, Dalmau, J. Prolonged follow-up and CSF antibody titers in a patient with anti-NMDA receptor encephalitis. Neurology 2011;76:S64S66.Google Scholar
Uchino, A, Iizuka, T, Urano, Y, et al. Pseudo-piano playing motions and nocturnal hypoventilation in anti-NMDA receptor encephalitis: response to prompt tumor removal and immunotherapy. Intern Med 2011;50:627630.CrossRefGoogle ScholarPubMed
Ali, F, Wijdicks, EF. Treatment of movement disorder emergencies in autoimmune encephalitis in the neurosciences ICU. Neurocrit Care 2020;32:286294.Google Scholar
Zheng, F, Ye, X, Shi, X, Poonit, ND, Lin, Z. Management of refractory orofacial dyskinesia caused by anti-N-methyl-D-aspartate receptor encephalitis using botulinum toxin. Front Neurol 2018;9:81.Google Scholar
Gumbinger, C, Hametner, C, Wildemann, B, Veltkamp, R, Bosel, J. Administration of isoflurane-controlled dyskinetic movements caused by anti-NMDAR encephalitis. Neurology 2013;80:19971998.Google Scholar
de Montmollin, E, Demeret, S, Brule, N, et al. Anti-N-methyl-D-aspartate receptor encephalitis in adult patients requiring intensive care. Am J Respir Crit Care Med 2017;195:491499.Google Scholar
Lim, JA, Lee, ST, Kim, TJ, et al. Frequent rhabdomyolysis in anti-NMDA receptor encephalitis. J Neuroimmunol 2016;298:178180.Google Scholar
Howard, CM, Kass, JS, Bandi, VDP, Guntupalli, KK. Challenges in providing critical care for patients with anti-N-methyl-D-aspartate receptor encephalitis. Chest 2014;145:11431147.Google Scholar
Mehr, SR, Neeley, RC, Wiley, M, Kumar, AB. Profound autonomic instability complicated by multiple episodes of cardiac asystole and refractory bradycardia in a patient with anti-NMDA encephalitis. Case Rep Neurol Med 2016;2016:7967526.Google Scholar
Kumar, MA, Jain, A, Dechant, VE, et al. Anti-N-methyl-D-aspartate receptor encephalitis during pregnancy. Arch Neurol 2010;67:884887.CrossRefGoogle ScholarPubMed
Chia, PL, Tan, K, Foo, D. Profound sinus node dysfunction in anti-N-methyl-D-aspartate receptor limbic encephalitis. Pacing Clin Electrophysiol 2013;36:e9092.Google Scholar
Yan, L, Zhang, S, Huang, X, Tang, Y, Wu, J. Clinical study of autonomic dysfunction in patients with anti-NMDA receptor encephalitis. Front Neurol 2021;12:609750.Google Scholar
Lee, M, Lawn, N, Prentice, D, Chan, J. Anti-NMDA receptor encephalitis associated with ictal asystole. J Clin Neurosci 2011;18:17161718.Google Scholar
Millichap, JJ, Goldstein, JL, Laux, LC, et al. Ictal asystole and anti-N-methyl-D-aspartate receptor antibody encephalitis. Pediatrics 2011;127:e781e786.Google Scholar
Schuele, SU, Bermeo, AC, Alexopoulos, AV, et al. Video-electrographic and clinical features in patients with ictal asystole. Neurology 2007;69:434441.Google Scholar
Britton, JW, Ghearing, GR, Benarroch, EE, Cascino, GD. The ictal bradycardia syndrome: localization and lateralization. Epilepsia 2006;47:737744.Google Scholar
Inayat, F, Hung Pinto, WA, Ahmad, S, Hussain, A, Ullah, W. Anti-N-methyl-D-aspartate receptor encephalitis associated with ictal torsades de pointes and cardiac arrest. Cureus 2019;11:e4837.Google Scholar
Bell, M, Friedman, M, Matar, M, et al. Anesthesia for pediatric patients with anti-NMDA receptor encephalitis: a retrospective case series. Paediatr Anaesth 2021;31:316322.Google Scholar
Lapebie, FX, Kennel, C, Magy, L, et al. Potential side effect of propofol and sevoflurane for anesthesia of anti-NMDA-R encephalitis. BMC Anesthesiol 2014;14:5.Google Scholar
Sato, M, Yasumoto, H, Arai, T. General anesthesia with propofol for ovarian teratoma excision associated with anti-N-methyl-D-aspartate receptor encephalitis. JA Clin Rep 2018;4:14.Google Scholar
Broderick, DK, Raines, DE, Nanji, KC. Total intravenous anesthesia using N-methyl-D-aspartate (NMDA) receptor-sparing drugs in a patient with anti-NMDA receptor encephalitis. A A Case Rep 2014;2:8385.Google Scholar
Yamanaka, D, Kawano, T, Tateiwa, H, et al. Successful management of dexmedetomidine for postoperative intensive care sedation in a patient with anti-NMDA receptor encephalitis: a case report and animal experiment. Springerplus 2016;5:1380.Google Scholar
