Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-sjtt6 Total loading time: 0 Render date: 2024-06-26T18:31:13.274Z Has data issue: false hasContentIssue false

4 - Jamming bacterial communications: new strategies to combat bacterial infections and the development of biofilms

Published online by Cambridge University Press:  08 August 2009

Michael Givskov
Affiliation:
Center for Biomedical Microbiology BioCentrum Technical, University of Denmark
Morten Hentzer
Affiliation:
Carlsberg Biosector Carlsberg A/S, Valby Denmark
Donald R. Demuth
Affiliation:
University of Louisville, Kentucky
Richard Lamont
Affiliation:
University of Florida
Get access

Summary

INTRODUCTION

The growth and activity of microorganisms affect our lives in both positive and negative ways. We have, since early times, tried to combat unwanted microbes and utilize those expressing useful traits. Microorganisms can cause diseases and chronic infections in humans, animals, and plants. In medicine, agriculture and fish farming, treatment scenarios are based on antimicrobial compounds such as antibiotics, with toxic and growth-inhibitory properties. Control of growth by eradication of bacteria is one of the most important scientific achievements. Unfortunately, bacteria have become gradually more and more resistant to antibiotics, and infections caused by resistant bacteria are on a dramatic increase. It has recently become apparent that the bacterial lifestyle also contributes significantly to this problem. The traditional way of culturing bacteria as planktonic, liquid cultures imprinted the view that bacteria live as unicellular organisms. Although it must be emphasized that such test-tube studies have led to fundamental insights into basic life processes and have unraveled complex intracellular regulatory networks, it is now clear that in nature microbial activity is mainly associated with surfaces and we as scientists must therefore turn our attention to this sessile mode of growth (33). It appears that the ability to form surface-associated, structured and cooperative consortia (referred to as biofilms) is one of the most remarkable and ubiquitous characteristics of bacteria (12). In this sessile life form, bacteria can cause various problems in industrial settings, ranging from corrosion and biofouling to food contamination.

Type
Chapter
Information
Bacterial Cell-to-Cell Communication
Role in Virulence and Pathogenesis
, pp. 65 - 100
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andersen, J. B., Heydorn, A., Hentzer, M.et al. 2001. gfp based N-acyl-homoserine-lactone monitors for detection of bacterial communication. Appl. Environ. Microbiol. 67: 575–85.CrossRefGoogle Scholar
Andersen, J. B., Sternberg, C., Poulsen, L. K.et al. 1998. New unstable variants of green fluorescent protein for studies of transient gene expression in bacteria. Appl. Environ. Microbiol. 64: 2240–46.Google ScholarPubMed
Bagge, N., Schuster, M., Hentzer, M.et al. 2004. Pseudomonas aeruginosa biofilms exposed to imipenem exhibit changes in global gene expression and beta-lactamase and alginate production. Antimicrob. Agents Chemother. 48: 1175–87.CrossRefGoogle ScholarPubMed
Belas, M. R. 2003. The swarming phenomenon of Proteus mirabilis. ASM News 58: 15–22.Google Scholar
Bjarnsholt, T., Jensen, P. Ø., Burmølle, M.et al. 2005. Pseudomonas aeruginosa tolerance to tobramycin, hydrogen peroxide and polymorphonuclear leucocytes is quorum sensing depended. Microbiology 151: 373–83.CrossRefGoogle Scholar
Bjarnsholt, T., Jensen, P. Ø., Rasmussen, T. B.et al. 2005. Garlic jams Pseudomonas aeruginosa communication and cures pulmonary infections. Infect. Immun. (in press.)Google Scholar
