Skip to main content Accessibility help
×
  • Cited by 21
Publisher:
Cambridge University Press
Online publication date:
May 2011
Print publication year:
2011
Online ISBN:
9780511973628

Book description

This graduate-level textbook provides an elementary exposition of the theory of automorphic representations and L-functions for the general linear group in an adelic setting. Definitions are kept to a minimum and repeated when reintroduced so that the book is accessible from any entry point, and with no prior knowledge of representation theory. The book includes concrete examples of global and local representations of GL(n), and presents their associated L-functions. In Volume 1, the theory is developed from first principles for GL(1), then carefully extended to GL(2) with complete detailed proofs of key theorems. Several proofs are presented for the first time, including Jacquet's simple and elegant proof of the tensor product theorem. In Volume 2, the higher rank situation of GL(n) is given a detailed treatment. Containing numerous exercises by Xander Faber, this book will motivate students and researchers to begin working in this fertile field of research.

Reviews

‘In this book, the authors give a thorough yet elementary introduction to the theory of automorphic forms and L-functions for the general linear group of rank two over rational adeles … The exposition is accompanied by exercises after every chapter. Definitions are repeated when needed, and previous results are always cited, so the book is very accessible.’

Marcela Hanzer Source: Zentralblatt MATH

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

References
References
Ahlfors, L. V., Complex analysis: An introduction to the theory of analytic functions of one complex variable, 3rd ed. International Series in Pure and Applied Mathematics. McGraw-Hill Book Co., New York, 1978.
Anshel, I. and Goldfeld, D., Calculus a computer algebra approach, International Press, Boston, 1996.
Atiyah, M. F. and Macdonald, I. G., Introduction to commutative algebra, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1969.
Atkin, A. O. L. and Lehner, J., Hecke operators on Γ0(m), Math. Ann. 185 (1970), 134–160.
Badulescu, I. A. and Renard, D., Unitary dual of GL(n) at Archimedean places and global Jacquet-Langlands correspondence, preprint available at: arxiv.org/pdf/0905.4143.
Baruch, E. M., A proof of Kirillov's conjecture, Ann. of Math. (2) 158 (2003), no. 1, 207–252.
Bass, H., Lazard, M. and Serre, J.-P., Bull. Amer. Math. Soc. 70 (1964), 385–392.
Bass, H., Milnor, J. and Serre, J.-P., Solution of the congruence subgroup problem for SLn (n ≥ 3) and Sp2n (n ≥ 2), Inst. Hautes Études Sci. Publ. Math. No. 33, (1967), 59–137.
Bernstein, J. N., All reductive p-adic groups are of type I, (Russian) Funkcional. Anal. i Prilozen. 8 (1974), no. 2, 3–6.
Bernstein, J. N., P-invariant distributions on GL(N) and the classification of unitary representations of GL(N) (non-Archimedean case), Lie group representations, II (College Park, Md., 1982/1983), 50–102, Lecture Notes in Math., 1041, Springer, Berlin, 1984.
Bernstein, J. N. and Gelbart, S. (Editors), An Introduction to the Langlands Program, Birkhäuser, Boston, 2003.
Bernstein, I. N. and Zelevinsky, A. V., Representations of the group GL(n,F), where F is a local non-Archimedean field, (Russian) Uspehi Mat. Nauk 31 (1976), no. 3(189), 5–70.
Bernstein, I. N. and Zelevinsky, A. V., Induced representations of reductive p-adic groups. 1, Ann. Sci. École Norm. Sup. (4) 10 (1977), no. 4, 441–472.
Borel, A., Introduction to automorphic forms, Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965), pp. 199–210, Amer. Math. Soc., Providence, RI, 1966.
Borel, A., Automorphic L-functions, in Automorphic forms, representations and L-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 2, pp. 27–61, Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, RI, 1979.
Bourbaki, N., Integration I, Chapters 1–6. Translated from the 1959, 1965 and 1967 French originals by Sterling K. Berberian, Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 2004.
Bump, D., Automorphic forms and representations, Cambridge Studies in Advanced Mathematics, 55, Cambridge University Press, Cambridge, 1997.
