Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-06-01T16:19:07.867Z Has data issue: false hasContentIssue false

Chapter 9 - The frontier of biological thermodynamics

Published online by Cambridge University Press:  05 June 2012

Donald T. Haynie
Affiliation:
Central Michigan University
Get access

Summary

Introduction

Thus far our principal concern has been fairly well established aspects of energy transformation in living organisms, the macromolecules they're made of, and the environments in which living things flourish. There has been a decidedly practical slant to much of the discussion to show how concepts from thermodynamics are useful in today's biochemistry laboratory. In the present chapter, we'll change tack and set sail for waters less well charted. The exploration will aim to locate the material covered thus far in the broader scheme of things, and also to see how the development of topics of considerable current interest must conform somehow, probably, to laws of thermodynamics. Our course might be somewhat off the mark, as the questions we wrestle with here are more speculative than above; often, no right answer is known. But the journey will not be any less worth the effort, as it will help to reveal how lively a subject biological thermodynamics is today and draw attention to a few of the areas where there is still much work to be done. An undercurrent of the discussion is a research program proposed over a century ago by the great British physicist Lord Kelvin: (1824–1907) to explain all phenomena of the world, both natural and manmade, in terms of energy transformations. The absolute temperature scale we have used throughout this book to quantify thermal energy is named in Kelvin's honor.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alberts, B. (1998). The cell as a collection of protein machines: preparing the next generation of molecular biologists. Cell, 92, 291–4.CrossRefGoogle ScholarPubMed
Aldiss, B. W. (2001). Desperately seeking aliens. Nature, 409, 1080–2.CrossRefGoogle ScholarPubMed
Almaas, E., Kovács, B., Vicsek, T., Oltvai, Z. N. & Barabási, A.-L. (2004). Global organization of metabolic fluxes in the bacterium Escherichia coli. Nature, 427, 839–43.CrossRefGoogle ScholarPubMed
Altman, S. (1989). Ribonuclease P, an enzyme with a catalytic RNA subunit. Advances in Enzymology, 62, 1–36.Google ScholarPubMed
Angilletta, M. J. Jr, Bennett, A. F., Guderley, H., Navas, C. A., Seebacher, F. & Wilson, R. S. (2006). Coadaption: A unifying principle in evolutionary thermal biology. Physiological and Biochemical Zoology, 79, 282–94.CrossRefGoogle Scholar
Avetisov, V. A., Goldankii, V. I. & Kuz'min, V. V. (1991). Handedness, origin of life and evolution. Physics Today, July, 33–41.CrossRefGoogle ScholarPubMed
Baldwin, J. E. & Krebs, H. A. (1981). The evolution of metabolic cycles. Nature, 291, 381–2.CrossRefGoogle ScholarPubMed
Ball, P. (2001). Life's lessons in design. Nature, 409, 413–16.CrossRefGoogle ScholarPubMed
Ball, P. (2004). Astrobiology: Water, water, everywhere?Nature, 427, 19–20.CrossRefGoogle Scholar