Wada, N, Tashima, K, Motoyasu, A, et al. Anesthesia for patient with anti-N-methyl-D-aspartate receptor encephalitis: a case report with a brief review of the literature. Medicine (Baltimore) 2018;97:e13651.Google Scholar
Al Ghamdi, F, Uffman, JC, Kim, SS, Nafiu, OO, Tobias, JD. Anesthetic care for patients with anti-NMDA receptor encephalitis. Saudi J Anaesth 2020;14:164168.Google Scholar
Liu, H, Jian, M, Liang, F, Yue, H, Han, R. Anti-N-methyl-D-aspartate receptor encephalitis associated with an ovarian teratoma: two cases report and anesthesia considerations. BMC Anesthesiol 2015;15:150.Google Scholar
Dalmau, J, Lancaster, E, Martinez-Hernandez, E, Rosenfeld, MR, Balice-Gordon, R. Clinical experience and laboratory investigations in patients with anti-NMDAR encephalitis. Lancet Neurol 2011;10:6374.Google Scholar
Sakamoto, T, Endo, A, Yoshitomi, H, Tanabe, K. Takotsubo cardiomyopathy caused by intense emotional stress induced by voluntary quarantine during the coronavirus disease crisis. Circ Rep 2020;2:382383.Google Scholar
Gelow, J, Kruer, M, Yadav, V, Kaul, S. Apical ballooning resulting from limbic encephalitis. Am J Med 2009;122:583586.Google Scholar
Finsterer, J, Wahbi, K. CNS disease triggering Takotsubo stress cardiomyopathy. Int J Cardiol 2014;177:322329.Google Scholar
Dubey, D, Singh, J, Britton, JW, et al. Predictive models in the diagnosis and treatment of autoimmune epilepsy. Epilepsia 2017;58:11811189.Google Scholar
Dubey, D, Kothapalli, N, McKeon, A, et al. Predictors of neural-specific autoantibodies and immunotherapy response in patients with cognitive dysfunction. J Neuroimmunol 2018;323:6272.Google Scholar
Graus, F, Titulaer, MJ, Balu, R, et al. A clinical approach to diagnosis of autoimmune encephalitis. Lancet Neurol 2016;15:391404.Google Scholar
Ho, ACC, Mohammad, SS, Pillai, SC, et al. High sensitivity and specificity in proposed clinical diagnostic criteria for anti-N-methyl-D-aspartate receptor encephalitis. Dev Med Child Neurol 2017;59:12561260.Google Scholar
Kaneko, A, Kaneko, J, Tominaga, N, et al. Pitfalls in clinical diagnosis of anti-NMDA receptor encephalitis. J Neurol 2018;265:586596.Google Scholar
Nishida, H, Kohyama, K, Kumada, S, et al. Evaluation of the diagnostic criteria for anti-NMDA receptor encephalitis in Japanese children. Neurology 2021;96:e2070e2077.CrossRefGoogle ScholarPubMed
Nicolle, DCM, Moses, JL. A systematic review of the neuropsychological sequelae of people diagnosed with anti-N-methyl-D-aspartate receptor encephalitis in the acute and chronic phases. Arch Clin Neuropsychol 2018;33:964983.Google Scholar
Iizuka, T, Kaneko, J, Tominaga, N, et al. Association of progressive cerebellar atrophy with long-term outcome in patients with anti-N-methyl-d-aspartate receptor encephalitis. JAMA Neurol 2016;73:706713.Google Scholar
Peer, M, Pruss, H, Ben-Dayan, I, et al. Functional connectivity of large-scale brain networks in patients with anti-NMDA receptor encephalitis: an observational study. Lancet Psychiatry 2017;4:768774.Google Scholar
Finke, C, Kopp, UA, Pajkert, A, et al. Structural hippocampal damage following anti-N-methyl-D-aspartate receptor encephalitis. Biol Psychiatry 2016;79:727734.Google Scholar
Phillips, OR, Joshi, SH, Narr, KL, et al. Superficial white matter damage in anti-NMDA receptor encephalitis. J Neurol Neurosurg Psychiatry 2018;89:518525.CrossRefGoogle ScholarPubMed
Sonderen, AV, Arends, S, Tavy, DLJ, et al. Predictive value of electroencephalography in anti-NMDA receptor encephalitis. J Neurol Neurosurg Psychiatry 2018;89:11011106.Google Scholar
Jeannin-Mayer, S, Andre-Obadia, N, Rosenberg, S, et al. EEG analysis in anti-NMDA receptor encephalitis: description of typical patterns. Clin Neurophysiol 2019;130:289296.CrossRefGoogle ScholarPubMed
Yuan, J, Guan, H, Zhou, X, et al. Changing brain metabolism patterns in patients with ANMDARE: serial 18F-FDG PET/CT findings. Clin Nucl Med 2016;41:366370.Google Scholar
Probasco, JC, Solnes, L, Nalluri, A, et al. Abnormal brain metabolism on FDG-PET/CT is a common early finding in autoimmune encephalitis. Neurol Neuroimmunol Neuroinflamm 2017;4:e352.Google Scholar
