Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-rvbq7 Total loading time: 0 Render date: 2024-07-09T14:25:35.334Z Has data issue: false hasContentIssue false

11 - Collagen-based tissue repair composite

from Part II - Porous scaffolds for regenerative medicine

Published online by Cambridge University Press:  05 February 2015

Xiaoming Li
Affiliation:
Beihang University
Fu-zhai Cui
Affiliation:
Tsinghua University
Peter X. Ma
Affiliation:
University of Michigan, Ann Arbor
Get access

Summary

Introduction

The most abundant proteins in the extracellular matrix are members of the collagen family. Collagen is composed largely of the amino acids glycine, proline, and hydroxyproline, which are often present as Gly–X–Y repeats (where X and Y are either proline or hydroxyproline). Tropocollagen is the subunit of collagen fibrils formed of three polypeptide strands (each offset by one amino acid), approximately 300 nm long and 1.5 nm in diameter. Each of the three parallel polypeptide strands is in a left-handed helical polyproline II-type coil with three residues to form a right-handed triple helix. The tropocollagen units assemble in a parallel, quarter-staggered arrangement. There is a 40-nm gap, also called the “hole zone,” between the ends of each of these units, with 27 nm of overlap between adjacent units. The chemistry underlying the formation of these tissues is all quite similar; the fundamental differences depend on their hierarchical fibrillar architectures. More than 20 human collagens have been reported, many of which display a 67-nm periodicity, due to the axial packing of the individual collagen molecules [1, 2].

Collagens constitute an important family of proteins in the vertebrate body and serve as extracellular matrix molecules for many soft and hard connective tissues, including cornea, skin, tendon, cartilage, and bone [1, 3]. Collogen provides cellular recognition for regulating cell attachment and functions. Collagen favors cell adhesion that is normally found in joint tissues and those exogenous cells embedded in a collagen delivery device. Almost all of the connective tissues with collagen fibrils as the basic building blocks have remarkably similar chemistry at the macromolecular and fibrillar levels of structure. However, differentiation in the hierarchical structure takes place as these fibrils are arranged in the specific architecture required for the construction of special tissues each with unique functions, which is generally considered the function of other, non-collagen, molecules.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cui, F. Z., Li, Y. and Ge, J. 2007. Self-assembly of mineralized collagen composites. Mater. Sci. Eng. R – Reports, 57, 1–27.CrossRefGoogle Scholar
Prockop, D. J. and Kivirikko, K. I. 1995. Collagens: molecular biology, diseases, and potentials for therapy. Ann. Rev. Biochem., 64, 403–34.CrossRefGoogle ScholarPubMed
Palmer, L. C., Newcomb, C. J., Kaltz, S. R., Spoerke, E. D. and Stupp, S. I. 2008. Biomimetic systems for hydroxyapatite mineralization inspired by bone and enamel. Chem. Rev., 108, 4754–83.CrossRefGoogle ScholarPubMed
Banwart, J. C., Asher, M. A. and Hassanein, R. S. 1995. Iliac crest bone graft harvest donor site morbidity. A statistical evaluation. Spine, 20(9), 1055–60.CrossRefGoogle ScholarPubMed
Li, X. M., Feng, Q. L., Liu, X. H., Dong, W. and Cui, F. Z. 2006. Collagen-based implants reinforced by chitin fibres in a goat shank bone defect model. Biomaterials, 27, 1917–23.CrossRefGoogle Scholar