Ball, P. (2004). Earth-like planets may be more rare than thought. Nature News, 30 July.CrossRefGoogle Scholar
Balter, M. (1998). Did life begin in hot water?Science, 280, 31.CrossRefGoogle ScholarPubMed
Barbieri, M. (1985). The Semantic Theory of Evolution. Chur: Harwood Academic.Google Scholar
Barinaga, M. (1994). Archaea and eukaryotes grow closer. Science, 264, 1251.CrossRefGoogle ScholarPubMed
Behe, M. J. (1996). Darwin's Black Box: The Biochemical Challenge to Evolution. New York: Free Press.Google Scholar
Bejerano, G., Pheasant, M., Makunin, I., Stephen, S., Kent, W. J., Mattick, J. S. & Haussler, D. (2004). Ultraconserved elements in the human genome. Science, 304, 1321–5.CrossRefGoogle ScholarPubMed
Bennett, C. H. (1982). The thermodynamics of computation – a review. International Journal of Theoretical Physics, 21, 905–40.CrossRefGoogle Scholar
Bernstein, M. P., Sandford, S. A. & Allamandola, L. J. (1999). Life's far-flung raw materials. Scientific American, 281, no. 1, 42–9.CrossRefGoogle ScholarPubMed
Berry, S. (1995). Entropy, irreversibility and evolution. Journal of Theoretical Biology, 175, 197–202.CrossRefGoogle ScholarPubMed
Birge, R. R. (1995). Protein-based computers. Scientific American, 272 (3), 66–71.CrossRefGoogle Scholar
Blumenfeld, L. A. & Tikhonov, A. N. (1994). Biophysical Thermodynamics of Intracellular Processes: Molecular Machines of the Living Cell. New York: Springer.CrossRefGoogle Scholar
Bondi, H. (2004). Obituary: Thomas Gold (1920–2004). Nature, 430, 415.CrossRefGoogle Scholar
Borchers, A. T., Davis, P. A. & Gershwin, M. E. (2004). The asymmetry of existence: Do we owe our existence to cold dark matter and the weak force?Experimental Biology and Medicine, 229, 21–32.CrossRefGoogle ScholarPubMed
Brillouin, L. (1962). Science and Information Theory. New York: Academic Press.Google Scholar
Brooks, D. R., Collier, J., Maurer, B., Smith, J. D. H. & Wilson, E. O. (1989). Entropy and information in evolving biological systems. Biology and Philosophy, 4, 407–32.CrossRefGoogle Scholar
Burger, J., Kirchner, M., Bramani, B., Haak, W. & Thomas, M. G. (2007). Absence of the lactase-persistence-associated allele in early Neolithic Europeans. Proceedings of the National Academy of Sciences (USA), 10.1073/pnas.0607187104.CrossRef
Calderbank, R. & Sloane, N. J. A. (2001). Obituary: Claude Shannon (1916–2001). Nature, 410, 768.CrossRefGoogle Scholar
Carroll, S. B. (2001). Chance and necessity: the evolution of morphological complexity and diversity. Nature, 409, 1102–9.CrossRefGoogle ScholarPubMed
Carroll, S. B., Grenier, J. K. & Weatherbee, S. D. (2001). From DNA to Diversity: Molecular Genetics and the Evolution of Animal Design. Malden, Massachusetts: Blackwell Science.Google Scholar
Casti, J. L. (1997). Would-be Worlds. New York: John Wiley.Google Scholar
Cech, T. R. (1986). A model for the RNA-catalyzed replication of RNA. Proceedings of the National Academy of Sciences of the United States of America, 83, 4360–3.CrossRefGoogle ScholarPubMed
Cech, T. R. (1986). RNA as an enzyme. Scientific American, 255, no. 5, 76–84.CrossRefGoogle ScholarPubMed
Chargaff, E. (1978). Heraclitean Fire. New York: Columbia University Press.Google Scholar