Lagarde, S, Lepine, A, Caietta, E, et al. Cerebral (18)fluorodeoxy-glucose positron emission tomography in paediatric anti N-methyl-D-aspartate receptor encephalitis: acase series. Brain Dev 2016;38:461470.Google Scholar
Leypoldt, F, Hoftberger, R, Titulaer, MJ, et al. Investigations on CXCL13 in anti-N-methyl-D-aspartate receptor encephalitis: a potential biomarker of treatment response. JAMA Neurol 2015;72:180186.Google Scholar
Chen, J, Ding, Y, Zheng, D, et al. Elevation of YKL-40 in the CSF of anti-NMDAR encephalitis patients is associated with poor prognosis. Front Neurol 2018;9:727.Google Scholar
Ding, YW, Pan, SY, Xie, W, Shen, HY, Wang, HH. Elevated soluble Fas and FasL in cerebrospinal fluid and serum of patients with anti-N-methyl-D-aspartate receptor encephalitis. Front Neurol 2018;9:904.Google Scholar
Iizuka, T, Yoshii, S, Kan, S, et al. Reversible brain atrophy in anti-NMDA receptor encephalitis: a long-term observational study. J Neurol 2010;257:16861691.Google Scholar
Matute, C, Palma, A, Serrano-Regal, MP, et al. N-methyl-D-aspartate receptor antibodies in autoimmune encephalopathy alter oligodendrocyte function. Ann Neurol 2020;87:670676.Google Scholar
Veciana, M, Becerra, JL, Fossas, P, et al. EEG extreme delta brush: an ictal pattern in patients with anti-NMDA receptor encephalitis. Epilepsy Behav 2015;49:280285.Google Scholar
Gillinder, L, Warren, N, Hartel, G, Dionisio, S, O’Gorman, C. EEG findings in NMDA encephalitis: a systematic review. Seizure 2019;65:2024.Google Scholar
Sands, TT, Nash, K, Tong, S, Sullivan, J. Focal seizures in children with anti-NMDA receptor antibody encephalitis. Epilepsy Res 2015;112:3136.Google Scholar
Leypoldt, F, Buchert, R, Kleiter, I, et al. Fluorodeoxyglucose positron emission tomography in anti-N-methyl-D-aspartate receptor encephalitis: distinct pattern of disease. J Neurol Neurosurg Psychiatry 2012;83:681686.Google Scholar
Peng, Y, Liu, B, Pei, S, et al. Higher CSF levels of NLRP3 inflammasome is associated with poor prognosis of anti-N-methyl-D-aspartate receptor encephalitis. Front Immunol 2019;10:905.Google Scholar
Li, J, Gu, Y, An, H, et al. Cerebrospinal fluid light and heavy neurofilament level increased in anti-N-methyl-d-aspartate receptor encephalitis. Brain Behav 2019;9:e01354.Google Scholar
Zou, C, Pei, S, Yan, W, et al. Cerebrospinal fluid osteopontin and inflammation-associated cytokines in patients with anti-N-methyl-D-aspartate receptor encephalitis. Front Neurol 2020;11:519692.Google Scholar
Martinez-Hernandez, E, Horvath, J, Shiloh-Malawsky, Y, et al. Analysis of complement and plasma cells in the brain of patients with anti-NMDAR encephalitis. Neurology 2011;77:589593.Google Scholar
Camdessanche, JP, Streichenberger, N, Cavillon, G, et al. Brain immunohistopathological study in a patient with anti-NMDAR encephalitis. Eur J Neurol 2011;18:929931.Google Scholar
Day, GS, Laiq, S, Tang-Wai, DF, Munoz, DG. Abnormal neurons in teratomas in NMDAR encephalitis. JAMA Neurol 2014;71:717724.Google Scholar
Nolan, A, Buza, N, Margeta, M, Rabban, JT. Ovarian teratomas in women with anti-N-methyl-D-aspartate receptor encephalitis: topography and composition of immune cell and neuroglial populations is compatible with an autoimmune mechanism of disease. Am J Surg Pathol 2019;43:949964.Google Scholar
Hong, SB, Shin, YW, Shin, YW, Lee, SK, Chu, K. Occult growing teratoma as the cause of protracted symptoms in a patient with anti-NMDA-receptor encephalitis and prior ovarian teratoma removal: implications for continued monitoring and treatment. J Clin Neurol 2021;17:131133.Google Scholar
Dabner, M, McCluggage, WG, Bundell, C, et al. Ovarian teratoma associated with anti-n-methyl D-aspartate receptor encephalitis: a report of 5 cases documenting prominent intratumoral lymphoid infiltrates. Int J Gynecol Pathol 2012;31:429437.Google Scholar
Johnson, N, Henry, C, Fessler, AJ, Dalmau, J. Anti-NMDA receptor encephalitis causing prolonged nonconvulsive status epilepticus. Neurology 2010;75:14801482.Google Scholar