Liu, X. H., Li, X. M., Fan, Y. B. et al. 2010. Repairing goat tibia segmental bone defect using scaffold cultured with mesenchymal stem cells. J. Biomed. Mater. Res. Part B, 94, 44–52.Google ScholarPubMed
Younger, E. M. and Chapman, M. W. 1989. Morbidity at bone graft donor sites. J. Orthop. Trauma, 3, 192–5.CrossRefGoogle ScholarPubMed
Gil-Albarova, J., Salinas, A. J., Bueno-Lozano, A. L. et al. 2005. The in vivo behaviour of a sol–gel glass and a glass-ceramic during critical diaphyseal bone defects healing. Biomaterials, 26, 4374–82.CrossRefGoogle Scholar
Supronowicz, P., Gill, E., Trujillo, A. et al. 2011. Human adipose-derived side population stem cells cultured on demineralized bone matrix for bone tissue engineering. Tissue Eng. Part A, 17, 789–98.CrossRefGoogle ScholarPubMed
Sargeant, T. D., Guler, M. O., Oppenheimer, S. M. et al. 2008. Hybrid bone implants: self-assembly of peptide amphiphile nanofibers within porous titanium. Biomaterials, 29, 161–71.CrossRefGoogle ScholarPubMed
Winn, S. R. and Hollinger, J. O. 2000. An osteogenic cell culture system to evaluate the cytocompatibility of Osteoset (R), a calcium sulfate bone void filler. Biomaterials, 21, 2413–25.CrossRefGoogle Scholar
Jones, J. R., Ehrenfried, L. M. and Hench, L. L. 2006. Optimising bioactive glass scaffolds for bone tissue engineering. Biomaterials, 27, 964–73.CrossRefGoogle ScholarPubMed
Levengood, S. K. L., Polak, S. J., Wheeler, M. B. et al. 2010. Multiscale osteointegration as a new paradigm for the design of calcium phosphate scaffolds for bone regeneration. Biomaterials, 31, 3552–63.CrossRefGoogle Scholar
Li, X. M., Feng, Q. L., Jiao, Y. F. and Cui, F. Z. 2005. Collagen-based scaffolds reinforced by chitosan fibres for bone tissue engineering. Polymer Int., 54, 1034–40.CrossRefGoogle Scholar
Li, X. M., Liu, X. H., Dong, W. et al. 2009. In vitro evaluation of porous poly(l-lactic acid) scaffold reinforced by chitin fibers. J. Biomed. Mater. Res. Part B, 90, 503–9.CrossRefGoogle ScholarPubMed
Rezwan, K., Chen, Q. Z., Blaker, J. J. and Boccaccini, A. R. 2006. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials, 27, 3413–31.CrossRefGoogle ScholarPubMed
Li, X. M., Van Blitterswijk, C. A., Feng, Q. L., Cui, F. Z. and Watari, F. 2008. The effect of calcium phosphate microstructure on bone-related cells in vitro. Biomaterials, 29, 3306–16.CrossRefGoogle ScholarPubMed
Ooms, E. M., Wolke, J. G. C., van de Heuvel, M. T., Jeschke, B. and Jansen, J. A. 2003. Histological evaluation of the bone response to calcium phosphate cement implanted in cortical bone. Biomaterials, 24, 989–1000.CrossRefGoogle ScholarPubMed
Fellah, B. H., Gauthier, O., Weiss, P., Chappard, D. and Layrolle, P. 2008. Osteogenicity of biphasic calcium phosphate ceramics and bone autograft in a goat model. Biomaterials, 29, 1177–88.CrossRefGoogle Scholar
Liao, S. S., Cui, F. Z., Zhang, W. and Feng, Q. L. 2004. Hierarchically biomimetic bone scaffold materials: nano-HA/collagen/PLA composite. J. Biomed. Mater. Res. Part B, 69, 158–65.CrossRefGoogle Scholar
Liao, S. S. and Cui, F. Z. 2004. In vitro and in vivo degradation of mineralized collagen-based composite scaffold: nanohydroxyapatite/collagen/poly(l-lactide). Tissue Eng., 10, 73–8.CrossRefGoogle Scholar
Curtin, C. M., Cunniffe, G. M., Lyons, F. G. et al. 2012. Innovative collagen nano-hydroxyapatite scaffolds offer a highly efficient non-viral gene delivery platform for stem cell-mediated bone formation. Adv. Mater., 24, 749–54.CrossRefGoogle Scholar