Camara, M., Williams, P. and Hardman, A. 2002. Controlling infection by tuning in and turning down the volume of bacterial small-talk. Lancet Infect. Dis. 2: 667–76.CrossRefGoogle ScholarPubMed
Chhabra, S. R., Stead, P., Bainton, N. J.et al. 1993. Autoregulation of carbapenem biosynthesis in Erwinia carotovora by analogues of N-(3-oxohexanoyl)-L-homoserine lactone. J Antibiot.(Tokyo) 46: 441–54.CrossRefGoogle ScholarPubMed
Chun, C. K., Ozer, E. A., Welsh, M. J., Zabner, J. and Greenberg, E. P. 2004. Inactivation of a Pseudomonas aeruginosa quorum-sensing signal by human airway epithelia. Proc. Natn. Acad. Sci. USA 101: 3587–90.CrossRefGoogle ScholarPubMed
Ciofu, O., Giwercman, B., Pedersen, S. S. and Hoiby, N. 1994. Development of antibiotic resistance in Pseudomonas aeruginosa during two decades of antipseudomonal treatment at the Danish CF Center. Acta Pathol. Microbiol. Immunol. Scand. 102: 674–80.CrossRefGoogle ScholarPubMed
Correa, J. A. 1996. Diseases in seaweeds: an introduction. Hydrobiologia 326: 87–8.CrossRefGoogle Scholar
Costerton, J. W., Cheng, K. J., Geesey, G. G.et al. 1987. Bacterial biofilms in nature and disease. A. Rev. Microbiol. 41: 435–64.CrossRefGoogle ScholarPubMed
Costerton, J. W., Lewandowski, Z., Caldwell, D. E., Korber, D. R. and Lappin-Scott, H. M. 1995. Microbial biofilms. A. Rev. Microbiol. 49: 711–45.CrossRefGoogle ScholarPubMed
Costerton, J. W., Lewandowski, Z., DeBeer, D.et al. 1994. Biofilms, the customized microniche. J. Bacteriol. 176: 2137–42.CrossRefGoogle ScholarPubMed
Costerton, J. W., Stewart, P. S. and Greenberg, E. P. 1999. Bacterial biofilms: a common cause of persistent infections. Science 284: 1318–22.CrossRefGoogle ScholarPubMed
Davidson, D. J. and Porteous, D. J. 1998. Genetics and pulmonary medicine. 1. The genetics of cystic fibrosis lung disease. Thorax 53: 389–97.CrossRefGoogle ScholarPubMed
Davies, D. 2003. Understanding biofilm resistance to antibacterial agents. Nat. Rev. Drug Discov. 2: 114–22.CrossRefGoogle ScholarPubMed
Davies, D. G., Parsek, M. R., Pearson, J. P.et al. 1998. The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280: 295–8.CrossRefGoogle ScholarPubMed
Davis, A. R., Targett, N. M, McConnell, O. J. and , C. M.Young, 1989. Epibiosis of marine algae and benthic invertebrates: natural products chemistry and other mechanisms inhibiting settlement and overgrowth. Bioorg. Mar. Chem. 3: 86–114.Google Scholar
Kievit, T. R., Gillis, R., Marx, S., Brown, C. and Iglewski, B. H. 2001. Quorum-sensing genes in Pseudomonas aeruginosa biofilms: their role and expression patterns. Appl. Environ. Microbiol. 67: 1865–73.CrossRefGoogle ScholarPubMed
Nys, R., Steinberg, P., Rogers, C. N., Charlton, T. S. and Duncan, M. W. 1996. Quantitative variation of secondary metabolites in the sea hare Aplysia parvula and its host plant, Delisea pulchra. Mar. Ecol. Prog. Ser. 130: 135–146.CrossRefGoogle Scholar
Nys, R., Steinberg, P. D., Willemsen, P.et al. 1995. Broad spectrum effects of secondary metabolites from the red alga Delisea pulchra in antifouling assays. Biofouling 8: 259–71.CrossRefGoogle Scholar
Nys, R., Wright, A. D., König, G. M. and Sticher, O. 1993. New halogenated furanones from the marine alga Delisea pulchra. Tetrahedron 49: 11213–20.CrossRefGoogle Scholar
Dong, Y. H., Wang, L. H., Xu, J. L.et al. 2001. Quenching quorum-sensing-dependent bacterial infection by an N-acyl homoserine lactonase. Nature 411: 813–17.CrossRefGoogle ScholarPubMed
Drenkard, E. 2003. Antimicrobial resistance of Pseudomonas aeruginosa biofilms. Microbes Infect. 5: 1213–19.CrossRefGoogle ScholarPubMed