Sahin, H, Abdullazade, S, Sanci, M. Mature cystic teratoma of the ovary: a cutting edge overview on imaging features. Insights Imaging 2017;8:227241.Google Scholar
Lwanga, A, Kamson, DO, Wilkins, TE, et al. Occult teratoma in a case of N-methyl-D-aspartate receptor encephalitis. Neuroradiol J 2018;31:415419.Google Scholar
Alexopoulos, H, Kosmidis, ML, Dalmau, J, Dalakas, MC. Paraneoplastic anti-NMDAR encephalitis: long term follow-up reveals persistent serum antibodies. J Neurol 2011;258:15681570.Google Scholar
Tuzun, E, Zhou, L, Baehring, JM, et al. Evidence for antibody-mediated pathogenesis in anti-NMDAR encephalitis associated with ovarian teratoma. Acta Neuropathol 2009;118:737743.Google Scholar
Jiang, XY, Lei, S, Zhang, L, et al. Co-expression of NMDA-receptor subunits NR1, NR2A, and NR2B in dysplastic neurons of teratomas in patients with paraneoplastic NMDA-receptor-encephalitis: a retrospective clinico-pathology study of 159 patients. Acta Neuropathol Commun 2020;8:130.Google Scholar
Makuch, M, Wilson, R, Al-Diwani, A, et al. N-methyl-D-aspartate receptor antibody production from germinal center reactions: therapeutic implications. Ann Neurol 2018;83:553561.Google Scholar
Abdul-Rahman, ZM, Panegyres, PK, Roeck, M, et al. Anti-N-methyl-D-aspartate receptor encephalitis with an imaging-invisible ovarian teratoma: a case report. J Med Case Rep 2016;10:296.Google Scholar
Delangle, R, Demeret, S, Canlorbe, G, et al. Anti-NMDA receptor encephalitis associated with ovarian tumor: the gynecologist point of view. Arch Gynecol Obstet 2020;302:315320.Google Scholar
Boeck, AL, Logemann, F, Krauss, T, et al. Ovarectomy despite negative imaging in anti-NMDA receptor encephalitis: effective even late. Case Rep Neurol Med 2013;2013:843192.Google Scholar
Willis, RA. A further study of the structure of teratomata. J Pathol Bacteriol 1937;45:4965.Google Scholar
Mangler, M, Trebesch de Perez, I, Teegen, B, et al. Seroprevalence of anti-N-methyl-D-aspartate receptor antibodies in women with ovarian teratoma. J Neurol 2013;260:28312835.Google Scholar
Gong, S, Zhou, M, Shi, G, et al. Absence of NMDA receptor antibodies in patients with ovarian teratoma without encephalitis. Neurol Neuroimmunol Neuroinflamm 2017;4:e344.Google Scholar
Trillsch, F, Eichhorn, P, Oliveira-Ferrer, L, et al. No need for NMDA receptor antibody screening in neurologically asymptomatic patients with ovarian teratomas. J Neurol 2018;265:431432.Google Scholar
Nosadini, M, Thomas, T, Eyre, M, et al. International consensus recommendations for the treatment of paediatric NMDAR-antibody encephalitis. Neurol Neuroimmunol Neuroinflamm 2021;8:e1052.Google Scholar
Nepal, G, Shing, YK, Yadav, JK, et al. Efficacy and safety of rituximab in autoimmune encephalitis: a meta-analysis. Acta Neurol Scand 2020;142:449459.Google Scholar
Schumacher, LT, Mann, AP, MacKenzie, JG. Agitation management in pediatric males with anti-N-methyl-D-aspartate receptor encephalitis. J Child Adolesc Psychopharmacol 2016;26:939943.Google Scholar
Mohammad, SS, Jones, H, Hong, M, et al. Symptomatic treatment of children with anti-NMDAR encephalitis. Dev Med Child Neurol 2016;58:376384.Google Scholar
Jun, JS, Seo, HG, Lee, ST, Chu, K, Lee, SK. Botulinum toxin treatment for hypersalivation in anti-NMDA receptor encephalitis. Ann Clin Transl Neurol 2017;4:830834.Google Scholar
Scott, RA, Rabinstein, AA. Paroxysmal sympathetic hyperactivity. Semin Neurol 2020;40:485491.Google Scholar
Dale, RC, Brilot, F, Duffy, LV, et al. Utility and safety of rituximab in pediatric autoimmune and inflammatory CNS disease. Neurology 2014;83:142150.Google Scholar
Lee, WJ, Lee, ST, Moon, J, et al. Tocilizumab in autoimmune encephalitis refractory to rituximab: an institutional cohort study. Neurotherapeutics 2016;13:824832.Google Scholar
Scheibe, F, Pruss, H, Mengel, AM, et al. Bortezomib for treatment of therapy-refractory anti-NMDA receptor encephalitis. Neurology 2017;88:366370.Google Scholar
Behrendt, V, Krogias, C, Reinacher-Schick, A, Gold, R, Kleiter, I. Bortezomib treatment for patients with anti-N-methyl-d-aspartate receptor encephalitis. JAMA Neurol 2016;73:12511253.Google Scholar
