Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-rvbq7 Total loading time: 0 Render date: 2024-07-09T06:26:54.548Z Has data issue: false hasContentIssue false

19 - Organ printing

from Part III - Hydrogel scaffolds for regenerative medicine

Published online by Cambridge University Press:  05 February 2015

Tao Xu
Affiliation:
University of Texas at El Paso
Daniel Reyna-Soriano
Affiliation:
University of Texas at El Paso
Jorge I. Rodríguez-Dévora
Affiliation:
University of Texas at El Paso
Mohammod Bhuyan
Affiliation:
University of Texas at El Paso
Thomas Boland
Affiliation:
University of Texas at El Paso
Peter X. Ma
Affiliation:
University of Michigan, Ann Arbor
Get access

Summary

Introduction

Since the first successful organ transplantation with a kidney in 1954 [1], scientists have maintained the dream of being able to fabricate organs on request. Organogenesis – or the creation of organs from artificial manipulation of cells, materials, growth factors (GFs), and other organ elements – has been waiting for the appropriate technology to emerge. This futuristic technique should be capable of rebuilding the compositional and structural complexities of human tissues and organs. The recent development of bioprinting technologies (defined by their high resolution and high-speed construction) has revived interest in applying those emerging methods for organogenesis. The term “organ printing” has become standard since the 2000s [2–4]. It refers to the line of investigations related to the development of the technologies for the construction of three-dimensional (3D) structures based on the deposition of different cell lines and biochemical promoters.

Although individual tissue systems have been successfully engineered for various applications using the basic tissue engineering approach, the means for the building of complex tissues that consist of multiple cell and tissue components have not been established. This is due to various challenges encountered in the tissue building process. One of the challenges has been the inability to recreate the well-defined cellular configurations and functions of a native tissue. Living tissues contain multiple cell types and various extracellular materials arranged in specific patterns that are difficult to replicate in vitro. Thus, one important goal of tissue engineering and regenerative medicine is to develop a tissue fabrication method that allows specific control over the placement of various cells and matrices in three dimensions in order to mimic the complexity of native tissue architecture. Emerging “organ printing” or “bioprinting” methodologies are being investigated in order to create tissue-engineered constructs that initially have more defined spatial organization. The underlying hypothesis is that with these biomimetic patterns one can achieve improved therapeutic outcomes [5].

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Murray, J. E. 2005. The 50th anniversary of the first successful human organ transplant. Rev. Invest. Clin., 57(2), 118–19.Google ScholarPubMed
Mironov, V. 2006. Toward human organ printing: Charleston Bioprinting Symposium. ASAIO J., 52(6), e27–30.CrossRefGoogle ScholarPubMed