Liu, X., Liu, H. Y., Lian, X. J. et al. 2013. Osteogenesis of mineralized collagen bone graft modified by PLA and calcium sulfate hemihydrate: in vivo study. J. Biomater. Appl., 28(1), 12–19.CrossRefGoogle ScholarPubMed
Zhang, W., Huang, Z. L., Liao, S. S. and Cui, F. Z. 2003. Nucleation sites of calcium phosphate crystals during collagen mineralization. J. Am. Ceram. Soc., 86, 1052–4.CrossRefGoogle Scholar
Green, D., Walsh, D., Mann, S. and Oreffo, R. O. C. 2002. The potential of biomimesis in bone tissue engineering: lessons from the design and synthesis of invertebrate skeletons. Bone, 30, 810–15.CrossRefGoogle ScholarPubMed
Wang, R. Z., Cui, F. Z., Lu, H. B., Wen, H. B. and Li, H. D. 1995. Synthesis of nanophase hydroxyapatite/collagen composite. J. Mater. Sci. Lett., 14, 490–2.CrossRefGoogle Scholar
Du, C., Cui, F. Z., Zhang, W. et al. 2000. Formation of calcium phosphate/collagen composites through mineralization of collagen matrix. J. Biomed. Mater. Res., 50, 518–27.3.0.CO;2-W>CrossRefGoogle ScholarPubMed
Kikuchi, M., Itoh, S., Ichinose, S., Shinomiya, K. and Tanaka, J. 2001. Self-organization mechanism in a bone-like hydroxyapatite/collagen nanocomposite synthesized in vitro and its biological reaction in vivo. Biomaterials, 22, 1705–11.CrossRefGoogle Scholar
Rhee, S. H., Lee, J. D. and Tanaka, J. 2003. Nucleation of hydroxyapatite crystal through chemical interaction with collagen. J. Am. Ceram. Soc., 83, 2890–2.CrossRefGoogle Scholar
Liao, S. S., Cui, F. Z., Zhang, W. and Feng, Q. L. 2004. Hierarchically biomimetic bone scaffold materials: nano-HA/collagen/PLA composite. J. Biomed. Mater. Res. Part B, 69, 158–65.CrossRefGoogle Scholar
Smith, R., Torres, A. and Li, S. M. 1987. Screening of microorganisms for biodegradation of poly(lactic-acid) and lactic acid-containing polymers. J. Biomed. Mater. Res., 21, 991–8.CrossRefGoogle Scholar
Tormala, R., Lemoine, D. and Francois, C. 1991. Stability study of nanoparticles of poly(ε-caprolactone), poly(d, l-lactide) and poly(d, l-lactide-coglycolide). J. Biomed. Mater. Res., 25, 1–10Google Scholar
Li, X. M., Feng, Q. L., Wang, W. J. and Cui, F. Z. 2006. Chemical characteristics and cytocompatibility of collagen-based scaffold reinforced by chitin fibers for bone tissue engineering. J. Biomed. Mater. Res. Part B, 77, 219–26.CrossRefGoogle ScholarPubMed
Merolli, A. and Santin, M. 2009. Role of phosphatidyl-serine in bone repair and its technological exploitation. Molecules, 14, 5367–81.CrossRefGoogle ScholarPubMed
Genge, B. R., Wu, L. N. and Wuthier, R. E. 2008. Mineralization of annexin-5-containing lipid calcium-phosphate complexes: modulation by varying lipid composition and incubation with cartilage collagens. J. Biol. Chem., 283, 9737–48.CrossRefGoogle ScholarPubMed
Xu, C. X., Su, P. Q., Chen, X. F. et al. 2011. Biocompatibility and osteogenesis of biomimetic bioglass–collagen–phosphatidylserine composite scaffolds for bone tissue engineering. Biomaterials, 32, 1051–8.CrossRefGoogle ScholarPubMed
Andersson, G. B., Schultz, A., Nathan, A. and Irstam, L. 1981. Roentgenographic measurement of lumbar intervertebral disc height. Spine, 6, 154–8.CrossRefGoogle ScholarPubMed
Yasuma, T., Koh, S., Okamura, T. and Yamauchi, Y. 1990. Histological changes in aging lumbar intervertebral discs. Their role in protrusions and prolapses. J. Bone Joint Surg. Am., 72, 220–9.CrossRefGoogle ScholarPubMed