Charlesworth, B., Sniegowski, P. & Stephan, W. (1994). The evolutionary dynamics of repetitive DNA in eukaryotes. Nature, 371, 215–20.CrossRefGoogle ScholarPubMed
Cohen, J. (1995a). Getting all turned around over the origins of life on earth. Science, 267, 1265–6.CrossRefGoogle Scholar
Cohen, J. (1995b). Novel center seeks to add spark to origins of life. Science, 270, 1925–6.CrossRefGoogle Scholar
Cohen, J. & Stewart, I. (2001). Where are the dolphins?Nature, 409, 1119–22.CrossRefGoogle ScholarPubMed
Collin, D., Ritort, F., Jarzynski, C., Smith, S. B., Tinoco, I. Jr & Bustamante, C. (2005). Verification of the Crooks fluctuation theorem and recovery of RNA folding free energies. Nature, 437, 231–4.CrossRefGoogle ScholarPubMed
Cornwell, J. (ed.) (1998). Consciousness and Human Identity. Oxford: Oxford University Press.Google Scholar
Crick, F. (1979). Split genes and RNA splicing. Science, 204, 264–71.CrossRefGoogle ScholarPubMed
Crick, F. (1993). In The RNA World, ed. Gesteland, R. F. & Atkins, J. F., pp. xi–xiv. Cold Spring Harbor: Cold Spring Harbor Laboratory Press.Google Scholar
Czarnecki, A. & Marciano, W. J. (2005). Electrons are not ambidextrous. Nature, 435, 437–8.CrossRefGoogle Scholar
Darnell, J. E. (1985). RNA. Scientific American, 253 (4), 54–64.CrossRefGoogle ScholarPubMed
Davies, P. C. W. (1998). The Fifth Miracle: the Search for the Origin of Life. London: Penguin.Google Scholar
Delbrück, M. (1987). Mind from Matter?New York: Basil Blackwell.Google Scholar
Dennis, C. (2003). Coral reveals ancient origins of human genes. Nature, 426, 744.CrossRefGoogle ScholarPubMed
Dickerson, R. E. (1980). Cytochrome c and the evolution of energy metabolism. Scientific American, 242 (3), 137–53.CrossRefGoogle ScholarPubMed
DiLuzio, W. R., Turner, L., Mayer, M., Garstecki, P., Weibel, D. B., Berg, H. C. & Whitesides, G. M. (2005). Escherichia coli swim on the right-hand side. Nature, 435, 1271–4.CrossRefGoogle ScholarPubMed
Doolittle, R. (1985). Proteins. Scientific American, 253 (4), 88–96.CrossRefGoogle ScholarPubMed
Doolittle, R. F. & Bork, P. (1993). Evolutionary mobile modules in proteins. Scientific American, October, 50–6.CrossRefGoogle Scholar
Drexler, K. E. (1992). Nanosystems, Molecular Machines and Computation. New York: John Wiley.Google Scholar
Dubois, M., Demé, B., Gulik-Krzywicki, T., Dedieu, J.-C., Vautrin, C., Désert, S., Perez, E. & Zemb, T. (2001). Self-assembly of regular hollow icosahedra in salt-free catanionic solutions. Nature, 411, 672–5.CrossRefGoogle ScholarPubMed
Dyson, F. (1999). Origins of Life, 2nd edn. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Eckland, E. H., Szostak, J. W. & Bartel, D. P. (1995). Structurally complex and highly active RNA ligases derived from random RNA sequences. Science, 269, 364–70.CrossRefGoogle Scholar
Eigen, M., Gardiner, W., Schuster, P. & Winckler-Oswatitsch, R. (1981). The origin of genetic information. Scientific American, 244 (4), 88–118.CrossRefGoogle ScholarPubMed
Encyclopædia Britannia CD98, “Aging,” “Life,” “Maxwell's demon,” “Metabolism,” “The origin of life,” and “Principles of thermodynamics.”