Mironov, V., Boland, T., Trusk, T., Forgacs, G. and Markwald, R. R. 2003. Organ printing: computer-aided jet-based 3D tissue engineering. Trends Biotechnol., 21(4), 157–61.CrossRefGoogle ScholarPubMed
Chang, R., Nam, J. and Sun, W. 2008. Direct cell writing of 3D microorgan for in vitro pharmacokinetic model. Tissue Eng. Part C Methods, 14(2), 157–66.CrossRefGoogle ScholarPubMed
Sun, W., Starly, B., Darling, A. and Gomez, C. 2004. Computer-aided tissue engineering: application to biomimetic modelling and design of tissue scaffolds. Biotechnol. Appl. Biochem., 39(Part 1), 49–58.CrossRefGoogle ScholarPubMed
Sun, W., Darling, A., Starly, B. and Nam, J. 2004. Computer-aided tissue engineering: overview, scope and challenges. Biotechnol. Appl. Biochem., 39, 29–47.CrossRefGoogle ScholarPubMed
Sun, W., Starly, B., Nam, J. and Darling, A. 2005. Bio-CAD modeling and its applications in computer-aided tissue engineering. Comput. Aided Design, 37(11), 1097–114.CrossRefGoogle Scholar
Varady, T., Martin, R. R. and Cox, J. 1997. Reverse engineering of geometric models – an introduction. Comput. Aided Design, 29(4), 255–68.CrossRefGoogle Scholar
Sun, W. and Lal, P. 2002. Recent development on computer aided tissue engineering – a review. Comput. Meth. Prog. Biol., 67(2), 85–103.CrossRefGoogle ScholarPubMed
Lin, A. S. P., Barrows, T. H., Cartmell, S. H. and Guldberg, R. E. 2003. Microarchitectural and mechanical characterization of oriented porous polymer scaffolds. Biomaterials, 24(3), 481–9.CrossRefGoogle ScholarPubMed
Folch, A. and Toner, M. 2000. Microengineering of cellular interactions. Ann. Rev. Biomed. Eng., 2, 227–56.CrossRefGoogle ScholarPubMed
Landers, R., Hubner, U., Schmelzeisen, R. and Mulhaupt, R. 2002. Rapid prototyping of scaffolds derived from thermoreversible hydrogels and tailored for applications in tissue engineering. Biomaterials, 23(23), 4437–47.CrossRefGoogle ScholarPubMed
Muller, R. and Ruegsegger, P. 1997. Micro-tomographic imaging for the nondestructive evaluation of trabecular bone architecture. Stud. Health Technol. Inform., 40, 61–79.Google ScholarPubMed
Ulrich, D., Hildebrand, T., Van Rietbergen, B., Muller, R. and Ruegsegger, P. 1997. The quality of trabecular bone evaluated with micro-computed tomography, FEA and mechanical testing. Stud. Health Technol. Inform., 40, 97–112.Google ScholarPubMed
Van Rietbergen, B., Muller, R., Ulrich, D., Ruegsegger, P. and Huiskes, R. 1999. Tissue stresses and strain in trabeculae of a canine proximal femur can be quantified from computer reconstructions. J. Biomech., 32(4), 443–51.CrossRefGoogle ScholarPubMed
Krause, W., Handreke, K., Schuhmann-Giampieri, G. and Rupp, K. 2002. Efficacy of the iodine-free computed tomography liver contrast agent, Dy-EOB-DTPA, in comparison with a conventional iodinated agent in normal and in tumor-bearing rabbits. Invest. Radiol., 37(5), 241–7.CrossRefGoogle ScholarPubMed
Watanabe, M., Shin’oka, T., Tohyama, S. et al. 2001. Tissue-engineered vascular autograft: inferior vena cava replacement in a dog model. Tissue Eng., 7(4), 429–39.CrossRefGoogle Scholar
Miclăuş, G. M.-V. B. and Clipicioiu, D. 2007. New perspectives in exploring cardiac patient imaging – cardiac CT. Timişoara Med. J. 57, 162–6.Google Scholar
Bandettini, W. P. and Arai, A. E. 2008. Advances in clinical applications of cardiovascular magnetic resonance imaging. Heart, 94(11), 1485–95.CrossRefGoogle ScholarPubMed