Dworjanyn, S., Nys, R., and Steinberg, P. D.. 1999. Localization of secondary metabolites in the red alga Delisea pulchra. Mar. Biol. 133: 727–36.CrossRefGoogle Scholar
Eberl, L., Winson, M. K., Sternberg, C.et al. 1996. Involvement of N-acyl-L-homoserine lactone autoinducers in controlling the multicellular behaviour of Serratia liquefaciens. Molec. Microbiol. 20: 127–36.CrossRefGoogle Scholar
Elkins, J. G., Hassett, D. J., Stewart, P. S., Schweizer, H. P. and McDermott, T. R. 1999. Protective role of catalase in Pseudomonas aeruginosa biofilm resistance to hydrogen peroxide. Appl. Environ. Microbiol. 65: 4594–600.Google ScholarPubMed
Favre-Bonte, S., Pache, J. C., Robert, J.et al. 2002. Detection of Pseudomonas aeruginosa cell-to-cell signals in lung tissue of cystic fibrosis patients. Microb. Pathogen. 32: 143–7.CrossRefGoogle ScholarPubMed
Fenical, W. 1997. New pharmaceuticals from marine organisms. Trends Biotechnol. 15: 339–41.CrossRefGoogle ScholarPubMed
Frederiksen, B., Koch, C. and Hoiby, N. 1997. Antibiotic treatment of initial colonization with Pseudomonas aeruginosa postpones chronic infection and prevents deterioration of pulmonary function in cystic fibrosis. Pediatr. Pulmonol. 23: 330–5.3.0.CO;2-O>CrossRefGoogle ScholarPubMed
Fuqua, C., Winans, S. C. and Greenberg, E. P. 1994. Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. J. Bacteriol. 176: 269–75.CrossRefGoogle ScholarPubMed
Geesey, G. G., Richardson, W. T., Yeomans, H. G., Irvin, R. T. and Costerton, J. W 1997. Microscopic examination of natural sessile bacterial populations from an alpine stream. Can. J. Microbiol. 23: 1733–6.CrossRefGoogle Scholar
Givskov, M., Nys, R., Manefield, M.et al. 1996. Eukaryotic interference with homoserine lactone-mediated prokaryotic signaling. J. Bacteriol. 178: 6618–22.CrossRefGoogle Scholar
Givskov, M. and Molin, S. 1993. Secretion of Serratia liquefaciens phospholipase from Escherichia coli. Molec. Microbiol. 8: 229–42.CrossRefGoogle ScholarPubMed
Hanzelka, B. L. and Greenberg, E. P. 1995. Evidence that the N-terminal region of the Vibrio fischeri LuxR protein constitutes an autoinducer-binding domain. J. Bacteriol. 177: 815–17.CrossRefGoogle ScholarPubMed
Heilmann, C., Gerke, C., Perdreau-Remington, F. and Gotz, F. 1996. Characterization of Tn917 insertion mutants of Staphylococcus epidermidis affected in biofilm formation. Infect. Immun. 64: 277–82.Google ScholarPubMed
Henschel, J. R. and Cook, P. A. 1990. The development of a marine fouling community in relation to the primary film of microorganisms. Biofouling 2: 1–11.CrossRefGoogle Scholar
Hentzer, M., L. Eberl and M. Givskov 2004. Quorum sensing in biofilms: Gossip in the slime world? In Ghannoum, M. and O'Toole, G. (eds.), Microbial Biofilms, pp. Washington, DC: ASM Press.Google Scholar
Hentzer, M., L. Eberl and M. Givskov 2005. Transcriptome analysis of Pseudomonas aeruginosa biofilms: anaerobic respiration and iron limitation. Biofilms. (In press.)
Hentzer, M., Riedel, K., Rasmussen, T. B.et al. 2002. Inhibition of quorum sensing in Pseudomonas aeruginosa biofilm bacteria by a halogenated furanone compound. Microbiology 148: 87–102.CrossRefGoogle ScholarPubMed
Hentzer, M., Wu, H., Andersen, J. B.et al. 2003. Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. EMBO J. 22: 1–13.CrossRefGoogle ScholarPubMed
Heydorn, A., Ersboll, B., Kato, J.et al. 2002. Statistical analysis of Pseudomonas aeruginosa biofilm development: impact of mutations in genes involved in twitching motility, cell-to-cell signaling, and stationary-phase sigma factor expression. Appl. Environ. Microbiol. 68: 2008–17.CrossRefGoogle ScholarPubMed