Ereshefsky, M. (1991). The semantic approach to evolutionary theory. Biology and Philosophy, 6, 59–80.CrossRefGoogle Scholar
Erwin, D. H. (1996). The mother of mass extinctions. Scientific American, July, 56–62.Google Scholar
Felsenfeld, G. (1985). DNA. Scientific American, 253 (4), 44–53.CrossRefGoogle ScholarPubMed
Feynman, R. P., Leighton, R. B. & Sands, M. (1963). Lectures on Physics, vol. I, cc. 15 & 16. Reading, Massachusetts: Addison-Wesley.Google Scholar
Flam, F. (1994). Hints of a language in junk DNA. Science, 266, 1320.CrossRefGoogle ScholarPubMed
Fruton, J. S. (1999). Proteins, Enzymes, Genes: the Interplay of Chemistry and Biology. New Haven: Yale University Press.Google Scholar
Galtier, N., Tourasse, N. & Gouy, M. (1999). A nonhyperthermophylic common ancestor to extant life forms. Science, 283, 220–1.CrossRefGoogle ScholarPubMed
Gesteland, R. F. & Atkins, J. F. (eds.) (1993). The RNA World. Cold Spring Harbor: Cold Spring Harbor Laboratory Press.Google Scholar
Glansdorff, P. & Prigogine, I. (1974). Structure, Stability and Fluctuations. New York: Wiley-Interscience.Google Scholar
Glasser, L. (1989). Order, chaos, and all that!Journal of Chemical Education, 66, 997–1001.CrossRefGoogle Scholar
Goodman, A. F., Bellato, C. M. & Khidr, L. (2005). The uncertain future for central dogma. The Scientist, 19(12), 20.Google Scholar
Goodsell, D. S. & Olson, A. J. (1993). Soluble proteins: Size, shape and function. Trends in Biochemical Sciences, 19, 65–8.CrossRefGoogle Scholar
Grene, M. (1987). Hierarchies in biology. American Scientist, 75, 504–10.Google Scholar
Harold, F. M. (1986). The Vital Force: a Study of Bioenergetics, cc. 1 & 13. New York: W. H. Freeman.Google Scholar
Hawking, S. W. & Penrose, R. (1996). The nature of space and time. Scientific American, July, 44–9.Google Scholar
Heilbronner, E. & Dunitz, J. D. (1993). Reflections on Symmetry: In Chemistry, and Elsewhere. Weinheim: VCH.Google Scholar
Helmer, M. (1999). Singular take on molecules. Nature, 401, 225–6.CrossRefGoogle ScholarPubMed
Hess, B. & Mikhailov, A. (1994). Self-organization in living cells. Science, 264, 223–4.CrossRefGoogle ScholarPubMed
Hill, T. L. (1963). Thermodynamics of Small Systems: Parts I and II. New York: Benjamin.Google Scholar
Horgan, J. (1994). Can science explain consciousness?Scientific American, July, 72–8.Google ScholarPubMed
Huber, C. & Wächtershäuser, G. (1998). Peptides by activation of amino acids with CO on (Ni,Fe)S surfaces: implications for the origin of life. Science, 281, 670–2.CrossRefGoogle ScholarPubMed
Hurst, L. D. (1994). The uncertain origin of introns. Nature, 371, 381–2.CrossRefGoogle ScholarPubMed
Kasner, E. & Newman, J. (1943). Mathematics and the Imagination. New York: Simon and Schuster.Google Scholar
Kasting, J. F. & Siefert, J. L. (2001). The nitrogen fix. Nature, 412, 26–7.CrossRefGoogle ScholarPubMed
Kaufmann, S. A. (1993). The Origins of Order: Self-organization and Selection in Evolution. New York: Oxford University Press.Google Scholar
Kealey, T. (1996). The Economic Laws of Scientific Research. Houndmills, Hampshire: Macmillan Press and New York: St Martin's Press.CrossRefGoogle Scholar
Keefe, A. D. & Szostak, J. W. (2001). Functional proteins from a random-sequence library. Nature, 410, 715–18.CrossRefGoogle ScholarPubMed