Sun, W. 2000. Multi-volume CAD modeling for heterogeneous object design and fabrication. J. Comput. Sci. Technol., 15(1), 27–36.CrossRefGoogle Scholar
Sun, W. and Hu, X. 2002. Reasoning Boolean operation based modeling for heterogeneous objects. Comput. Aided Design, 34(6), 481–8.CrossRefGoogle Scholar
Boland, T., Cui, X., Chaubey, A. et al. 2007. Precision printing of cells and biomaterials onto 3D matrices. In Proceedings of the ASME International Conference on Manufacturing Science and Engineering, pp. 77–81.Google Scholar
Boland, T., Tao, X., Damon, B. J. et al. 2007. Drop-on-demand printing of cells and materials for designer tissue constructs. Mater. Sci. Eng. C – Biol., 27(3), 372–6.CrossRefGoogle Scholar
Cui, X. F. and Boland, T. 2008. Simultaneous deposition of human microvascular endothelial cells and biomaterials for human microvasculature fabrication using inkjet printing. In Nip24/Digital Fabrication 2008: 24th International Conference on Digital Printing Technologies, Technical Program and Proceedings, pp. 480–3.Google Scholar
Kesari, P., Xu, T. and Boland, T. 2005. Layer-by-layer printing of cells and its application to tissue engineering. Mater. Res. Soc. Symp. Proc., 845:111–17.Google Scholar
Xu, T., Gregory, C. A., Molnar, P. et al. 2006. Viability and electrophysiology of neural cell structures generated by the inkjet printing method. Biomaterials, 27(19), 3580–8.Google ScholarPubMed
Xu, T., Jin, J., Gregory, C. et al. 2005. Inkjet printing of viable mammalian cells. Biomaterials, 26(1), 93–9.CrossRefGoogle ScholarPubMed
Narayan, R., Boland, T. and Lee, Y.-S. 2010. Printed Biomaterials: Novel Processing and Modeling Techniques for Medicine and Surgery. New York: Springer.CrossRefGoogle Scholar
Odde, D. J. and Renn, M. J. 1999. Laser-guided direct writing for applications in biotechnology. Trends Biotechnol., 17(10), 385–9.CrossRefGoogle ScholarPubMed
Odde, D. J. and Renn, M. J. 2000. Laser-guided direct writing of living cells. Biotechnol. Bioeng., 67(3), 312–18.3.0.CO;2-F>CrossRefGoogle ScholarPubMed
Nahmias, Y., Schwartz, R. E., Verfaillie, C. M. and Odde, D. J. 2005. Laser-guided direct writing for three-dimensional tissue engineering. Biotechnol. Bioeng., 92(2), 129–36.CrossRefGoogle ScholarPubMed
Barron, J. A., Spargo, B. J. and Ringeisen, B. R. 2004. Biological laser printing of three dimensional cellular structures. Appl. Phys. A – Mater., 79(4–6), 1027–30.CrossRefGoogle Scholar
Saunders, R., Gough, J. and Derby, B. 2005. Ink jet printing of mammalian primary cells for tissue engineering applications. Mater. Res. Soc. Symp. Proc., 845, 57–62.Google Scholar
De Coppi, P., Bartsch, G., Siddiqui, M. M. et al. 2007. Isolation of amniotic stem cell lines with potential for therapy. Nature Biotechnol., 25(1), 100–6.CrossRefGoogle ScholarPubMed
Eagles, P. A., Qureshi, A. N. and Jayasinghe, S. N. 2006. Electrohydrodynamic jetting of mouse neuronal cells. Biochem. J., 394(Part 2), 375–8.CrossRefGoogle ScholarPubMed
Printz, C. 2011. American Cancer Society reports progress in reducing cancer deaths. However, some groups still lag behind this trend. Cancer – Am. Cancer Soc., 117(20), 4573–4.Google ScholarPubMed
