Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-767nl Total loading time: 0 Render date: 2024-07-11T16:18:49.779Z Has data issue: false hasContentIssue false

2 - The Pseudomonas aeruginosa quinolone signal

Published online by Cambridge University Press:  08 August 2009

Everett C. Pesci
Affiliation:
The Brody School of Medicine at East Carolina University Greenville, NC USA
Donald R. Demuth
Affiliation:
University of Louisville, Kentucky
Richard Lamont
Affiliation:
University of Florida
Get access

Summary

INTRODUCTION

Pseudomonas aeruginosa is a ubiquitous Gram-negative bacterium that is a major source of acute infections for immunocompromised individuals. This opportunistic pathogen also infects the lungs of most cystic fibrosis (CF) patients, causing a chronic infection that produces progressive lung damage throughout the life of the patient. P. aeruginosa's ability to survive in almost any surroundings is augmented by an intricate cell-to-cell signaling scheme that controls a large number of cell functions. Through our ongoing attempts to eavesdrop on P. aeruginosa, we have learned that communities of this organism appear to be constantly chattering among themselves as they adapt to their environment. The las and rhl quorum sensing systems of P. aeruginosa are acyl-homoserine lactone-based signal systems that have been well characterized and are nicely reviewed in Chapter 1 of this book. The focus of this chapter will be a different type of signal, which has only recently been identified. The signal is 2-heptyl-3-hydroxy-4-quinolone and is referred to as the Pseudomonas quinolone signal (PQS). This signal is unique in that it is the only known quinolone molecule used as a cell-to-cell signal and P. aeruginosa is the only organism known to produce it.

DISCOVERY OF PQS

PQS was discovered while studying the effects of the rhl quorum sensing system on lasB induction. The lasB gene encodes LasB elastase, a protease considered to be a major P. aeruginosa virulence factor (1, 33).