Bushnell, C. J. and Kutzko, P. C., The admissible dual of GL(N) via compact open subgroups, Annals of Mathematics Studies, 129, Princeton University Press, Princeton, NJ, 1993.
Casselman, W., Introduction to the theory of admissible representations of p-adic reductive groups, unpublished lecture notes, available at http://www.math.ubc.ca/~cass/research.html.
Casselman, W.On some results of Atkin and Lehner, Math. Ann. 201 (1973), 301–314.
Cassels, J. W. S., Local fields, London Mathematical Society Student Texts, 3. Cambridge University Press, Cambridge, 1986.
Clozel, L., Progrès récents vers la classification du dual unitaire des groupes réductifs réels, Séminaire Bourbaki, Vol. 1986/87. Astèrisque No. 152–153 (1987), 5, 229–252 (1988).
Cogdell, J. W., L-functions and converse theorems for GLn, in Automorphic Forms and Applications (edited by Sarnak, Shahidi), IAS/Park Cith Mathematics Series, Vol 12, 2002.
Davenport, H., Multiplicative number theory, Third edition. Revised and with a preface by Hugh L., Montgomery, Graduate Texts in Mathematics, 74. Springer-Verlag, New York, 2000.
Deligne, P., Formes modulaires et représentations l-adiques, Séminaire Bourbaki vol. 1968/69 Exposés 347–363, Lecture Notes in Mathematics, 179, Springer-Verlag, Berlin, New York, 1971.
Deligne, P., La conjecture de Weil. I, (French) Inst. Hautes Études Sci. Publ. Math. No. 43 (1974), 273–307.
Eichler, M., Allgemeine Kongruenzklasseneinteilungen der Idealen einfacher Algebren über algebraischen Zahlkörpern and ihrer L-Reihen, J., Reine Angew. Math., 179 (1938), 227–251.
Fesenko, I., Local reciprocity cycles. Invitation to higher local fields, (Mnster, 1999), 293–298 (electronic), Geom. Topol. Monogr., 3, Geom. Topol. Publ., Coventry, 2000.
Fesenko, I., Analysis on arithmetic schemes I. Kazuya Kato's fiftieth birthday, Doc. Math. (2003), Extra Vol., 261–284.
Fesenko, I., Adelic approach to the zeta function of arithmetic schemes in dimension two, Mosc. Math. J. 8 (2008), no. 2, 273–317, 399–400.
Flath, D., Decomposition of representations into tensor products, Automorphic forms, representations and L-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 1, pp. 179–183, Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, RI, 1979.
Fujisaki, G., On the zeta-functions of the simple algebra over the field of rational numbersJ. Fac. Sci. Univ. Tokyo. Sect. I, 7 (1958), 567–604.
Fujisaki, G., On the L-functions of simple algebras over the field of rational numbersJ. Fac. Sci. Univ. Tokyo. Sect. I, 9 (1962), 293–311.
Fulton, W. and Harris, J., Representation theory a first course, Graduate Texts in Math., vol. 129, Readings in Mathematics, Springer Verlag, New York, 1991.
Garrett, P. B., Holomorphic Hilbert modular forms, The Wadsworth & Brooks/Cole Mathematics Series, Wadsworth & Brooks/Cole Advanced Books & Software, Pacific Grove, CA, 1990.
Gelfand, I. M., Spherical functions in symmetric Riemann spaces, (Russian) Doklady Akad. Nauk SSSR (N.S.) 70, (1950), 5–8.
Gelfand, I. M., Graev, M. I. and Pyatetskii-Shapiro, I. I., Representation theory and automorphic functions, Translated from the Russian by K. A., Hirsch. Reprint of the 1969 edition. Generalized Functions, 6. Academic Press, Inc., Boston, MA, 1990.
Gelfand, I. M. and Kajdan, D. A., Representations of the group GL(n, K) where K is a local field, Lie groups and their representations (Proc. Summer School, Bolyai János Math. Soc., Budapest, 1971), pp. 95–118. Halsted, New York, 1975.
Godement, R., Les fonctions des algebres simples, I, II, Séminaire Bourbaki, 1958/1959, Exposé p. 171, 176.