Asahara, T., Murohara, T., Sullivan, A. et al. 1997. Isolation of putative progenitor endothelial cells for angiogenesis. Science, 275(5302), 964–7.CrossRefGoogle ScholarPubMed
Gimble, J. M., Katz, A. J. and Bunnell, B. A. 2007. Adipose-derived stem cells for regenerative medicine. Circ. Res., 100(9), 1249–60.CrossRefGoogle ScholarPubMed
Bartsch, G., Yoo, J. J., De Coppi, P. et al. 2005. Propagation, expansion, and multilineage differentiation of human somatic stem cells from dermal progenitors. Stem Cells Dev., 14(3), 337–48.CrossRefGoogle ScholarPubMed
Delo, D. M., De Coppi, P., Bartsch, G. and Atala, A. 2006. Amniotic fluid and placental stem cells. Methods Enzymol., 419, 426–38.CrossRefGoogle ScholarPubMed
Cutler, C. and Ballen, K. 2009. Reduced-intensity conditioning and umbilical cord blood transplantation in adults. Bone Marrow Transplant., 44(10), 667–71.CrossRefGoogle ScholarPubMed
Delaney, C., Ratajczak, M. Z. and Laughlin, M. J. 2010. Strategies to enhance umbilical cord blood stem cell engraftment in adult patients. Expert Rev. Hematol., 3(3), 273–83.CrossRefGoogle ScholarPubMed
Ker, E. D. P., Nain, A. S., Weiss, L. E. et al. 2011. Bioprinting of growth factors onto aligned sub-micron fibrous scaffolds for simultaneous control of cell differentiation and alignment. Biomaterials, 32(32), 8097–107.CrossRefGoogle ScholarPubMed
Cooper, G. M., Miller, E. D., DeCesare, G. E. et al. 2010. Inkjet-based biopatterning of bone morphogenetic protein-2 to spatially control calvarial bone formation. Tissue Eng. Part A, 16(5), 1749–59.CrossRefGoogle ScholarPubMed
Ma, N. N., Chalmers, J. J., Aunins, J. G., Zhou, W. C. and Xie, L. Z.Quantitative studies of cell-bubble interactions and cell damage at different pluronic F-68 and cell concentrations. Biotechnol. Progr., 20(4), 1183–91.CrossRef
Parsa, S., Gupta, M., Loizeau, F. and Cheung, K. C. 2010. Effects of surfactant and gentle agitation on inkjet dispensing of living cells. Biofabrication, 2(2), 025003.CrossRefGoogle ScholarPubMed
Holtsberg, F. W., Ensor, C. M., Steiner, M. R., Bomalaski, J. S. and Clark, M. A. 2002. Poly(ethylene glycol) (PEG) conjugated arginine deiminase: effects of PEG formulations on its pharmacological properties. J. Control. Release, 80(1–3), 259–71.CrossRefGoogle ScholarPubMed
Bomalaski, J. S., Holtsberg, F. W., Ensor, C. M. and Clark, M. A. 2002. Uricase formulated with polyethylene glycol (uricase-PEG 20): biochemical rationale and preclinical studies. J. Rheumatol., 29(9), 1942–9.Google ScholarPubMed
Engler, A. J., Sen, S., Sweeney, H. L. and Discher, D. E. 2006. Matrix elasticity directs stem cell lineage specification. Cell, 126(4), 677–89.CrossRefGoogle ScholarPubMed
Guillotin, B., Souquet, A., Catros, S. et al. 2010. Laser assisted bioprinting of engineered tissue with high cell density and microscale organization. Biomaterials, 31(28), 7250–6.CrossRefGoogle ScholarPubMed
Klebe, R. J. 1988. Cytoscribing: a method for micropositioning cells and the construction of two- and three-dimensional synthetic tissues. Exp. Cell Res., 179(2), 362–73.CrossRefGoogle ScholarPubMed
Ahmed, T. A., Dare, E. V. and Hincke, M. 2008. Fibrin: a versatile scaffold for tissue engineering applications. Tissue Eng. Part B Rev., 14(2), 199–215.CrossRefGoogle ScholarPubMed