Kuslich, S. D., Ulstrom, C. L. and Michael, C. J. 1991. The tissue origin of low back pain and sciatica: a report of pain response to tissue stimulation during operations on the lumbar spine using local anesthesia. Orthop. Clin. North Am., 22, 181–7.Google ScholarPubMed
Schwarzer, A. C., Aprill, C. N., Derby, R. et al. 1995. The prevalence and clinical features of internal disc disruption in patients with chronic low back pain. Spine, 20, 1878–83.CrossRefGoogle ScholarPubMed
An, H., Boden, S. D., Kang, J. et al. 2003. Summary statement: emerging techniques for treatment of degenerative lumbar disc disease. Spine, 28, S24–5.CrossRefGoogle ScholarPubMed
Huang, R. C. and Sandhu, H. S. 2004. The current status of lumbar total disc replacement. Orthop. Clin. North Am., 35, 33–42.CrossRefGoogle ScholarPubMed
Rong, Y., Sugumaran, G., Silbert, J. E. et al. 2002. Proteoglycans synthesized by canine intervertebral disc cells grown in a type I collagen–glycosaminoglycan matrix. Tissue Eng., 8, 1037–47.CrossRefGoogle Scholar
Sato, M., Kikuchi, M., Ishihara, M. et al. 2003. Tissue engineering of the intervertebral disc with cultured annulus fibrosus cells using atelocollagen honeycomb-shaped scaffold with a membrane seal (ACHMS scaffold). Med. Biol. Eng. Comput., 41, 365–71.CrossRefGoogle Scholar
Brown, R. Q., Mount, A. and Burg, K. J. 2005. Evaluation of polymer scaffolds to be used in a composite injectable system for intervertebral disc tissue engineering. J. Biomed. Mater. Res. Part A, 74, 32–9.CrossRefGoogle Scholar
Seguin, C. A., Grynpas, M. D., Pilliar, R. M. et al. 2004. Tissue engineered nucleus pulposus tissue formed on a porous calcium polyphosphate substrate. Spine, 29, 1299–306CrossRefGoogle ScholarPubMed
Chiba, K., Andersson, G. B., Masuda, K. et al. 1997. Metabolism of the extracellular matrix formed by intervertebral disc cells cultured in alginate. Spine, 22, 2885–93.CrossRefGoogle Scholar
Baer, A. E., Wang, J. Y., Kraus, V. B. et al. 2001. Collagen gene expression and mechanical properties of intervertebral disc cell–alginate cultures. J. Orthop. Res., 19, 2–10.CrossRefGoogle ScholarPubMed
Le Visage, C., Yang, S. H., Kadakia, L. et al. 2006. Small intestinal submucosa as a potential bioscaffold for intervertebral disc regeneration. Spine, 31, 2423–30.CrossRefGoogle ScholarPubMed
Crevensten, G., Walsh, A. J., Ananthakrishnan, D. et al. 2004. Intervertebral disc cell therapy for regeneration: mesenchymal stem cell implantation in rat intervertebral discs. Ann. Biomed. Eng., 32, 430–4.CrossRefGoogle ScholarPubMed
Roughley, P., Hoemann, C., DesRosiers, E. et al. 2006. The potential of chitosan-based gels containing intervertebral disc cells for nucleus pulposus supplementation. Biomaterials, 27, 388–96.CrossRefGoogle ScholarPubMed
Yang, S. H., Chen, P. Q., Chen, Y. F. et al. 2005. An in vitro study on regeneration of human nucleus pulposus by using gelatin/chondroitin-6-sulfate/hyaluronan tri-copolymer scaffold. Artif. Organs, 29, 806–14.CrossRefGoogle Scholar
Sakai, D., Mochida, J., Iwashina, T. et al. 2006. Atelocollagen for culture of human nucleus pulposus cells forming nucleus pulposus-like tissue in vitro: influence on the proliferation and proteoglycan production of HNPSV-1 cells. Biomaterials, 27, 346–53.CrossRefGoogle ScholarPubMed
Halloran, D. O., Grad, S., Stoddart, M. et al. 2008. An injectable cross-linked scaffold for nucleus pulposus regeneration. Biomaterials, 29, 438–47.CrossRefGoogle ScholarPubMed