Cordani, R, Micalizzi, C, Giacomini, T, et al. Bortezomib-responsive refractory anti-N-methyl-D-aspartate receptor encephalitis. Pediatr Neurol 2020;103:6164.Google Scholar
Keddie, S, Crisp, SJ, Blackaby, J, et al. Plasma cell depletion with bortezomib in the treatment of refractory N-methyl-D-aspartate (NMDA) receptor antibody encephalitis: rational developments in neuroimmunological treatment. Eur J Neurol 2018;25:13841388.Google Scholar
Kim, LN, Edwards, L, Goonetilleke, N, et al. Bortezomib for the treatment of refractory anti-N-methyl-D-aspartate receptor encephalitis. Intern Med J 2020;50:15911592.Google Scholar
Lazzarin, SM, Vabanesi, M, Cecchetti, G, et al. Refractory anti-NMDAR encephalitis successfully treated with bortezomib and associated movements disorders controlled with tramadol: a case report with literature review. J Neurol 2020;267:24622468.Google Scholar
Schroeder, C, Back, C, Koc, U, et al. Breakthrough treatment with bortezomib for a patient with anti-NMDAR encephalitis. Clin Neurol Neurosurg 2018;172:2426.Google Scholar
Sveinsson, O, Granqvist, M, Forslin, Y, et al. Successful combined targeting of B- and plasma cells in treatment refractory anti-NMDAR encephalitis. J Neuroimmunol 2017;312:1518.Google Scholar
Turnbull, MT, Siegel, JL, Becker, TL, et al. Early bortezomib therapy for refractory anti-NMDA receptor encephalitis. Front Neurol 2020;11:188.Google Scholar
Zhang, XT, Wang, CJ, Wang, BJ, Guo, SG. The short-term efficacy of combined treatments targeting B cell and plasma cell in severe and refractory anti-N-methyl-D-aspartate receptor encephalitis: two case reports. CNS Neurosci Ther 2019;25:151153.Google Scholar
Wang, T, Wang, B, Zeng, Z, et al. Efficacy and safety of bortezomib in rituximab-resistant anti-N-methyl-D-aspartate receptor (anti-NMDAR) encephalitis as well as the clinical characteristics: an observational study. J Neuroimmunol 2021;354:577527.Google Scholar
Shin, YW, Lee, ST, Kim, TJ, Jun, JS, Chu, K. Bortezomib treatment for severe refractory anti-NMDA receptor encephalitis. Ann Clin Transl Neurol 2018;5:598605.Google Scholar
Ratuszny, D, Skripuletz, T, Wegner, F, et al. Case report: daratumumab in a patient with severe refractory anti-NMDA receptor encephalitis. Front Neurol 2020;11:602102.Google Scholar
Parratt, KL, Allan, M, Lewis, SJ, et al. Acute psychiatric illness in a young woman: an unusual form of encephalitis. Med J Aust 2009;191:284286.Google Scholar
Maccaferri, GE, Rossetti, AO, Dalmau, J, Berney, A. Anti-N-methyl-D-aspartate receptor encephalitis: a new challenging entity for consultation-liaison psychiatrist. Brain Disord Ther 2016;5:215.Google Scholar
Kashihara, T, Nozaki, I, Sakai, K, et al. Recovery from multidisciplinary therapy-refractory anti-NMDA receptor encephalitis after over three years of mechanical ventilation. Clin Neurol Neurosurg 2021;202:106477.Google Scholar
Lee, WJ, Lee, ST, Shin, YW, et al. Teratoma removal, steroid, IVIG, rituximab and tocilizumab (T-SIRT) in anti-NMDAR encephalitis. Neurotherapeutics 2020;18:474487.Google Scholar
Tatencloux, S, Chretien, P, Rogemond, V, et al. Intrathecal treatment of anti-N-methyl-D-aspartate receptor encephalitis in children. Dev Med Child Neurol 2015;57:9599.Google Scholar
Bravo-Oro, A, Abud-Mendoza, C, Quezada-Corona, A, Dalmau, J, Campos-Guevara, V. [Anti-N-methyl-D-aspartate (NMDA) receptor encephalitis: experience with six pediatric patients: potential efficacy of methotrexate]. Rev Neurol 2013;57:405410.Google Scholar
Dogan Onugoren, M, Golombeck, KS, Bien, C, et al. Immunoadsorption therapy in autoimmune encephalitides. Neurol Neuroimmunol Neuroinflamm 2016;3:e207.Google Scholar
Nosadini, M, Mohammad, SS, Toldo, I, Sartori, S, Dale, RC. Mycophenolate mofetil, azathioprine and methotrexate usage in paediatric anti-NMDAR encephalitis: a systematic literature review. Eur J Paediatr Neurol 2019;23:718.Google Scholar
Cooper, JJ, Afzal, KI. Safety of electroconvulsive therapy in 2 very young pediatric patients with catatonia related to anti-N-methyl-D-aspartate receptor encephalitis. J ECT 2019;35:216217.Google Scholar