Cui, X. F. and Boland, T. 2009. Human microvasculature fabrication using thermal inkjet printing technology. Biomaterials, 30(31), 6221–7.CrossRefGoogle ScholarPubMed
Fedorovich, N. E., Alblas, J., de Wijn, J. R. et al. 2007. Hydrogels as extracellular matrices for skeletal tissue engineering: state-of-the-art and novel application in organ printing. Tissue Eng., 13(8), 1905–25.CrossRefGoogle ScholarPubMed
Wilson, W. C. and Boland, T. 2003. Cell and organ printing 1: protein and cell printers. Anat. Rec. A Discov. Molec. Cell Evol. Biol., 272(2), 491–6.CrossRefGoogle Scholar
Smith, C. M., Stone, A. L., Parkhill, R. L. et al. 2004. Three-dimensional bioassembly tool for generating viable tissue-engineered constructs. Tissue Eng., 10(9–10), 1566–76.CrossRefGoogle ScholarPubMed
Harkness, R. D. 1966. Collagen. Sci. Prog., 54(214), 257–74.Google ScholarPubMed
Stenzel, K. H., Dunn, M. W., Rubin, A. L. and Miyata, T. 1969. Collagen gels: design for a vitreous replacement. Science, 164(885), 1282–3.CrossRefGoogle Scholar
Boland, T., Xu, T., Damon, B. and Cui, X. 2006. Application of inkjet printing to tissue engineering. Biotechnol. J., 1(9), 910–17.CrossRefGoogle ScholarPubMed
Xu, T., Petridou, S., Lee, E. H. et al. 2004. Construction of high-density bacterial colony arrays and patterns by the ink-jet method. Biotechnol. Bioeng., 85(1), 29–33.CrossRefGoogle ScholarPubMed
Xu, T., Olson, J., Zhao, W. X. et al. 2008. Characterization of cell constructs generated with inkjet printing technology using in vivo magnetic resonance imaging. J. Manuf. Sci. Technol., 130(2), 020601.Google Scholar
Moon, S., Hasan, S. K., Song, Y. S. et al. 2010. Layer by layer three-dimensional tissue epitaxy by cell-laden hydrogel droplets. Tissue Eng. Part C Methods, 16(1), 157–66.CrossRefGoogle ScholarPubMed
Roth, E. A., Xu, T., Das, M. et al. 2004. Inkjet printing for high-throughput cell patterning. Biomaterials, 25(17), 3707–15.CrossRefGoogle ScholarPubMed
Malda, J., Woodfield, T. B., van der Vloodt, F. et al. 2004. The effect of PEGT/PBT scaffold architecture on oxygen gradients in tissue engineered cartilaginous constructs. Biomaterials, 25(26), 5773–80.CrossRefGoogle ScholarPubMed
Karageorgiou, V. and Kaplan, D. 2005. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials, 26(27), 5474–91.CrossRefGoogle ScholarPubMed
Cotterill, A. M., Camacho-Hübner, C., Woods, K. et al. 1994. The insulin-like growth factor I generation test in the investigation of short stature. Acta Paediatr., 399(Suppl.), 128–30.CrossRefGoogle ScholarPubMed
Cohen, D. L., Malone, E., Lipson, H. and Bonassar, L. J. 2006. Direct freeform fabrication of seeded hydrogels in arbitrary geometries. Tissue Eng., 12(5), 1325–35.CrossRefGoogle ScholarPubMed
Cohen, D. L., Lipton, J. I., Bonassar, L. J. and Lipson, H. 2010. Additive manufacturing for in situ repair of osteochondral defects. Biofabrication, 2(3), 035004.CrossRefGoogle ScholarPubMed
LeRoux, M. A., Guilak, F. and Setton, L. A. 1999. Compressive and shear properties of alginate gel: effects of sodium ions and alginate concentration. J. Biomed. Mater. Res., 47(1), 46–53.3.0.CO;2-N>CrossRefGoogle ScholarPubMed
Shoichet, M. S., Li, R. H., White, M. L. and Winn, S. R. 1996. Stability of hydrogels used in cell encapsulation: an in vitro comparison of alginate and agarose. Biotechnol. Bioeng., 50(4), 374–81.3.0.CO;2-I>CrossRefGoogle Scholar