Gruber, H. E., Leslie, K., Ingram, J. et al. 2004. Cell-based tissue engineering for the intervertebral disc: in vitro studies of human disc cell gene expression and matrix production within selected cell carriers. Spine J., 4, 44–55.CrossRefGoogle ScholarPubMed
Li, C. Q., Huang, B., Luo, G. et al. 2010. Construction of collagen II/hyaluronate/chondroitin-6-sulfate tri-copolymer scaffold for nucleus pulposus tissue engineering and preliminary analysis of its physico-chemical properties and biocompatibility. J. Mater. Sci. Mater. Med., 21, 741–51.CrossRefGoogle ScholarPubMed
Yan, L. P., Wang, Y. J., Ren, L. et al. 2010. Genipin-cross-linked collagen/chitosan biomimetic scaffolds for articular cartilage tissue engineering applications. J. Biomed. Mater. Res. Part A, 95, 465–75.CrossRefGoogle ScholarPubMed
Chang, K. Y., Hung, L. H., Chu, I. M., Ko, C. S. and Lee, Y. D. 2010. The application of type II collagen and chondroitin sulfate grafted PCL porous scaffold in cartilage tissue engineering. J. Biomed. Mater. Res. Part A, 92, 712–23.CrossRefGoogle ScholarPubMed
Gross, A. E. 2003. Cartilage resurfacing: filling defects. J. Arthroplasty, 18, 14–17.CrossRefGoogle ScholarPubMed
Ko, C. S., Huang, J. P., Huang, C. W. and Chu, I. M. 2009. Type II collagen–chondroitin sulfate–hyaluronan scaffold cross-linked by genipin for cartilage tissue engineering. J. Biosci. Bioeng., 107, 177–82.CrossRefGoogle ScholarPubMed
Li, Z., Yao, S. J., Alini, M. and Stoddart, M. J. 2010. Chondrogenesis of human bone marrow mesenchymal stem cells in fibrin–polyurethane composites is modulated by frequency and amplitude of dynamic compression and shear stress. Tissue Eng. Part A, 16, 575–84.CrossRefGoogle ScholarPubMed
Oliveira, J. T., Crawford, A., Mundy, J. M. et al. 2007. A cartilage tissue engineering approach combining starch–polycaprolactone fibre mesh scaffolds with bovine articular chondrocytes. J. Mater. Sci. Mater. Med., 18, 295–302.CrossRefGoogle ScholarPubMed
Moutos, F. T., Freed, L. E. and Guilak, F. 2007. A biomimetic three-dimensional woven composite scaffold for functional tissue engineering of cartilage. Nature Mater., 6, 162–7.CrossRefGoogle ScholarPubMed
Malafaya, P. B., Pedro, A. J., Peterbauer, A. et al. 2005. Chitosan particles agglomerated scaffolds for cartilage and osteochondral tissue engineering approaches with adipose tissue derived stem cells. J. Mater. Sci. Mater. Med., 16, 1077–85.CrossRefGoogle Scholar
Iwasaki, N., Yamane, S. T., Majima, T. et al. 2004. Feasibility of polysaccharide hybrid materials for scaffolds in cartilage tissue engineering: evaluation of chondrocyte adhesion to polyion complex fibers prepared from alginate and chitosan. Biomacromolecules, 5, 828–33.CrossRefGoogle ScholarPubMed
Griffon, D. J., Sedighi, M. R., Schaeffer, D. V., Eurell, J. A. and Johnson, A. L. 2006. Chitosan scaffolds: interconnective pore size and cartilage engineering. Acta Biomater., 2, 313–20.CrossRefGoogle ScholarPubMed
Minas, T. and Nehrer, S. 1997. Current concepts in the treatment of articular cartilage defects. Orthopedics, 20, 525–38.Google ScholarPubMed
Hunter, C. J., Imler, S. M., Malaviya, P., Nerem, R. M. and Levenston, M. E. 2002. Mechanical compression alters gene expression and extracellular matrix synthesis by chondrocytes cultured in collagen I gels. Biomaterials, 23, 1249–59.CrossRefGoogle ScholarPubMed