Godement, R., Notes on Jacquet-Langlands theory, mimeographed notes, Institute for Advanced Study, Princeton, NJ, 1970.
Godement, R. and Jacquet, H., Zeta functions of simple algebras, Lecture Notes in Mathematics, Vol. 260, Springer-Verlag, Berlin-New York, 1972.
Goldfeld, D., Automorphic forms and L-functions for the group GL(n, ℝ), Cambridge Studies in Advanced Mathematics, 99, Cambridge University Press, Cambridge, 2006.
Gradshteyn, I. S. and Ryzhik, I. M., Table of integrals, series, and products, Translated from the Russian. Translation edited and with a preface by Alan, Jeffrey and Daniel, Zwillinger. Seventh edition, Elsevier/Academic Press, Amsterdam, 2007.
Gross, B. H. and Reeder, M., From Laplace to Langlands via representations of orthogonal groups, Bulletin of the AMS, Vol. 43, no. 2 (2006), 163–205.
Halmos, P. R., Measure Theory, D. Van Nostrand Company, Inc., New York, NY, 1950.
Harish-Chandra, , Discrete series for semisimple Lie groups, II, Explicit determination of the characters, Acta Math. 116 (1966), 1–111.
Harish-Chandra, , Harmonic analysis on reductive p-adic groups, Notes by G., van Dijk. Lecture Notes in Mathematics, Vol. 162. Springer-Verlag, Berlin-New York, 1970.
Hecke, E., Über die Bestimmung Dirichletscher Reihen durch ihre Funktionalgleichung, Math. Ann., 113 (1936), 664–699.
Hecke, E., Über Modulfunktionen und die Dirichletschen Reihen mit Eulerscher Produktententwicklung, I, Math. Ann. 114 (1937), 1–28.
Hecke, E., Über Modulfunktionen und die Dirichletschen Reihen mit Eulerscher Produktententwicklung, II, Math. Ann. 114 (1937), 316–351.
Hewitt, E. and Ross, K. A., Abstract harmonic analysis, Vol. I. Structure of topological groups, integration theory, group representations, Second edition, Grundlehren der Mathematischen Wissenschaften (Fundamental Principles of Mathematical Sciences), 115 Springer-Verlag, Berlin-New York, 1979.
Hey, K., Analytische Zahlentheorie in System hyperkomplexer Zahlen, Diss., Hamburg, 1929.
Howe, R., The Fourier transform and germs of characters (case of Gln over a p-adic field), Math. Ann. 208 (1974), 305–322.
Howe, R. E., Some qualitative results on the representation theory of GLn over a p-adic field, Pacific J. Math. 73 (1977), no. 2, 479–538.
Iwaniec, H., Spectral methods of automorphic forms, Second edition, Graduate Studies in Mathematics, 53. American Mathematical Society, Providence, RI; Revista Matemática Iberoamericana, Madrid, 2002.
Iwasawa, K., Some properties of (L)-groups, Proceedings of the International Congress of Mathematicians, Cambridge, Mass., (1950), vol. 2, pp. 447–450. Amer. Math. Soc., Providence, RI, 1952.
Iwasawa, K., Letter to J. Dieudonné, Zeta functions in geometry (Tokyo, 1990), 445–450, Adv. Stud. Pure Math., 21, Kinokuniya, Tokyo, 1992.
Jacquet, H., Fonctions de Whittaker associées aux groupes de Chevalley, (French) Bull. Soc. Math. France 95 (1967), 243–309.
Jacquet, H., Representations des groupes linaires p-adiques, (French) Theory of group representations and Fourier analysis (Centro Internaz. Mat. Estivo (C.I.M.E.), II Ciclo, Montecatini Terme, 1970), pp. 119–220.
Jacquet, H., Sur les représentations des groupes réductifs p-adiques, (French. English summary) C. R. Acad. Sci. Paris Sér. A-B 280 (1975).
Jacquet, H., Principal L-functions of the linear group, Automorphic forms, representations and L-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 2, pp. 63–86, Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, RI, 1979.
Jacquet, H., Principal L-functions for GL(n), Representation theory and automorphic forms (Edinburgh, 1996), 321–329, Proc. Sympos. Pure Math., 61, Amer. Math. Soc., Providence, RI, 1997.