Keosian, J. (1974). Life's beginnings – origin or evolution?Origins of Life, 5, 285–93.CrossRefGoogle ScholarPubMed
Klionsky, D. J. (2004). Regulated self-cannibalism. Nature, 431, 31–2.CrossRefGoogle ScholarPubMed
Klump, H. H. (1993). Correlation between genome size, observed codon preference, and Gibbs energy of codon–anticodon interaction. Pure & Applied Chemistry, 65, 1947–50.CrossRefGoogle Scholar
Klussmann, M., Iwamura, H., Mathew, S. P., Wells, D. H. Jr, Pandya, U., Armstrong, A. & Blackmond, D. G. (2006). Thermodynamic control of asymmetric amplification in amino acid catalysis. Nature, 441, 621–3.CrossRefGoogle ScholarPubMed
Kondepudi, D. & Prigogine, I. (1998). Modern Thermodynamics: from Heat Engines to Dissipative Structures, cc. 15, 16 & 19.3. Chichester: John Wiley.Google Scholar
Křemen, A. (1992). Plausible view on the biological molecular energy machines. Biopolymers, 32, 471–5.CrossRefGoogle ScholarPubMed
Küppers, B. O. (1990). Information and the Origin of Life. Cambridge, Massachusetts: Massachusetts Institute of Technology Press.Google Scholar
Labrador, M., Mongelard, F., Plata-Rengifo, P., Baxter, E. M., Corces, V.G. & Gerasimova, T. I. (2001). Protein encoding by both DNA strands. Nature, 409, 1000.CrossRefGoogle ScholarPubMed
Lamond, A. I. & Gibson, T. J. (1990). Catalytic RNA and the origin of genetic systems. Trends in Genetics, 6, 145–9.CrossRefGoogle ScholarPubMed
Lazcano, A. & Miller, S. L. (1994). How long did it take for life to begin and evolve to cyanobacteria?Journal of Molecular Evolution, 39, 546–54.CrossRefGoogle ScholarPubMed
Lee, D. H., Granja, J. R., Martizez, J. A., Severin, K. & Ghardi, M. R. (1996). A self-replicating peptide. Nature, 382, 525–8.CrossRefGoogle ScholarPubMed
Leff, H. S. & Rex, A. F. (1991). Maxwell's Demon: Entropy, Information, Computing. Princeton: Princeton University Press.Google Scholar
Lin, S. K. & Gutnov, A. V. (eds.) Entropy: An International and Interdisciplinary Journal of Entropy and Information Studies. http://www.mdpi.org/entropy/.
Löwdin, P. O. (1969). In Theoretical Physics and Biology, ed. Marois, M.. Amsterdam: North-Holland.Google Scholar
Luther, G. W. III, Rozan, T. F., Taillefert, M., Nuzzio, D. B., Di Meo, C., Shank, T. M., Lutz, R. A. & Cary, S. C. (2001). Chemical speciation drives hydrothermal vent ecology. Nature, 410, 813–16.CrossRefGoogle ScholarPubMed
Lwoff, A. (1962). Biological Order. Cambridge, Massachusetts: Massachusetts Institute of Technology Press.CrossRefGoogle Scholar
MacIntyre, R. J. (1994). Molecular evolution: Codes, clocks, genes and genomes. BioEssays, 16, 699–703.CrossRefGoogle ScholarPubMed
MacMahon, J. A., Phillips, D. L., Robinson, J. V. & Schimpf, D. J. (1978). Levels of biological organization: an organism-centered approach. Bioscience, 28, 700–4.CrossRefGoogle Scholar
Maddox, J. (1994). Origin of life by careful reading. Nature, 367, 409.CrossRefGoogle ScholarPubMed
Maddox, J. (1994). Origin of the first cell membrane?Nature, 371, 101.CrossRefGoogle ScholarPubMed
Maddox, J. (2001). Obituary: Fred Hoyle (1915–2001). Nature, 413, 270.CrossRefGoogle Scholar
Mahner, M. & Bunge, M. (1998). Foundations of Biophilosophy. Berlin: Springer-Verlag.Google Scholar