Nehrer, S., Breinan, H. A., Ramappa, A. et al. 1997. Canine chondrocytes seeded in type I and type II collagen implants investigated in vitro. J. Biomed. Mater. Res. 38, 95–104.3.0.CO;2-B>CrossRefGoogle ScholarPubMed
Wakitani, S., Goto, T., Young, R. G. et al. 1998. Repair of large full-thickness articular cartilage defects with allograft articular chondrocytes embedded in a collagen gel. Tissue Eng., 4, 429–44.CrossRefGoogle Scholar
Lee, C. H., Singla, A. and Lee, Y. 2001. Biomedical applications of collagen. Int. J. Pharmacol., 221, 1–22.CrossRefGoogle ScholarPubMed
Ma, L., Gao, C. Y., Mao, Z. W. et al. 2003. Collagen/chitosan porous scaffolds with improved biostability for skin tissue engineering. Biomaterials, 24, 4833–41.CrossRefGoogle ScholarPubMed
Weadock, K. S., Miller, E. J., Bellincampi, L. D., Zawadsky, J. P. and Dunn, M. G. 2004. Physical crosslinking of collagen fibers: comparison of ultraviolet irradiation and dehydrothermal treatment. J. Biomed. Mater. Res., 29, 1373–9.CrossRefGoogle Scholar
Lynn, A. K., Yannas, I. V. and Bonfield, W. 2004. Antigenicity and immunogenicity of collagen. J. Biomed. Mater. Res. B Appl. Biomater., 71, 343–54.CrossRefGoogle ScholarPubMed
Liu, B. C., Harrell, R., Davis, R. H., Dresden, M. H. and Spira, M. 1989. The effect of gamma-irradiation on injectable human amnion collagen. J. Biomed. Mater. Res., 23, 833–44.CrossRefGoogle ScholarPubMed
Ma, L., Gao, C. Y., Mao, Z. W. et al. 2003. Thermal dehydration treatment and glutaraldehyde cross-linking to increase the biostability of collagen–chitosan porous scaffolds used as dermal equivalent. J. Biomater. Sci. Polymer Edition, 14, 861–74.Google ScholarPubMed
Park, S. N., Park, J. C., Kim, H. O., Song, M. J. and Suh, H. 2002. Characterization of porous collagen/hyaluronic acid scaffold modified by 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide cross-linking. Biomaterials, 23, 1205–12.CrossRefGoogle ScholarPubMed
Chiono, V., Pulieri, E., Vozzi, G. et al. 2008. Genipin-crosslinked chitosan/gelatin blends for biomedical applications. J. Mater. Sci. Mater. Med., 19, 889–98.CrossRefGoogle ScholarPubMed
Yuan, Y., Chesnutt, B. M., Utturkar, G. et al. 2007. The effect of cross-linking of chitosan microspheres with genipin on protein release. Carbohydr. Polymers, 68, 561–7.CrossRefGoogle Scholar
Huang, L. L. H., Sung, H. W., Tsai, C. C. and Huang, D. M. 1998. Biocompatibility study of a biological tissue fixed with a naturally occurring crosslinking reagent. J. Biomed. Mater. Res., 42, 568–76.3.0.CO;2-7>CrossRefGoogle ScholarPubMed
Liang, H. C., Chang, W. H., Lin, K. J. and Sung, H. W. 2003. Genipin-crosslinked gelatin microspheres as a drug carrier for intramuscular administration: in vitro and in vivo studies. J. Biomed. Mater. Res. Part A, 65, 271–82.CrossRefGoogle ScholarPubMed
Mi, F. L., Tan, Y. C., Liang, H. F. and Sung, H. W. 2002. In vivo biocompatibility and degradability of a novel injectable-chitosan-based implant. Biomaterials, 23, 181–91.CrossRefGoogle ScholarPubMed
Di Martino, A., Sittinger, M. and Risbud, M. V. 2005. Chitosan: a versatile biopolymer for orthopaedic tissue-engineering. Biomaterials, 26, 5983–90.CrossRefGoogle ScholarPubMed
Silva, S. S., Motta, A., Rodrigues, M. T. et al. 2008. Novel genipin-cross-linked chitosan/silk fibroin sponges for cartilage engineering strategies. Biomacromolecules, 9, 2764–74.CrossRefGoogle ScholarPubMed
Malafaya, P. B., Santos, T. C., Van Griensven, M. and Reis, R. L. 2008. Morphology, mechanical characterization and in vivo neo-vascularization of chitosan particle aggregated scaffolds architectures. Biomaterials, 29, 3914–26.CrossRefGoogle ScholarPubMed