Hoiby, N. 1993. Antibiotic therapy for chronic infection of Pseudomonas in the lung. A. Rev. Med. 44: 1–10.CrossRefGoogle ScholarPubMed
Høiby, N. and B. Frederiksen 2000. Microbiology of cystic fibrosis. In Hodson, M. E. and Geddes, D. M. (eds.), Cystic Fibrosis, pp. 83–107. London: Edward Arnold.Google ScholarPubMed
Hoiby, N., Krogh, J. H., Moser, C.et al. 2001. Pseudomonas aeruginosa and the in vitro and in vivo biofilm mode of growth. Microbes Infect. 3: 23–35.CrossRefGoogle Scholar
Huber, B., Riedel, K., Hentzer, M.et al. 2001. The cep quorum-sensing system of Burkholderia cepacia H111 controls biofilm formation and swarming motility. Microbiology 147: 2517–28.CrossRefGoogle ScholarPubMed
Huber, B., Riedel, K., Kothe, M.et al. 2002. Genetic analysis of functions involved in the late stages of biofilm development in Burkholderia cepacia H111. Molec. Microbiol. 46: 411–26.CrossRefGoogle ScholarPubMed
Ikeda, T., Kajiyama, K., Kita, T.et al. 2001. The synthesis of optically pure enantiomers of N-acyl-homoserine lactone autoinducers and their analogues. Chem. Lett. 30: 314–15.CrossRefGoogle Scholar
Jass, J., Costerton, J. W. and Lappin-Scott, H. M. 1995. The effect of electrical currents and tobramycin on Pseudomonas aeruginosa biofilms. J. Ind. Microbiol. 15: 234–42.CrossRefGoogle ScholarPubMed
Kjelleberg, S., Steinberg, P. D., Givskov, M.et al. 1997. Do marine natural products interfere with prokaryotic AHL regulatory systems?Aquat. Microb. Ecol. 13: 85–93.CrossRefGoogle Scholar
Klausen, M., Aaes-Jorgensen, A., Molin, S. and Tolker-Nielsen, T. 2003. Involvement of bacterial migration in the development of complex multicellular structures in Pseudomonas aeruginosa biofilms. Molec. Microbiol. 50: 61–8.CrossRefGoogle ScholarPubMed
Kleerebezem, M., Quadri, L. E., Kuipers, O. P. and Vos, W. M. 1997. Quorum sensing by peptide pheromones and two-component signal-transduction systems in Gram-positive bacteria. Molec. Microbiol. 24: 895–904.CrossRefGoogle ScholarPubMed
Kushmaro, A., Loya, Y., Fine, E. and Rosenberg, E. 1996. Bacterial infection and coral bleaching. Nature 380: 396.CrossRefGoogle Scholar
Labatte, M., Queck, S. Y., Rice, S. A., Givskov, M. and Kjelleberg, S. 2004. Quorum sensing controlled biofilm development in Serratia liquefaciens MG1. J. Bacteriol. 186: 692–8.CrossRefGoogle Scholar
Latifi, A., Foglino, M., Tanaka, K., Williams, P. and Lazdunski, A. 1996. A hierarchical quorum-sensing cascade in Pseudomonas aeruginosa links the transcriptional activators LasR and RhIR (VsmR) to expression of the stationary-phase sigma factor RpoS. Molec. Microbiol. 21: 1137–46.CrossRefGoogle ScholarPubMed
Lawrence, J. R., Korber, D. R., Hoyle, B. D., Costerton, J. W. and Caldwell, D. E. 1991. Optical sectioning of microbial biofilms. J. Bacteriol. 173: 6558–67.CrossRefGoogle ScholarPubMed
Littler, M. M. and Littler, D. S. 1995. Impact of CLOD pathogen on pacific coral reefs. Science 267: 1356–60.CrossRefGoogle ScholarPubMed
Lyczak, J. B., Cannon, C. L. and Pier, G. B. 2002. Lung infections associated with cystic fibrosis. Clin. Microbiol. Rev. 15: 194–222.CrossRefGoogle ScholarPubMed
Lynch, M. J., Swift, S., Kirke, D. F.et al. 2002. The regulation of of biofilm development by quorum sensing in Aeromonas hydrophila. Environ. Microbiol. 4: 18–28.CrossRefGoogle ScholarPubMed
Mack, D., Nedelmann, M., Krokotsch, A.et al. 1994. Characterization of transposon mutants of biofilm-producing Staphylococcus epidermidis impaired in the accumulative phase of biofilm production: genetic identification of a hexosamine-containing polysaccharide intercellular adhesin. Infect. Immun. 62: 3244–53.Google ScholarPubMed