Jacquet, H. and Langlands, R. P., Automorphic forms on GL(2), Lecture Notes in Mathematics, Vol. 114. Springer-Verlag, Berlin-New York, 1970.
Jacquet, H. and Shalika, J. A., On Euler products and the classification of automorphic forms, I, Amer. J. Math. 103(3) (1981), 499–558.
Jacquet, H. and Shalika, J. A., On Euler products and the classification of automorphic forms, II, Amer. J. Math. 103(4) (1981), 777–815.
Jacquet, H., Piatetski-Shapiro, I. I. and Shalika, J. A., Automorphic forms on GL(3), I, Ann. of Math. (2), 109(1) (1979), 169–212.
Jacquet, H., Piatetski-Shapiro, I. I. and Shalika, J. A., Automorphic forms on GL(3), II, Ann. of Math. (2), 109(2), (1979) 213–258.
Jacquet, H., Piatetski-Shapiro, I. I. and Shalika, J. A., Conducteur des représentations du groupe linéaire, Math. Ann. 256 (1981), no. 2, 199–214.
Kato, K. and Saito, S., Global class field theory of arithmetic schemes, Contempr. Math., vol. 55, AMS, Providence, RI (1986), 255–331.
Kirillov, A. A., Infinite-dimensional unitary representations of a second-order matrix group with elements in a locally compact field, (Russian) Dokl. Akad. Nauk SSSR 150 (1963), 740–743.
Kirillov, A. A., Classification of irreducible unitary representations of a group of second-order matrices with elements from a locally compact field, Dokl. Akad. Nauk SSSR 168 273–275 (Russian); translated as Soviet Math. Dokl. 7 (1966), 628–631.
Knapp, A. and Trapa, P. E., Representations of semisimple Lie groups, in Representation theory of Lie groups (Park City, UT, 1998), 7–87, IAS/Park City Math. Ser., 8, Amer. Math. Soc., Providence, RI, 2000.
Knapp, A. W. and Vogan, D. A., Cohomological Induction and Unitary Representations, Princeton University Press, Princeton, NJ, 1995.
Lang, S., Real analysis, Second edition. Addison-Wesley Publishing Company, Advanced Book Program, Reading, MA, 1983.
Langlands, R. P., The work of Robert Langlands, http://publications.ias.edu/rpl/
Langlands, R. P., On the classification of irreducible representations of real algebraic groups, Representation theory and harmonic analysis on semisimple Lie groups, 101–170, Math. Surveys Monogr., 31, Amer. Math. Soc., Providence, RI, 1989.
Laumon, G. and Ngô, B. C., Le lemme fondamental pour les groupes unitaires, Ann. of Math. (2) 168 (2008), no. 2, 477–573.
Maass, H., Über eine neue Art von nicht analytischen automorphen Funktionen and die Bestimmung Dirichletscher Reihen lurch Funktionalgleichung, Math. Ann., 121 (1949), 141–183.
Maass, H., Über automorphe Funktionen von mehreren Ver änderlichen und die Bestimmung von Dirichletschen Reihen durch Funktionalgleichungen, (German) Ber. Math.-Tagung Tübingen 1946 (1946), 100–102 (1947).
Maass, H., Die Differentialgleichungen in der Theorie der elliptischen Modulfunktionen, Math. Ann. 125 (1953), 235–263.
Maass, H., Lectures on modular functions of one complex variable, Second edition, Tata Institute of Fundamental Research Lectures on Mathematics and Physics, 29, Tata Institute of Fundamental Research, Bombay, 1983.
Magnus, W., Noneuclidean tesselations and their groups, Academic Press, New York, 1974.
Margulis, G. A., On the arithmeticity of discrete groups, Soviet Math. Dokl. 10 (1969), 900–902; translated from Dokl. Akad. Nauk SSSR 187 (1969), 518–520 (Russian).
Margulis, G. A., Discrete subgroups of semisimple Lie groups, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 17, Springer-Verlag, Berlin, 1991.
Mautner, F. I., Spherical functions over p-adic fields, I, Amer. J. Math. 80 (1958), 441–457.