Bi, L., Cao, Z., Hu, Y. Y. et al. 2011. Effects of different cross-linking conditions on the properties of genipin-cross-linked chitosan/collagen scaffolds for cartilage tissue engineering. J. Mater. Sci. Mater. Med., 22, 51–62.CrossRefGoogle ScholarPubMed
Dai, W. D., Kawazoe, N., Lin, X. T., Dong, J. and Chen, G. P. 2010. The influence of structural design of PLGA/collagen hybrid scaffolds in cartilage tissue engineering. Biomaterials, 31, 2141–52.CrossRefGoogle ScholarPubMed
George, J., Onodera, J. and Miyata, T. 2008. Biodegradable honeycomb collagen scaffold for dermal tissue engineering. J. Biomed. Mater. Res. Part A, 87, 1103–11.CrossRefGoogle ScholarPubMed
Wong, V. W., Rustad, K. C., Galvez, M. G. et al. 2011. Engineered pullulan–collagen composite dermal hydrogels improve early cutaneous wound healing. Tissue Eng. Part A, 17, 631–44.CrossRefGoogle ScholarPubMed
Ruiz-Cardona, L., Sanzgiri, Y. D., Benedetti, L. M., Stella, V. J. and Topp, E. M. 1996. Application of benzyl hyaluronate membranes as potential wound dressings: evaluation of water vapour and gas permeabilities. Biomaterials, 17, 1639–43.CrossRefGoogle ScholarPubMed
Alexander, S. A. and Donoff, R. B. 1980. The glycosaminoglycans of open wounds. J. Surg. Res. 29, 422–9.CrossRefGoogle ScholarPubMed
Greco, R. M., Iocono, J. A. and Ehrlich, H. P. 1998. Hyaluronic acid stimulates human fibroblast proliferation within a collagen matrix. J. Cell Physiol., 177, 465–73.3.0.CO;2-5>CrossRefGoogle ScholarPubMed
Park, S. N., Lee, H. J., Lee, K. H. and Suh, H. 2003. Biological characterization of EDC-crosslinked collagen–hyaluronic acid matrix in dermal tissue restoration. Biomaterials, 24, 1631–41.CrossRefGoogle ScholarPubMed
Wong, T., McGrath, J. A. and Navsaria, H. 2007. The role of fibroblasts in tissue engineering and regeneration. Br. J. Dermatol., 156, 1149–55.CrossRefGoogle ScholarPubMed
Bell, E., Ivarsson, B. and Merrill, C. 1979. Production of a tissue-like structure by contraction of collagen lattices by human fibroblasts of different proliferative potential in vitro. Proc. Nat. Acad. Sci. USA, 76, 1274–8.CrossRefGoogle ScholarPubMed
Wilkins, L. M., Watson, S. R., Prosky, S. J., Meunier, S. F. and Parenteau, N. L. 1994. Development of a bilayered living skin construct for clinical applications. Biotechnol. Bioeng., 43, 747–56.CrossRefGoogle ScholarPubMed
Brown, R. A. and Phillips, J. B. 2007. Cell responses to biomimetic protein scaffolds used in tissue repair and engineering. Int. Rev. Cytol., 262, 75–150.CrossRefGoogle ScholarPubMed
Fringer, J. and Grinnell, F. 2003. Fibroblast quiescence in floating collagen matrices: decrease in serum activation of MEK and Raf but not Ras. J. Biol. Chem., 278, 20612–17.CrossRefGoogle Scholar
Brown, R. A., Wiseman, M., Chuo, C. B., Cheema, U. and Nazhat, S. N. 2005. Ultrarapid engineering of biomimetic materials and tissues: fabrication of nano- and microstructures by plastic compression. Adv. Functional Mater., 15, 1762–70.CrossRefGoogle Scholar
Helary, C., Bataille, I., Abed, A. et al. 2010. Concentrated collagen hydrogels as dermal substitutes. Biomaterials, 31, 481–90.CrossRefGoogle ScholarPubMed
Weinberg, C. B. and Bell, E. 1986. A blood vessel model constructed from collagen and cultured vascular cells. Science, 231, 397–400.CrossRefGoogle ScholarPubMed