Type
Chapter
Information
Bacterial Cell-to-Cell Communication
Role in Virulence and Pathogenesis
, pp. 23 - 38
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Blackwood, L. L., Stone, R. M., Iglewski, B. H. and Pennington, J. E. 1983. Evaluation of Pseudomonas aeruginosa exotoxin A and elastase as virulence factors in acute lung infection. Infect. Immun. 39: 198–201.Google ScholarPubMed
Brint, J. M. and Ohman, D. E. 1995. Synthesis of multiple exoproducts in Pseudomonas aeruginosa is under the control of RhlR-RhlI, another set of regulators in strain PAO1 with homology to the autoinducer-responsive LuxR-LuxI family. J. Bacteriol. 177: 7155–63.CrossRefGoogle ScholarPubMed
Calfee, M. W., Coleman, J. P. and Pesci, E. C. 2001. Interference with Pseudomonas quinolone signal synthesis inhibits virulence factor expression by Pseudomonas aeruginosa. Proc. Natn. Acad. Sci. USA 98: 11633–7.CrossRefGoogle ScholarPubMed
Cao, H., Krishnan, G., Goumnerov, B.et al. 2001. A quorum sensing-associated virulence gene of encodes a LysR-like transcription regulator with a unique self-regulatory mechanism. Proc. Natn. Acad. Sci. USA 98: 14613–18.CrossRefGoogle ScholarPubMed
Collier, D. N., Anderson, L., McKnight, S. L.et al. 2002. A bacterial cell to cell signal in the lungs of cystic fibrosis patients. FEMS Microbiol. Lett. 215: 41–6.CrossRefGoogle ScholarPubMed
Cornforth, J. W. and James, A. T. 1956. Structure of a naturally occurring antagonist of dihydrostreptomycin. Biochem. J. 63: 124–30.CrossRefGoogle ScholarPubMed
D'Argenio, D. A., Calfee, M. W., Rainey, P. B. and Pesci, E. C. 2002. Autolysis and autoaggregation in Pseudomonas aeruginosa colony morphology mutants. J. Bacteriol. 184: 6481–9.CrossRefGoogle ScholarPubMed
Kievit, T. R. and Iglewski, B. H. 2000. Bacterial quorum sensing in pathogenic relationships. Infect. Immun. 68: 4839–49.CrossRefGoogle ScholarPubMed
Deziel, E., Lepine, F., Milot, S., et al. 2004. Analysis of Pseudomonas aeruginosa 4-hydroxy-2-alkylquinolines (HAQs) reveals a role for 4-hydroxy-2-heptylquinoline in cell-to-cell communication. Proc. Natn. Acad. Sci. USA 101: 1339–44.CrossRefGoogle ScholarPubMed
Diggle, S. P., Winzer, K., Chhabra, S. R.et al. 2003. The Pseudomonas aeruginosa quinolone signal molecule overcomes the cell density-dependency of the quorum sensing hierarchy, regulates rhl-dependent genes at the onset of stationary phase and can be produced in the absence of LasR. Molec. Microbiol. 50: 29–43.CrossRefGoogle ScholarPubMed
Essar, D. W., Eberly, L., Hadero, A. and Crawford, I. P. 1990. Identification and characterization of genes for a second anthranilate synthase in Pseudomonas aeruginosa: interchangeability of the two anthranilate synthases and evolutionary implications. J. Bacteriol. 172: 884–900.CrossRefGoogle ScholarPubMed
Gallagher, L. A. and Manoil, C. 2001. Pseudomonas aeruginosa PAO1 kills Caenorhabditis elegans by cyanide poisoning. J. Bacteriol. 183: 6207–14.CrossRefGoogle ScholarPubMed
Gallagher, L. A., McKnight, S. L., Kuznetsova, M. S., Pesci, E. C. and Manoil, C. 2002. Functions required for extracellular quinolone signaling by Pseudomonas aeruginosa. J. Bacteriol. 184: 6472–80.CrossRefGoogle ScholarPubMed
Gambello, M. J. and Iglewski, B. H. 1991. Cloning and characterization of the Pseudomonas aeruginosa lasR gene, a transcriptional activator of elastase expression. J. Bacteriol. 173: 3000–9.CrossRefGoogle ScholarPubMed
Guina, T., Purvine, S. O., Yi, E. C.et al. 2003. Quantitative proteomic analysis indicates increased synthesis of a quinolone by Pseudomonas aeruginosa isolates from cystic fibrosis airways. Proc. Natn. Acad. Sci. USA 100: 2771–6.CrossRefGoogle ScholarPubMed
Kohler, T., Delden, C., Curty, L. K., Hamzehpour, M. M. and Pechere, J. C. 2001. Overexpression of the MexEF-OprN multidrug efflux system affects cell-to-cell signaling in Pseudomonas aeruginosa. J. Bacteriol. 183: 5213–22.CrossRefGoogle ScholarPubMed