Manefield, M., Nys, R., Kumar, N.et al. 1999. Evidence that halogenated furanones from Delisea pulchra inhibit acylated homoserine lactone (AHL)-mediated gene expression by displacing the AHL signal from its receptor protein. Microbiology 145: 283–91.CrossRefGoogle ScholarPubMed
Manefield, M., Harris, L., Rice, S. A., Nys, R. and Kjelleberg, S. 2000. Inhibition of luminescence and virulence in the black tiger prawn (Penaeus monodon) pathogen Vibrio harveyi by intercellular signal antagonists. Appl. Environ. Microbiol. 66: 2079–84.CrossRefGoogle ScholarPubMed
Manefield, M., Rasmussen, T. B., Henzter, M.et al. 2002. Halogenated furanones inhibit quorum sensing through accelerated LuxR turnover. Microbiology 148: 1119–27.CrossRefGoogle ScholarPubMed
Manefield, M., Welch, M., Givskov, M., Salmond, G. P. and Kjelleberg, S. 2001. Halogenated furanones from the red alga, Delisea pulchra, inhibit carbapenem antibiotic synthesis and exoenzyme virulence factor production in the phytopathogen Erwinia carotovora. FEMS Microbiol. Lett. 205: 131–8.CrossRefGoogle ScholarPubMed
Maximilien, R., Nys, R., Holmstrom, C. 1998. Chemical mediation of bacterial surface colonisation by secondary metabolites of the red alga Delisea pulchra. Aquat. Microb. Ecol. 15: 233–46.CrossRefGoogle Scholar
Maximilien, R. R., Nys, R., Holmström, C.et al. 1998. Chemical mediation of bacterial surface colonisation by secondary metabolites from the red alga Delisea pulchra. Aquat. Microb. Ecol. 15: 233–46.CrossRefGoogle Scholar
McClean, K. H., Winson, M. K., Fish, L.et al. 1997. Quorum sensing and Chromobacterium violaceum: exploitation of violacein production and inhibition for the detection of N-acylhomoserine lactones. Microbiology 143: 3703–11.CrossRefGoogle ScholarPubMed
McKnight, S. L., Iglewski, B. H. and Pesci, E. C. 2000. The Pseudomonas quinolone signal regulates rhl quorum sensing in Pseudomonas aeruginosa. J. Bacteriol. 182: 2702–8.CrossRefGoogle ScholarPubMed
Moser, C., Johansen, H. K., Song, Z. J.et al. 1997. Chronic Pseudomonas aeruginosa lung infection is more severe in Th2 responding BALB/c mice compared to Th1 responding C3H/HeN mice. Acta Pathol. Microbiol. Immunol. Scand. 105: 838–42.CrossRefGoogle ScholarPubMed
Nickel, J. C., Ruseska, I., Wright, J. B. and Costerton, J. W. 1985. Tobramycin resistance of Pseudomonas aeruginosa cells growing as a biofilm on urinary catheter material. Antimicrob. Agents Chemother. 27: 619–24.CrossRefGoogle ScholarPubMed
Nielsen, J. and Givskov, M. 2003. Compounds and methods for controlling bacterial virulence. PCT WO 03/106445. [Patent]
O'Toole, G. A., Gibbs, K. A., Hager, P. W., Phibbs, P. V. Jr. and Kolter, R. 2000. The global carbon metabolism regulator Crc is a component of a signal transduction pathway required for biofilm development by Pseudomonas aeruginosa. J. Bacteriol. 182: 425–31.CrossRefGoogle ScholarPubMed
O'Toole, G. A. and Kolter, R.. 1998. Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signaling pathways: a genetic analysis. Molec. Microbiol. 28: 449–61.CrossRefGoogle ScholarPubMed
Ochsner, U. A., Vasil, M. L., Alsabbagh, E., Parvatiyar, K. and Hassett, D. J. 2000. Role of the Pseudomonas aeruginosa oxyR-recG operon in oxidative stress defense and DNA repair: OxyR-dependent regulation of katB-ankB, ahpB, and ahpC-ahpF. J. Bacteriol. 182: 4533–44.CrossRefGoogle ScholarPubMed
Oliver, A., Baquero, F. and Blazquez, J. 2002. The mismatch repair system (mutS, mutL and uvrD genes) in Pseudomonas aeruginosa: molecular characterization of naturally occurring mutants. Molec. Microbiol. 43: 1641–50.CrossRefGoogle ScholarPubMed