Mattick, J. S. & Gagen, M. J. (2001). The evolution of controlled multitasked gene networks: The role of introns and other noncoding RNAs in the development of complex organisms. Molecular Biology and Evolution, 18, 1116–30.CrossRefGoogle ScholarPubMed
McClare, C. W. F. (1971). Chemical machines, Maxwell's demon and living organisms. Journal of Theoretical Biology, 30, 1–34.CrossRefGoogle ScholarPubMed
McWatters, H. G., Bastow, R. M., Hall, A. & Millar, A. J. (2000). The ELF3 zeitnehmer regulates light signalling to the circadian clock. Nature, 408, 716–20.CrossRefGoogle ScholarPubMed
Mehta, M. P. & Baross, J. A. (2006). Nitrogen fixation at 92 °C by a hydrothermal vent archaeon. Science, 314, 1783–6.CrossRefGoogle ScholarPubMed
Mirowski, P. (1989). More Heat than Light: Economics as Social Physics, Physics as Nature's Economics, ch. 2. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Moorhead, P. S., Kaplan, M. M. & Brown, P. (1985). Mathematical Challenges to the Neo-darwinian Interpretation of Evolution: A Symposium Held at the Wistar Institute of Anatomy and Biology, 2nd printing. New York: Alan R. Liss.Google Scholar
Mojzsis, S. J., Arrhenius, G., McKeegan, K. D., Harrison, T. M., Nutman, A. P. & Friend, R. L. (1996). Evidence of life on earth before 3,800 million years ago. Nature, 384, 55–9.CrossRefGoogle ScholarPubMed
Morowitz, H. J. (1955). Some order-disorder considerations in living systems, Bulletin of Mathematical Biophysics, 17, 81–6.CrossRefGoogle Scholar
Morowitz, H. J. (1967). Biological self-replicating systems. Progress in Theoretical Biology, 1, 35–58.CrossRefGoogle Scholar
Morowitz, H. J. (1978). Foundations of Bioenergetics, cc. 6 & 14D. New York: Academic Press.Google Scholar
Morowitz, H. J. (1992). The Beginnings of Cellular Life: Metabolism Recapitulates Biogenesis. New Haven: Yale University Press.Google Scholar
Napier, W. M. (2004). A mechanism for interstellar panspermia. Monthly Notices of the Royal Astronomical Society, 348, 46–51.CrossRefGoogle Scholar
Nisbet, E. G. & Fowler, C. M. R. (1996). Some liked it hot. Nature, 382, 404–5.CrossRefGoogle Scholar
Nisbet, E. G. & Sleep, N. H. (2001). The habitat of nature of early life. Nature, 409, 1083–91.CrossRefGoogle ScholarPubMed
Oliver, S. G. (1996). From DNA sequences to biological function. Nature, 379, 597–600.CrossRefGoogle ScholarPubMed
Oparin, A. I. (1953). The Origin of Life, 2nd edn. New York: Dover.Google Scholar
Orgel, L. E. (1973). The Origins of Life: Molecules and Natural Selection. New York: John Wiley.Google Scholar
Orgel, L. E. (1994). The origin of life on the earth. Scientific American, 271, no. 4, 77–83.CrossRefGoogle ScholarPubMed
Osawa, S., Jukes, T. H., Watanabe, K. & Muto, A. (1992). Recent evidence for evolution of the genetic code. Microbiological Review, 56, 229–64.Google ScholarPubMed
Oyama, S. (1985). The Ontogeny of Information: Developmental Systems and Evolution. Cambridge: Cambridge University Press.Google Scholar
Pascal, B. (1966). Pensées, trans. A. J. Krailsheimer. London: Penguin.Google Scholar
Patthy, L. (1994). Introns and exons, Curr. Opin. Struct. Biol., 4, 383–92.CrossRefGoogle Scholar
Peplow, M. (2006). Comet dust delivered to Earth. Nature News, 16 Jan.Google Scholar
Peusner, L. (1974). Concepts in Bioenergetics, cc. 8–11. Englewood Cliffs: Prentice-Hall.Google Scholar
Phillips, R. & Quake, S. R. (2006). The biological frontier of physics. Physics Today, May, 38.CrossRefGoogle Scholar