Mautner, F. I., Spherical functions over p-adic fields, II, Amer. J. Math. 86 (1964), 171–200.
Mennicke, J. L., Finite factor groups of the unimodular group, Ann. of Math. (2) 81 (1965), 31–37.
Miyake, T., On automorphic forms on GL2 and Hecke operators, Ann. of Math. (2) 94 (1971), 174–189.
Miyake, T., Modular forms, Translated from the 1976 Japanese original by Yoshitaka Maeda. Reprint of the first 1989 English edition. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2006.
Moeglin, C. and Waldspurger, J.-L., Spectral decomposition and Eisenstein series, Une paraphrase de l'criture [A paraphrase of Scripture]. Cambridge Tracts in Mathematics, 113, Cambridge University Press, Cambridge, 1995.
Moy, A. and Sally, P. Jr., Supercuspidal representations of SLn over a p-adic field, Duke J. Math. 51 (1984), 149–162.
Müller, W., The mean square of Dirichlet series associated with automorphic forms, Monatsh. Math. 113 (1992), no. 2, 121–159.
Munkres, J. R., Topology: a first course, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1975.
Murty, R. M., Introduction to p-adic analytic number theory, AMS/IP Studies in Advanced Mathematics, 27, American Mathematical Society, Providence, RI; International Press, Somerville, MA, 2002.
Nachbin, L., The Haar integral, D. Van Nostrand Co., Inc., Princeton, NJ-Toronto-London, 1965.
Ngô, B. C., Le lemme fondamental pour les algebres de Lie, (2008), preprint available at: arxiv:0801.0446v3.
Osborne, M. S., On the Schwartz-Bruhat space and the Paley-Wiener theorem for locally compact abelian groups, J. Functional Analysis 19 (1975), 40–49.
Parshin, A. N., On the arithmetic of two-dimensional schemes, I. Distributions and residues, Izv. Akad. Nauk SSSR Ser. Mat. 40 (1976), no. 4, 736–773.
Piatetski-Shapiro, I. I., Euler subgroups. Lie groups and their representations, (Proc. Summer School, Bolyai Jnos Math. Soc., Budapest, 1971), pp. 597–620, Halsted, New York, 1975.
Prasad, D. and Raghuram, A., Representation theory of GL(n) over non-Archimedean local fields, School on Automorphic Forms on GL(n), 159–205, ICTP Lect. Notes, 21, Abdus Salam Int. Cent.Theoret. Phys., Trieste, 2008.
Raghunathan, M. S., The congruence subgroup problem, Proc. Indian Acad. Sci. Math. Sci. 114 (2004), no. 4, 299–308.
Ramanujan, S., On certain arithmetical functions, Transactions of the Cambridge Philosophical Society, XXII, No. 9, (1916), 159–184.
Rankin, R. A., Diagonalizing Eisenstein series, I, Analytic number theory (Allerton Park, IL, 1989), 429–450, Progr. Math., 85, Birkhäuser Boston, Boston, MA, 1990.
Rankin, R. A., Diagonalizing Eisenstein series, III, Discrete groups and geometry (Birmingham, 1991), 196–208, London Math. Soc. Lecture Note Ser., 173, Cambridge Univ. Press, Cambridge, 1992.
Rankin, R. A., Diagonalizing Eisenstein series, II, A tribute to Emil Grosswald: number theory and related analysis, 525–537, Contemp. Math., 143, Amer. Math. Soc., Providence, RI, 1993.
Rankin, R. A., Diagonalizing Eisenstein series, IV, The Rademacher legacy to mathematics (University Park, PA, 1992), 107–118, Contemp. Math., 166, Amer. Math. Soc., Providence, RI, 1994.
Riemann, B., Ueber die Anzahl der Primzahlen unter einer gegebener Grösse, Monatsberichte der Berliner Akad, (Nov. 1859); Werke (2nd ed.), 145–153.
Rodier, F., Représentations de GL(n, k) où k est un corps p-adique, (French) [Representations of GL(n, k) where k is a p-adic field] Bourbaki Seminar, Vol. 1981/1982, pp. 201–218, Astérisque, 92–93, Soc. Math. France, Paris, 1982.