Oliver, A., Canton, R., Campo, P., Baquero, F. and Blazquez, J. 2000. High frequency of hypermutable Pseudomonas aeruginosa in cystic fibrosis lung infection. Science 288: 1251–4.CrossRefGoogle ScholarPubMed
Palmer, R. J. Jr. and White, D. C. 1997. Developmental biology of biofilms: implications for treatment and control. Trends Microbiol. 5: 435–40.CrossRefGoogle ScholarPubMed
Parsek, M. R., Val, D. L., Hanzelka, B. L., Cronan, J. E. J. and Greenberg, E. P. 1999. Acyl homoserine-lactone quorum-sensing signal generation. Proc. Natn. Acad. Sci. USA 96: 4360–5.CrossRefGoogle ScholarPubMed
Passador, L., Cook, J. M., Gambello, M. J., Rust, L. and Iglewski, B. H. 1993. Expression of Pseudomonas aeruginosa virulence genes requires cell-to-cell communication. Science 260: 1127–30.CrossRefGoogle ScholarPubMed
Pearson, J. P., Feldman, M., Iglewski, B. H. and Prince, A. 2000. Pseudomonas aeruginosa cell-to-cell signaling is required for virulence in a model of acute pulmonary infection. Infect. Immun. 68: 4331–4.CrossRefGoogle Scholar
Pedersen, S. S., Shand, G. H., Hansen, B. L. and Hansen, G. N. 1990. Induction of experimental chronic Pseudomonas aeruginosa lung infection with P. aeruginosa entrapped in alginate microspheres. Acta Pathol. Microbiol. Immunol. Scand. 98: 203–11.CrossRefGoogle Scholar
Persson, P., Hansen, H. H., Rasmussen, T. B.et al. 2005. Rational design and synthesis of new quorum sensing inhibitors derived from acylated homoserine lactones and natural products from garlic. Org. Biomolec. Chem. 3: 253–62.CrossRefGoogle ScholarPubMed
Pesci, E. C., Milbank, J. B., Pearson, J. P.et al. 1999. Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa. Proc. Natn. Acad. Sci. USA 96: 11229–34.CrossRefGoogle ScholarPubMed
Pesci, E. C., Pearson, J. P., Seed, P. C. and Iglewski, B. H. 1997. Regulation of las and rhl quorum sensing in Pseudomonas aeruginosa. J. Bacteriol. 179: 3127–32.CrossRefGoogle ScholarPubMed
Pratt, L. A. and Kolter, R. 1998. Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili. Molec. Microbiol. 30: 285–93.CrossRefGoogle ScholarPubMed
Purevdorj, B., Costerton, J. W. and Stoodley, P. 2002. Influence of hydrodynamics and cell signaling on the structure and behavior of Pseudomonas aeruginosa biofilms. Appl. Environ. Microbiol. 68: 4457–64.CrossRefGoogle ScholarPubMed
Rasch, M., Buch, C., Austin, B.et al. 2004. An inhibitor of bacterial quorum sensing reduces mortalities caused by Vibriosis in rainbow trout (Oncorhynchus mykiss, Walbaum). Syst. Appl. Microbiol. 27: 350–9.CrossRefGoogle Scholar
Rasmussen, T., Skindersø, M. E., Bjarnsholt, T.et al. 2005. Idendity and effects of quorum sensing inhibitors produced by Penicillum species. Microbiology. (in press.)CrossRefGoogle Scholar
Rasmussen, T. B., Bjarnsholt, T., Skindersø, M. E.et al. 2005. Screening for quorum sensing inhibitors using a novel genetic system – the QSI selector. J. Bacteriol. 187: 1799–814.CrossRefGoogle ScholarPubMed
Reichelt, J. L. and Borowitzka, M. A.. 1984. Antimicrobial activity from marine algae: results of a large-scale screening programme. Hydrobiology 116/117: 158–68.CrossRefGoogle Scholar
Rice, S. A., Givskov, M., Steinberg, P. and Kjelleberg, S. 1999. Bacterial signals and antagonists: the interaction between bacteria and higher organisms. J. Molec. Microbiol. Biotechnol. 1: 23–31.Google ScholarPubMed
Riedel, K., Ohnesorg, T., Krogfelt, K. A.et al. 2001. N-acyl-L-homoserine lactone-mediated regulation of the lip secretion system in Serratia liquefaciens MG1. J. Bacteriol. 183: 1805–9.CrossRefGoogle ScholarPubMed