Latifi, A., Foglino, M., Tanaka, K., Williams, P. and Lazdunski, A. 1996. A hierarchical quorum-sensing cascade in Pseudomonas aeruginosa links the transcriptional activators LasR and RhlR (VsmR) to expression of the stationary-phase sigma factor RpoS. Molec. Microbiol. 21: 1137–46.CrossRefGoogle ScholarPubMed
Lau, G. W., Ran, H., Kong, F., Hassett, D. J. and Mavrodi, D. 2004. Pseudomonas aeruginosa pyocyanin is critical for lung infection in mice. Infect. Immun. 72: 4275–8.CrossRefGoogle ScholarPubMed
Leisinger, T. and Margraff, R.. 1979. Secondary metabolites of the fluorescent pseudomonads. Microbiol. Rev. 43: 422–42.Google ScholarPubMed
Lepine, F., Deziel, E., Milot, S. and Rahme, L. G. 2003. A stable isotope dilution assay for the quantification of the Pseudomonas quinolone signal in Pseudomonas aeruginosa cultures. Biochim. Biophys. Acta 1622: 36–41.CrossRefGoogle ScholarPubMed
Lepine, F., Milot, S., Deziel, E., He, J. and Rahme, L. G. 2004. Electrospray/mass spectrometric identification and analysis of 4-hydroxy-2-alkylquinolines (HAQs) produced by Pseudomonas aeruginosa. J. Am. Soc. Mass Spectrom. 15: 862–9.CrossRefGoogle ScholarPubMed
Mahajan-Miklos, S., Tan, M. W., Rahme, L. G. and Ausubel, F. M. 1999. Molecular mechanisms of bacterial virulence elucidated using a Pseudomonas aeruginosa-Caenorhabditis elegans pathogenesis model. Cell 96: 47–56.CrossRefGoogle ScholarPubMed
Mavrodi, D. V., Bonsall, R. F., Delaney, S. M.et al. 2001. Functional analysis of genes for biosynthesis of pyocyanin and phenazine-1-carboxamide from Pseudomonas aeruginosa PAO1. J. Bacteriol. 183: 6454–65.CrossRefGoogle ScholarPubMed
McGrath, S., Wade, D. S. and Pesci, E. C. 2004. Dueling quorum sensing systems in Pseudomonas aeruginosa control the production of the Pseudomonas quinolone signal (PQS). FEMS Microbiol. Lett. 230: 27–34.CrossRefGoogle Scholar
McKnight, S. L., Iglewski, B. H. and Pesci, E. C. 2000. The Pseudomonas quinolone signal regulates rhl quorum sensing in Pseudomonas aeruginosa. J. Bacteriol. 182: 2702–8.CrossRefGoogle ScholarPubMed
Passador, L., Tucker, K. D., Guertin, K. R.et al. 1996. Functional analysis of the Pseudomonas aeruginosa autoinducer PAI. J. Bacteriol. 178: 5995–6000.CrossRefGoogle ScholarPubMed
Pearson, J. P., Gray, K. M., Passador, L.et al. 1994. Structure of the autoinducer required for expression of Pseudomonas aeruginosa virulence genes. Proc. Natn. Acad. Sci. USA 91: 197–201.CrossRefGoogle ScholarPubMed
Pearson, J. P., Passador, L., Iglewski, B. H. and Greenberg, E. P. 1995. A second N-acylhomoserine lactone signal produced by Pseudomonas aeruginosa. Proc. Natn. Acad. Sci. USA 92: 1490–4.CrossRefGoogle ScholarPubMed
Pearson, J. P., Pesci, E. C. and Iglewski, B. H. 1997. Roles of Pseudomonas aeruginosa las and rhl quorum-sensing systems in control of elastase and rhamnolipid biosynthesis genes. J. Bacteriol. 179: 5756–67.CrossRefGoogle ScholarPubMed
Pesci, E. C., Milbank, J. B., Pearson, J. P.et al. 1999. Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa. Proc. Natn. Acad. Sci. USA 96: 11229–34.CrossRefGoogle ScholarPubMed
Pesci, E. C., Pearson, J. P., Seed, P. C. and Iglewski, B. H. 1997. Regulation of las and rhl quorum sensing in Pseudomonas aeruginosa. J. Bacteriol. 179: 3127–32.CrossRefGoogle ScholarPubMed
Rahme, L. G., Tan, M. W., Le, L.et al. 1997. Use of model plant hosts to identify Pseudomonas aeruginosa virulence factors. Proc. Natn. Acad. Sci. USA 94: 13245–50.CrossRefGoogle ScholarPubMed
Tamura, Y., Suzuki, S. and Sawada, T. 1992. Role of elastase as a virulence factor in experimental Pseudomonas aeruginosa infection in mice. Microb. Pathogen. 12: 237–44.CrossRefGoogle ScholarPubMed
Whiteley, M., Lee, K. M. and Greenberg, E. P. 1999. Identification of genes controlled by quorum sensing in Pseudomonas aeruginosa. Proc. Natn. Acad. Sci. USA 96: 13904–9.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×