Polanyi, M. (1967). Life transcending physics and chemistry. Chemical and Engineering News, 45, 54–66.CrossRefGoogle Scholar
Polanyi, M. (1968). Life's irreducible structure. Science, 160, 1308–12.CrossRefGoogle ScholarPubMed
Polanyi, M. & Prosch, H. (1975). Meaning. Chicago: University of Chicago Press.Google Scholar
Ponnamperuma, C. & MacDermott, A. J. (1994). Cosmic asymmetry: The meaning of life. Chemistry in Britain, June, 487–90.Google Scholar
Pool, R. (1996). Forget silicon, try DNA. New Scientist, 13 July, 26–31.Google Scholar
Popper, K. R. & Eccles, J. C. (1977). The Self and its Brain: An Argument for Interactionism. London: Routledge.CrossRefGoogle Scholar
Prigogine, I. (1973). In round table with Ilya Prigogine: Can thermodynamics explain biological order?Impact of Science on Society, 23, 159–79.Google Scholar
Prigogine, I. (1978). Time, structure, and fluctuations. Science, 201, 777–85.CrossRefGoogle ScholarPubMed
Prigogine, I. (1980). From Being to Becoming. New York: W. H. Freeman.Google Scholar
Prigogine, I. & Nicolis, G. (1977). Self Organization in Nonequilibrium Systems. New York: John Wiley.Google Scholar
Prigogine, I., Nicolis, G., & Babloyantz, A. (1972a). Thermodynamics of evolution. Physics Today, 25 (11), 23–8.CrossRefGoogle Scholar
Prigogine, I., Nicolis, G. & Babloyantz, A. (1972b). Thermodynamics of evolution. Physics Today, 25 (12), 38–44.CrossRefGoogle Scholar
Proctor, R. (1991) Value-free Science? Purity and Power in Modern Knowledge. Cambridge, Massachusetts: Harvard University Press.Google Scholar
Questler, H. (1953). Information Theory in Biology. Urbana: University of Illinois Press.Google Scholar
Raoult, D., Audic, S., Robert, C., Abergel, C., Renesto, P., Ogata, H., Scola, B., Suzan, M. & Claverie, J.-M. (2004). The 1.2-megabase genome sequence of mimivirus. Science, 306, 1344–50.CrossRefGoogle ScholarPubMed
Rat Genome Sequencing Project Consortium (2004). Genome sequence of the Brown Norway rate yields insights into mammalian evolution. Nature, 428, 493–521.
Raymond, J. & Segrè, D. (2006). The effect of oxygen on biochemical networks and the evolution of complex life. Science, 311, 1764–7.CrossRefGoogle ScholarPubMed
Rebeck, J. Jr (1994). Synthetic self-replicating molecules. Scientific American, July, 34–40.Google Scholar
Reich, P. B., Tjoelker, M. G., Machado, J.-L. & Oleksyn, J. (2006) Universal scaling of respiratory metabolism, size and nitrogen in plants. Nature, 439, 457–61.CrossRefGoogle ScholarPubMed
Reid, W. V. & Miller, K. R. (1989). Keeping Options Alive: The Scientific Basis for Conserving Biodiversity. Washington, D. C.: World Resources Institute.Google Scholar
Robertson, H. D. (1996). How did replicating and coding RNAs first get together?Science, 274, 66–7.CrossRefGoogle ScholarPubMed
Rogers, J. & Joyce, G. F. (1999). A ribozyme that lacks cytidine. Nature, 402, 323–5.Google ScholarPubMed
Rothschild, L. J. & Mancinelli, R. L. (2001). Life in extreme environments. Nature, 409, 1092–101.CrossRefGoogle ScholarPubMed
Sanchez, J. M. (1995). Order–disorder transitions. In Encyclopedia of Applied Physics, ed. Trigg, G. L., vol. 13, pp. 1–16. New York: VCH.Google Scholar
Schrödinger, E. (1945). What is Life? The Physical Aspect of the Living Cell. Cambridge: Cambridge University Press.Google Scholar