Moussa, T, Afzal, K, Cooper, J, et al. Pediatric anti-NMDA receptor encephalitis with catatonia: treatment with electroconvulsive therapy. Pediatr Rheumatol Online J 2019;17:8.Google Scholar
Medina, M, Cooper, JJ. Refractory catatonia due to N-methyl-D-aspartate receptor encephalitis responsive to electroconvulsive therapy: the clinical use of the clock drawing test. J ECT 2017;33:223224.Google Scholar
Sunwoo, JS, Jung, DC, Choi, JY, et al. Successful treatment of refractory dyskinesia secondary to anti-N-methyl-D-aspartate receptor encephalitis with electroconvulsive therapy. J ECT 2016;32:e1314.Google Scholar
Matsumoto, T, Matsumoto, K, Kobayashi, T, Kato, S. Electroconvulsive therapy can improve psychotic symptoms in anti-NMDA-receptor encephalitis. Psychiatry Clin Neurosci 2012;66:242243.Google Scholar
Braakman, HM, Moers-Hornikx, VM, Arts, BM, et al. Pearls & oy-sters: electroconvulsive therapy in anti-NMDA receptor encephalitis. Neurology 2010;75:e44e46.Google Scholar
Coffey, MJ, Cooper, JJ. Electroconvulsive therapy in anti-N-methyl-D-aspartate receptor encephalitis: a case report and review of the literature. J ECT 2016;32:225229.Google Scholar
Warren, N, Grote, V, O’Gorman, C, Siskind, D. Electroconvulsive therapy for anti-N-methyl-d-aspartate (NMDA) receptor encephalitis: a systematic review of cases. Brain Stimul 2019;12:329334.Google Scholar
Creten, C, van der Zwaan, S, Blankespoor, RJ, et al. Late onset autism and anti-NMDA-receptor encephalitis. Lancet 2011;378:98.Google Scholar
Gonzalez-Valcarcel, J, Rosenfeld, MR, Dalmau, J. [Differential diagnosis of encephalitis due to anti-NMDA receptor antibodies]. Neurologia 2010;25:409413.Google Scholar
Sinha, A, Ewies, AA. Ovarian mature cystic teratoma: challenges of surgical management. Obstet Gynecol Int 2016;2016:2390178.Google Scholar
Jorge, S, Jones, NL, Chen, L, et al. Characteristics, treatment and outcomes of women with immature ovarian teratoma, 1998–2012. Gynecol Oncol 2016;142:261266.Google Scholar
Tanyi, JL, Marsh, EB, Dalmau, J, Chu, CS. Reversible paraneoplastic encephalitis in three patients with ovarian neoplasms. Acta Obstet Gynecol Scand 2012;91:630634.Google Scholar
Anderson, D, Nathoo, N, Henry, M, et al. Oophorectomy in NMDA receptor encephalitis and negative pelvic imaging. Pract Neurol 2020. doi: 10.1136/practneurol-2020-002676.Google Scholar
Masghati, S, Nosratian, M, Dorigo, O. Anti-N-methyl-aspartate receptor encephalitis in identical twin sisters: role for oophorectomy. Obstet Gynecol 2014;123:433435.Google Scholar
Hansen, HC, Klingbeil, C, Dalmau, J, et al. Persistent intrathecal antibody synthesis 15 years after recovering from anti-N-methyl-D-aspartate receptor encephalitis. JAMA Neurol 2013;70:117119.Google Scholar
Gresa-Arribas, N, Titulaer, MJ, Torrents, A, et al. Antibody titres at diagnosis and during follow-up of anti-NMDA receptor encephalitis: a retrospective study. Lancet Neurol 2014;13:167177.Google Scholar
Wang, W, Li, JM, Hu, FY, et al. Anti-NMDA receptor encephalitis: clinical characteristics, predictors of outcome and the knowledge gap in southwest China. Eur J Neurol 2016;23:621629.CrossRefGoogle ScholarPubMed
Shim, Y, Kim, SY, Kim, H, et al. Clinical outcomes of pediatric Anti-NMDA receptor encephalitis. Eur J Paediatr Neurol 2020;29:8791.Google Scholar
Zhang, Y, Liu, G, Jiang, M, et al. Clinical characteristics and prognosis of severe anti-N-methyl-D-aspartate receptor encephalitis patients. Neurocrit Care 2018;29:264272.Google Scholar
Armangue, T, Titulaer, MJ, Malaga, I, et al. Pediatric anti-N-methyl-D-aspartate receptor encephalitis-clinical analysis and novel findings in a series of 20 patients. J Pediatr 2013;162:850856.Google Scholar
Byrne, S, Walsh, C, Hacohen, Y, et al. Earlier treatment of NMDAR antibody encephalitis in children results in a better outcome. Neurol Neuroimmunol Neuroinflamm 2015;2:e130.Google Scholar
Gordon-Lipkin, E, Yeshokumar, AK, Saylor, D, Arenivas, A, Probasco, JC. Comparative outcomes in children and adults with Anti-N-methyl-D-aspartate (anti-NMDA) receptor encephalitis. J Child Neurol 2017;32:930935.Google Scholar