Roelcke, W., Das Eigenwertproblem der automorphen Formen in der hyperbolischen Ebene, I, II, (German) Math. Ann. 167 (1966), 292–337; ibid. 168 (1966), 261–324.
Rudin, W., Fourier analysis on groups, Interscience Tracts in Pure and Applied Mathematics, No. 12 Interscience Publishers (a division of John Wiley and Sons), New York-London, 1962.
Sahi, S., A simple construction of Stein's complementary series representations, Proc. Amer. Math. Soc. 108 (1990), no. 1, 257–266.
Sarnak, P., Selberg's eigenvalue conjecture, Notices of the AMS, Vol. 42, number 11, number 4 (1995), 1272–1277.
Selberg, A., Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series, J. Indian Math. Soc. (N.S.) 20 (1956), 47–87.
Selberg, A., On the estimation of Fourier coefficients of modular forms, 1965 Proc. Sympos. Pure Math., Vol. VIII pp. 1–15 Amer. Math. Soc., Providence, RI.
Selberg, A., Collected papers. Vol. I, Springer-Verlag, Berlin, 1989.
Selberg, A., Collected papers, Vol. II, Springer-Verlag, Berlin, 1991.
Serre, J.-P., Représentations Linéaires des Groupes Finis, 3rd Ed, Hermann, Paris, 1998.
Shalika, J. A., Representations of the two by two unimodular group over local fields, IAS notes (1966).
Shalika, J. A., On the multiplicity of the spectrum of the space of cusp forms of GLn, Bull. Amer. Math. Soc. 79 (1973), 454–461.
Shalika, J. A., The multiplicity one theorem for GL(n), Annals of Math. 100 (1974), 171–193.
Shimura, G., Arithmetic Theory of Automorphic Functions, Princeton Univ. Press, 1971.
Speh, B., Unitary representations of Gl(n, R) with nontrivial (g, K)-cohomology, Invent. Math. 71 (1983), no. 3, 443–465.
Springer, T. A., Linear Algebraic Groups, 2nd EdBirkhäuser, 1998.
Stein, E. M., Analysis in matrix spaces and some new representations of SL (N, ℂ), Ann. of Math. (2) 86 (1967), 461–490.
Tadić, M., Unitary representations of general linear group over real and complex field, preprint MPI/SFB85–22, Bonn, 1985.
Tadić, M., Classification of unitary representations in irreducible representations of general linear group (non-archimedean case), Ann. scient. Éc. Norm. Sup., 4 série, t. 19 (1986), 335–382.
Tadić, M., An external approach to unitary representations, Bull. Amer. Math. Soc. (N.S.) 28 (1993), no. 2, 215–252.
Tamagawa, T., On the ξ-functions of a division algebra, Ann. of Math. (2) 77 (1963), 387–405.
Tate, J., Fourier analysis in number fields and Hecke's zeta function, Thesis, Princeton (1950), also appears in Algebraic Number Theory, edited by J.W., Cassels and A., Frohlich, Academic Press, New York, 1968, pp. 305–347.
Vogan, D. A. Jr., Gelfand-Kirillov dimension for Harish-Chandra modules, Invent. Math. 48 (1978), no. 1, 75–98.
Vogan, D. A. Jr., The unitary dual of GL(n) over an Archimedean field, Invent. Math. 83 (1986), no. 3, 449–505.
Wallach, N. R., Real reductive groups, I, Pure and Applied Mathematics, 132. Academic Press, Inc., Boston, MA, 1988.
Wedderburn, J. H. M., On hypercomplex numbers, Proc. London Math. Soc. 6 (1907), 77–118.
Wedhorn, T., The local Langlands correspondence for GL(n) over p-adic fields, School on Automorphic Forms on GL(n), 237–320, ICTP Lect. Notes, 21, Abdus Salam Int. Cent.Theoret. Phys., Trieste, 2008.
Whittaker, E. T. and Watson, G. N., A Course in Modern Analysis, Cambridge Univ. Press, 1935.
Zelevinsky, A. V., Induced representations of reductive p-adic groups, II, On irreducible representations of GL(n), Ann. Sci. École Norm. Sup. (4) 13 (1980), no. 2, 165–210.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.