Schneck, D. J. (2006). Lineage Homo sapiens. American Laboratory, April, 6–10.Google Scholar
Schuster, H. G. (1992). Chaotic phenomena. In Encyclopedia of Applied Physics, ed. Trigg, G. L., vol. 3, pp. 189–214. New York: VCH.Google Scholar
Senapathy, P. (1995). Introns and the origin of protein-coding genes. Science, 269, 1366–7.CrossRefGoogle Scholar
Shannon, C. E. (1948). The mathematical theory of communication. Bell System Technical Journal, 27, 379–423.CrossRefGoogle Scholar
Smith, C. (1999). The Science of Energy: A Cultural History of Energy Physics in Victorian Britain. Chicago: University of Chicago Press.Google Scholar
Smith, H. O., Hutchinson, C. A. III, Pfannkoch, C. & Ventner, J. C. (2003). Generating a synthetic genome by whole genome assembly: ΦX174 bacteriophage from synthetic oligonucleotides. Proceedings of the National Academy of Sciences (USA), 100, 15440–5.CrossRefGoogle ScholarPubMed
Soltzberg, L. J. (1989). Self-organization in chemistry. Journal of Chemistry Education, 66, 187.CrossRefGoogle Scholar
Springer, M. & Paulsson, J. (2006) Biological physics: Harmonies from noise. Nature, 439, 27–8.CrossRefGoogle Scholar
Stevens, T. & McKinley, J. (1995) Lithoautotrophic microbial ecosystems in deep basalt aquifers. Science, 270, 450–3.CrossRefGoogle Scholar
Sturtevant, J. M. (1993). Effects of mutations on the thermodynamics of proteins. Pure and Applied Chemistry, 65, 991–8.CrossRefGoogle Scholar
Voet, D. & Voet, J. G. (1996). 1996 Supplement, Biochemistry, 2nd edn, ch. 4. New York: John Wiley.Google Scholar
Waldburger, C. D., Schildbach, J. F. & Sauer, R. T. (1995). Are buried salt bridges important for protein stability and conformational specificity?Nature Structural Biology, 2, 122–8.CrossRefGoogle ScholarPubMed
Wang, L., Brock, A., Herberich, B. & Schultz, P. G. (2001). Expanding the genetic code of Escherichia coli. Science, 292, 498–500.CrossRefGoogle ScholarPubMed
White, R. J. & Averner, M. (2001). Humans in space. Nature, 409, 1115–8.CrossRefGoogle ScholarPubMed
Wicken, J. S. (1987). Evolution, Thermodynamics and Information: Extending the Darwinian Program. Oxford: Oxford University Press.Google Scholar
Williams, M. B. (1973). Falsifiable predictions of evolutionary theory. Philosophy of Science, 40, 518–37.CrossRefGoogle Scholar
Williams, R. J. P. (1993). Are enzymes mechanical devices?Trends in Biochemical Sciences, 18, 115–17.CrossRefGoogle ScholarPubMed
Wilson, T. L. (2001). The search for extraterrestrial intelligence. Nature, 409, 1110–14.CrossRefGoogle ScholarPubMed
Wright, M. C. & Joyce, G. F. (1997). Continuous in vitro evolution of catalytic function. Science, 276, 614–17.CrossRefGoogle ScholarPubMed
Yockey, H. P. (1992). Information Theory and Molecular Biology. Cambridge: Cambridge University Press.Google Scholar
Zhang, B. L. & Cech, T. R. (1997). Peptide bond formation by in vitro selected ribozymes. Nature, 390, 96–100.Google ScholarPubMed
Zhang, Y.-X., Perry, K., Vinci, V. A., Powell, K., Stemmer, W. P. C. & del Cardayré, S. B. (2002). Genome shuffling leads to rapid phenotypic improvement in bacteria. Nature, 415, 644–6.CrossRefGoogle ScholarPubMed
Zylstra, U. (1992). Living things as hierarchically organized structures. Synthese, 91, 111–33.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×