Balu, R, McCracken, L, Lancaster, E, et al. A score that predicts 1-year functional status in patients with anti-NMDA receptor encephalitis. Neurology 2019;92:e244e252.Google Scholar
Peng, Y, Dai, F, Liu, L, et al. Validation of the NEOS score in Chinese patients with anti-NMDAR encephalitis. Neurol Neuroimmunol Neuroinflamm 2020;7:e860.Google Scholar
Finke, C, Kopp, UA, Pruss, H, et al. Cognitive deficits following anti-NMDA receptor encephalitis. J Neurol Neurosurg Psychiatry 2012;83:195198.Google Scholar
Blum, RA, Tomlinson, AR, Jette, N, et al. Assessment of long-term psychosocial outcomes in anti-NMDA receptor encephalitis. Epilepsy Behav 2020;108:107088.Google Scholar
de Bruijn, M, Aarsen, FK, van Oosterhout, MP, et al. Long-term neuropsychological outcome following pediatric anti-NMDAR encephalitis. Neurology 2018;90:e1997e2005.Google Scholar
Tomlinson, AR, Blum, RA, Jette, N, et al. Assessment of care transitions and caregiver burden in anti-NMDA receptor encephalitis. Epilepsy Behav 2020;108:107066.Google Scholar
Cainelli, E, Nosadini, M, Sartori, S, Suppiej, A. Neuropsychological and psychopathological profile of anti-NNMDA encephalitis: a possible pathophysiological model for pediatric neuropsychiatric disorders. Arch Clin Neuropsychol 2019;34:13091319.Google Scholar
Arnulf, I. Kleine-Levin syndrome. Sleep Med Clin 2015;10:151161.CrossRefGoogle ScholarPubMed
Lim, JA, Lee, ST, Moon, J, et al. Development of the clinical assessment scale in autoimmune encephalitis. Ann Neurol 2019;85:352358.Google Scholar
Gabilondo, I, Saiz, A, Galan, L, et al. Analysis of relapses in anti-NMDAR encephalitis. Neurology 2011;77:996999.Google Scholar
Joubert, B, Garcia-Serra, A, Planaguma, J, et al. Pregnancy outcomes in anti-NMDA receptor encephalitis: case series. Neurol Neuroimmunol Neuroinflamm 2020;7:e668.Google Scholar
Chourasia, N, Watkins, MW, Lankford, JE, Kass, JS, Kamdar, A. An infant born to a mother with anti-N-methyl-D-aspartate receptor encephalitis. Pediatr Neurol 2018;79:6568.Google Scholar
Lamale-Smith, LM, Moore, GS, Guntupalli, SR, Scott, JB. Maternal–fetal transfer of anti-N-methyl-D-aspartate receptor antibodies. Obstet Gynecol 2015;125:10561058.Google Scholar
Hilderink, M, Titulaer, MJ, Schreurs, MW, Keizer, K, Bunt, JE. Transient anti-NMDAR encephalitis in a newborn infant due to transplacental transmission. Neurol Neuroimmunol Neuroinflamm 2015;2:e126.Google Scholar
Jagota, P, Vincent, A, Bhidayasiri, R. Transplacental transfer of NMDA receptor antibodies in an infant with cortical dysplasia. Neurology 2014;82:16621663.Google Scholar
Das, G, Damotte, V, Gelfand, JM, et al. Rituximab before and during pregnancy: a systematic review, and a case series in MS and NMOSD. Neurol Neuroimmunol Neuroinflamm 2018;5:e453.Google Scholar
Kumpfel, T, Thiel, S, Meinl, I, et al. Anti-CD20 therapies and pregnancy in neuroimmunologic disorders: a cohort study from Germany. Neurol Neuroimmunol Neuroinflamm 2021;8:e913.Google Scholar
Fleischmann, R, Pruss, H, Rosche, B, et al. Severe cognitive impairment associated with intrathecal antibodies to the NR1 subunit of the N-methyl-D-aspartate receptor in a patient with multiple sclerosis. JAMA Neurol 2015;72:9699.Google Scholar
Ramberger, M, Bsteh, G, Schanda, K, et al. NMDA receptor antibodies: a rare association in inflammatory demyelinating diseases. Neurol Neuroimmunol Neuroinflamm 2015;2:e141.Google Scholar
Du, L, Wang, H, Zhou, H, et al. Anti-NMDA receptor encephalitis concomitant with myelin oligodendrocyte glycoprotein antibody diseases: a retrospective observational study. Medicine (Baltimore) 2020;99:e21238.Google Scholar
Tao, S, Zhang, Y, Ye, H, Guo, D. AQP4-IgG-seropositive neuromyelitis optica spectrum disorder (NMOSD) coexisting with anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis: a case report and literature review. Mult Scler Relat Disord 2019;35:185192.Google Scholar
Martinez-Hernandez, E, Guasp, M, Garcia-Serra, A, et al. Clinical significance of anti-NMDAR concurrent with glial or neuronal surface antibodies. Neurology 2020;94:e2302e2310.Google Scholar