Sauer, K., Camper, A. K., Ehrlich, G. D., Costerton, J. W. and Davies, D. G. 2002. Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J. Bacteriol. 184: 1140–54.CrossRefGoogle ScholarPubMed
Schaefer, A. L., Hanzelka, B. L., Eberhard, A. and Greenberg, E. P. 1996. Quorum sensing in Vibrio fischeri: probing autoinducer-LuxR interactions with autoinducer analogs. J. Bacteriol. 178: 2897–901.CrossRefGoogle ScholarPubMed
Schultes, R. E. 1978. The kingdom of plants, p. 208. In Thompson, W. A. R. (ed.), Medicines from the Earth, p. 208. New York, NY: McGraw-Hill.Google Scholar
Schuster, M., Lostroh, C. P., Ogi, T. and Greenberg, E. P. 2003. Identification, timing, and signal specificity of Pseudomonas aeruginosa quorum-controlled genes: a transcriptome analysis. J. Bacteriol. 185: 2066–79.CrossRefGoogle ScholarPubMed
Shaw, P. D., Ping, G., Daly, S. L.et al. 1997. Detecting and characterizing N-acyl-homoserine lactone signal molecules by thin-layer chromatography. Proc. Natn. Acad. Sci. USA 94: 6036–41.CrossRefGoogle ScholarPubMed
Slattery, M., McClintoch, J. B. and Heine, J. N. 1995. Chemical defences in Antarctic soft corals: evidence for antifouling compounds. J. Exp. Mar. Biol. Ecol. 190: 61–77.CrossRefGoogle Scholar
Slaughter, J. C. 1999. The naturally occurring furanones: formation and function from pheromone to food. Biol. Rev. 74: 259–76.CrossRefGoogle Scholar
Smith, K. M., Bu, Y. and Suga, H. 2003. Library screening for synthetic agonists and antagonists of a Pseudomonas aeruginosa autoinducer. Chem. Biol. 10: 563–71.CrossRefGoogle ScholarPubMed
Smith, K. M., Bu, Y. and Suga, H. 2003. Induction and inhibition of Pseudomonas aeruginosa quorum sensing by synthetic autoinducer analogs. Chem. Biol. 10: 81–9.CrossRefGoogle ScholarPubMed
Smith, R. S., Fedyk, E. R., Springer, T. A.et al. 2001. IL-8 production in human lung fibroblasts and epithelial cells activated by the Pseudomonas autoinducer N-3-oxododecanoyl homoserine lactone is transcriptionally regulated by NF-kappa B and activator protein-2. J. Immunol. 167: 366–74.CrossRefGoogle ScholarPubMed
Steidle, A., Sigl, K., Schuhegger, R. 2001. Visualization of N-acylhomoserine lactone-mediated cell-cell communication between bacteria colonizing the tomato rhizosphere. Appl. Environ. Microbiol. 67: 5761–70.CrossRefGoogle ScholarPubMed
Stewart, P. S. and Costerton, J. W. 2001. Antibiotic resistance of bacteria in biofilms. Lancet 358: 135–8.CrossRefGoogle ScholarPubMed
Stewart, P. S., Roe, F., Rayner, J.et al. 2000. Effect of catalase on hydrogen peroxide penetration into Pseudomonas aeruginosa biofilms. Appl. Environ. Microbiol. 66: 836–8.CrossRefGoogle ScholarPubMed
Stoodley, P., F. Jørgensen, P. Williams and H. M. Lappin-Scott 1999. The role of hydrodynamics and AHL signaling molecules as determinants of the structure of Pseudomonas aeruginosa biofilms. In Bayston, R., Brading, M., Gilbert, P., Walker, J. and Wimpenny, J. W. T. (eds), Biofilms: the Good, the Bad, and the Ugly, pp. 323–30. Cardiff: J. W. T. Bioline.Google Scholar
Sutherland, I. W. 2001. Biofilm exopolysaccharides: a strong and sticky framework. Microbiology 147: 3–9.CrossRefGoogle ScholarPubMed
Telford, G., Wheeler, D., Williams, P.et al. 1998. The Pseudomonas aeruginosa quorum-sensing signal molecule N-(3-oxododecanoyl)-L-homoserine lactone has immunomodulatory activity. Infect. Immun. 66: 36–42.Google ScholarPubMed
Teplitski, M., Robinson, J. B. and Bauer, W. D. 2000. Plants secrete substances that mimic bacterial N-acyl homoserine lactone signal activities and affect population density-dependent behaviors in associated bacteria. Molec. Plant Microbe Interact. 13: 637–48.CrossRefGoogle ScholarPubMed