Niklason, L. E. and Langer, R. S. 1997. Advances in tissue engineering of blood vessels and other tissues. Transplant Immunol., 5, 303–506.CrossRefGoogle ScholarPubMed
Schaner, P. J., Martin, N. D., Tulenko, T. N. et al. 2004. Decellularized vein as a potential scaffold for vascular tissue engineering. J. Vasc. Surg., 40, 146–53.CrossRefGoogle ScholarPubMed
Bou-Gharios, G., Ponticos, M., Rajkumar, V. and Abraham, D. 2004. Extracellular matrix in vascular networks. Cell Prolif., 37, 207–20.CrossRefGoogle ScholarPubMed
Boccafoschi, F., Habermehl, J., Vesentini, S. and Mantovani, D. 2005. Biological performances of collagen-based scaffolds for vascular tissue engineering. Biomaterials, 26, 7410–17.CrossRefGoogle ScholarPubMed
Isobe, Y., Kosaka, T., Kuwahara, G. et al. 2012. Oriented collagen scaffolds for tissue engineering. Materials, 5, 501–11.CrossRefGoogle ScholarPubMed
Seliktar, D., Black, R. A., Vito, R. P. and Nerem, R. M. 2000. Dynamic mechanical conditioning of collagen-gel blood vessel constructs induces remodeling in vitro. Ann. Biomed. Eng., 28(4), 351–62.CrossRefGoogle ScholarPubMed
Kanda, K. and Matsuda, T. 1994. Mechanical stress-induced orientation and ultrastructural change of smooth muscle cells cultured in three-dimensional collagen lattices. Cell Transplant., 3(6), 481–92.CrossRefGoogle ScholarPubMed
Berglund, J. D., Mohseni, M. M., Nerem, R. M. and Sambanis, A. 2003. A biological hybrid model for collagen-based tissue engineered vascular constructs. Biomaterials, 24, 1241–54.CrossRefGoogle ScholarPubMed
Soltysiak, P., Hollwarth, M. E. and Saxena, A. K. 2010. Comparison of suturing techniques in the formation of collagen scaffold tubes for composite tubular organ tissue engineering. Biomed. Mater. Eng., 20, 1–11.Google ScholarPubMed
Koens, M. J. W., Geutjes, P. J., Faraj, K. A. et al. 2011. Organ-specific tubular and collagen-based composite scaffolds. Tissue Eng. Part C – Methods, 17, 327–35.CrossRefGoogle ScholarPubMed
Lei, Q., Xueyi, Y., Xin, W. et al. 2009. Reconstruction of corneal epithelium with cryopreserved corneal limbal stem cells in rabbit model. Vet. J., 179, 392–400.Google Scholar
Connon, C., Kawasaki, S., Liles, M. et al. 2006. Gene expression and immunolocalisation of a calcium activated chloride channel during the stratification of cultivated and developing corneal epithelium. Cell Tissue Res., 323, 177–82.CrossRefGoogle ScholarPubMed
Cen, L., Liu, W., Cui, L., Zhang, W. and Cao, Y. 2008. Collagen tissue engineering: development of novel biomaterials and applications. Pediatr. Res., 63, 492–6.CrossRefGoogle ScholarPubMed
Duan, X. and Sheardown, H. 2007. Incorporation of cell-adhesion peptides into collagen scaffolds promotes corneal epithelial stratification. J. Biomater. Sci. Polymer Edition, 18, 701–11.CrossRefGoogle ScholarPubMed
Duan, X. and Sheardown, H. 2006. Dendrimer crosslinked collagen as a corneal tissue engineering scaffold: mechanical properties and corneal epithelial cell interactions. Biomaterials, 27, 4608–17.CrossRefGoogle ScholarPubMed
Zhong, S., Teo, W. E., Zhu, X. et al. 2005. Formation of collagen–glycosaminoglycan blended nanofibrous scaffolds and their biological properties. Biomacromolecules, 6, 2998–3004.CrossRefGoogle ScholarPubMed
Cholas, R. H., Hsu, H.-P. and Spector, M. 2012. The reparative response to cross-linked collagen-based scaffolds in a rat spinal cord gap model. Biomaterials, 33, 2050–9.CrossRefGoogle Scholar
.
.
.
.
.

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×