Dubey, D, Hinson, SR, Jolliffe, EA, et al. Autoimmune GFAP astrocytopathy: prospective evaluation of 90 patients in 1 year. J Neuroimmunol 2018;321:157163.Google Scholar
Kunchok, A, Zekeridou, A, McKeon, A. Autoimmune glial fibrillary acidic protein astrocytopathy. Curr Opin Neurol 2019;32:452458.Google Scholar
Hjalmarsson, A, Blomqvist, P, Skoldenberg, B. Herpes simplex encephalitis in Sweden, 1990–2001: incidence, morbidity, and mortality. Clin Infect Dis 2007;45:875880.Google Scholar
Gnann, JW Jr., Whitley, RJ. Herpes simplex encephalitis: an update. Curr Infect Dis Rep 2017;19:13.Google Scholar
Skoldenberg, B, Aurelius, E, Hjalmarsson, A, et al. Incidence and pathogenesis of clinical relapse after herpes simplex encephalitis in adults. J Neurol 2006;253:163170.Google Scholar
Schleede, L, Bueter, W, Baumgartner-Sigl, S, et al. Pediatric herpes simplex virus encephalitis: a retrospective multicenter experience. J Child Neurol 2013;28:321331.Google Scholar
Kimura, H, Aso, K, Kuzushima, K, et al. Relapse of herpes simplex encephalitis in children. Pediatrics 1992;89:891894.Google Scholar
Barthez-Carpentier, MA, Rozenberg, F, Dussaix, E, et al. Relapse of herpes simplex encephalitis. J Child Neurol 1995;10:363368.Google Scholar
Ito, Y, Kimura, H, Yabuta, Y, et al. Exacerbation of herpes simplex encephalitis after successful treatment with acyclovir. Clin Infect Dis 2000;30:185187.Google Scholar
De Tiege, X, Rozenberg, F, Des Portes, V, et al. Herpes simplex encephalitis relapses in children: differentiation of two neurologic entities. Neurology 2003;61:241243.Google Scholar
Hacohen, Y, Deiva, K, Pettingill, P, et al. N-methyl-D-aspartate receptor antibodies in post-herpes simplex virus encephalitis neurological relapse. Mov Disord 2014;29:9096.Google Scholar
Mohammad, SS, Sinclair, K, Pillai, S, et al. Herpes simplex encephalitis relapse with chorea is associated with autoantibodies to N-methyl-D-aspartate receptor or dopamine-2 receptor. Mov Disord 2014;29:117122.Google Scholar
Petit-Pedrol, M, Armangue, T, Peng, X, et al. Encephalitis with refractory seizures, status epilepticus, and antibodies to the GABAA receptor: a case series, characterisation of the antigen, and analysis of the effects of antibodies. Lancet Neurol 2014;13:276286.Google Scholar
Armangue, T, Moris, G, Cantarin-Extremera, V, et al. Autoimmune post-herpes simplex encephalitis of adults and teenagers. Neurology 2015;85:17361743.Google Scholar
Armangue, T, Leypoldt, F, Malaga, I, et al. Herpes simplex virus encephalitis is a trigger of brain autoimmunity. Ann Neurol 2014;75:317323.Google Scholar
Lim, HK, Seppanen, M, Hautala, T, et al. TLR3 deficiency in herpes simplex encephalitis: high allelic heterogeneity and recurrence risk. Neurology 2014;83:18881897.Google Scholar
Lafaille, FG, Pessach, IM, Zhang, SY, et al. Impaired intrinsic immunity to HSV-1 in human iPSC-derived TLR3-deficient CNS cells. Nature 2012;491:769773.Google Scholar
Armangue, T, Baucells, BJ, Vlagea, A, et al. Toll-like receptor 3 deficiency in autoimmune encephalitis post-herpes simplex encephalitis. Neurol Neuroimmunol Neuroinflamm 2019;6:e611.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Anti-NMDAR Encephalitis
  • Josep Dalmau, Universitat de Barcelona, Francesc Graus, Universitat de Barcelona
  • Book: Autoimmune Encephalitis and Related Disorders of the Nervous System
  • Online publication: 27 January 2022
  • Chapter DOI: https://doi.org/10.1017/9781108696722.009
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Anti-NMDAR Encephalitis
  • Josep Dalmau, Universitat de Barcelona, Francesc Graus, Universitat de Barcelona
  • Book: Autoimmune Encephalitis and Related Disorders of the Nervous System
  • Online publication: 27 January 2022
  • Chapter DOI: https://doi.org/10.1017/9781108696722.009
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Anti-NMDAR Encephalitis
  • Josep Dalmau, Universitat de Barcelona, Francesc Graus, Universitat de Barcelona
  • Book: Autoimmune Encephalitis and Related Disorders of the Nervous System
  • Online publication: 27 January 2022
  • Chapter DOI: https://doi.org/10.1017/9781108696722.009
Available formats
×