Valerius, N. H., Koch, C. and Hoiby, N. 1991. Prevention of chronic Pseudomonas aeruginosa colonisation in cystic fibrosis by early treatment. Lancet 338: 725–6.CrossRefGoogle ScholarPubMed
Vallet, I., Olson, J. W., Lory, S., Lazdunski, A. and Filloux, A. 2001. The chaperone/usher pathways of Pseudomonas aeruginosa: identification of fimbrial gene clusters (cup) and their involvement in biofilm formation. Proc. Natn. Acad. Sci. USA 98: 6911–16.CrossRefGoogle ScholarPubMed
Delden, C. and Iglewski, B. H. 1998. Cell-to-cell signaling and Pseudomonas aeruginosa infections. Emerg. Infect. Dis. 4: 551–60.Google ScholarPubMed
Wagner, V. E., Bushnell, D., Passador, L., Brooks, A. I. and Iglewski, B. H. 2003. Microarray analysis of Pseudomonas aeruginosa quorum-sensing regulons: effects of growth phase and environment. J. Bacteriol. 185: 2080–95.CrossRefGoogle Scholar
Wahl, M. 2003. Marine epibiosis. Fouling and antifouling: some basic aspects. Mar. Ecol. Prog. Ser. 58: 175–89.CrossRefGoogle Scholar
Webb, J. S., Thompson, L. S., James, S.et al. 2003. Cell death in Pseudomonas aeruginosa biofilm development. J. Bacteriol. 185: 4585–92.CrossRefGoogle ScholarPubMed
Whitchurch, C. B., Tolker-Nielsen, T., Ragas, P. C. and Mattick, J. S. 2002. Extracellular DNA required for bacterial biofilm formation. Science 295: 1487.CrossRefGoogle ScholarPubMed
Whiteley, M., Bangera, M. G., Bumgarner, R. E.et al. 2001. Gene expression in Pseudomonas aeruginosa biofilms. Nature 413: 860–4.CrossRefGoogle ScholarPubMed
Wimpenny, J. W. T. and Colasanti, R. 1997. A more unifying hypothesis for biofilm structures – a reply. FEMS Microbiol. Ecol. 24: 185–6.CrossRefGoogle Scholar
Winson, M. K., Camara, M., Latifi, A.et al. 1995. Multiple N-acyl-L-homoserine lactone signal molecules regulate production of virulence determinants and secondary metabolites in Pseudomonas aeruginosa. Proc. Natn. Acad. Sci. USA 92: 9427–31.CrossRefGoogle ScholarPubMed
Winson, M. K., Swift, S., Fish, L.et al. 1998. Construction and analysis of luxCDABE-based plasmid sensors for investigating N-acyl homoserine lactone-mediated quorum sensing. FEMS Microbiol. Lett. 163: 185–92.CrossRefGoogle ScholarPubMed
Worlitzsch, D., Herberth, G., Ulrich, M. and Doring, G. 1998. Catalase, myeloperoxidase and hydrogen peroxide in cystic fibrosis. Eur. Respir. J. 11: 377–83.CrossRefGoogle ScholarPubMed
Wozniak, D. J., Wyckoff, T. J. O., Starkey, M.et al. 2003. Alginate is not a significant component of the extracellular polysaccharide matrix of PA14 and PAO1 Pseudomonas aeruginosa biofilms. Proc. Natn. Acad. Sci. USA 100: 7907–12.CrossRefGoogle Scholar
Wu, H., Song, Z., Givskov, M.et al. 2001. Pseudomonas aeruginosa mutations in lasI and rhlI quorum sensing systems result in milder chronic lung infection. Microbiology 147: 1105–13.CrossRefGoogle ScholarPubMed
Wu, H., Song, Z., Hentzer, M.et al. 2000. Detection of N-acylhomoserine lactones in lung tissues of mice infected with Pseudomonas aeruginosa. Microbiology 146: 2481–93.CrossRefGoogle ScholarPubMed
Yoon, S. S., Hennigan, R. F., Hilliard, G. M.et al. 2002. Pseudomonas aeruginosa anaerobic respiration in biofilms: relationships to cystic fibrosis pathogenesis. Dev. Cell 3: 593–603.CrossRefGoogle ScholarPubMed
Zhu, J., Beaber, J. W., More, M. I.et al. 1998. Analogs of the autoinducer 3-oxo-octanoyl-homoserine lactone strongly inhibit activity of the TraR protein of Agrobacterium tumefaciens. J. Bacteriol. 180: 5398–405.Google Scholar
Passador, L., Tucker, K. D., Guertin, K. R.et al. 1996. Functional analysis of the Pseudomonas aeruginosa autoinducer PAI. J. Bacterial. 178: 5995–6000.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×