Bouhadir, K. H., Lee, K. Y., Alsberg, E. et al. 2001. Degradation of partially oxidized alginate and its potential application for tissue engineering. Biotechnol. Prog., 17(5), 945–50.CrossRefGoogle ScholarPubMed
Lee, W. J., Chia, W. J., Wang, J. et al. 2010. Role of surfaces and interfaces in controlling the mechanical properties of metallic alloys. Langmuir, 26(21), 16254–60.CrossRefGoogle ScholarPubMed
Alsberg, E., Kong, H. J., Hirano, Y. et al. 2003. Regulating bone formation via controlled scaffold degradation. J. Dent. Res., 82(11), 903–8.CrossRefGoogle ScholarPubMed
Miller, E. D., Fisher, G. W., Weiss, L. E., Walker, L. M. and Campbell, P. G. 2006. Dose-dependent cell growth in response to concentration modulated patterns of FGF-2 printed on fibrin. Biomaterials, 27(10), 2213–21.CrossRefGoogle ScholarPubMed
Fortier, L. A., Lust, G., Mohammed, H. O. and Nixon, A. J. 1999. Coordinate upregulation of cartilage matrix synthesis in fibrin cultures supplemented with exogenous insulin-like growth factor-I. J. Orthop. Res., 17(4), 467–74.CrossRefGoogle ScholarPubMed
Wu, P. K. and Ringeisen, B. R. 2010. Development of human umbilical vein endothelial cell (HUVEC) and human umbilical vein smooth muscle cell (HUVSMC) branch/stem structures on hydrogel layers via biological laser printing (BioLP). Biofabrication, 2(1), 014111.CrossRefGoogle Scholar
Kim, J. Y., Park, E. K., Kim, S.-Y., Shin, J.-W. and Cho, D.-W. 2008. Fabrication of a SFF-based three-dimensional scaffold using a precision deposition system in tissue engineering. J. Micromech. Microeng., 18(5), 055027.CrossRefGoogle Scholar
Pirlo, R. K., Wu, P., Liu, J. and Ringeisen, B. 2012. PLGA/hydrogel biopapers as a stackable substrate for printing HUVEC networks via BioLP™. Biotechnol. Bioeng., 109(1), 262–73.CrossRefGoogle Scholar
Catros, S., Guillemot, F., Nandakumar, A. et al. 2011. Layer-by-layer tissue microfabrication supports cell proliferation in vitro and in vivo. Tissue Eng. Part C Methods, 18(1), 62–70.CrossRefGoogle ScholarPubMed
Skardal, A., Zhang, J. and Prestwich, G. D. 2010. Bioprinting vessel-like constructs using hyaluronan hydrogels crosslinked with tetrahedral polyethylene glycol tetracrylates. Biomaterials, 31(24), 6173–81.CrossRefGoogle ScholarPubMed
Mironov, V., Boland, T., Trusk, T., Forgacs, G. and Markwald, R. R. 2003. Organ printing: computer-aided jet-based 3D tissue engineering. Trends Biotechnol., 21(4), 157–61.CrossRefGoogle ScholarPubMed
Langer, R. and Vacanti, J. P. 1993. Tissue engineering. Science, 260(5110), 920–6.CrossRefGoogle ScholarPubMed
Roskelley, C. D., Desprez, P. Y. and Bissell, M. J. 1994. Extracellular matrix-dependent tissue-specific gene expression in mammary epithelial cells requires both physical and biochemical signal transduction. Proc. Nat. Acad. Sci. USA, 91(26), 12378–82.CrossRefGoogle ScholarPubMed
Mooney, D. J., Sano, K., Kaufmann, P. M. et al. 1997. Long-term engraftment of hepatocytes transplanted on biodegradable polymer sponges. J. Biomed. Mater. Res., 37(3), 413–20.3.0.CO;2-C>CrossRefGoogle ScholarPubMed
Knight, B., Laukaitis, C., Akhtar, N. et al. 2000. Visualizing muscle cell migration in situ. Curr. Biol., 10(10), 576–85.CrossRefGoogle ScholarPubMed
Chang, R., Nam, J. and Sun, W. 2008. Effects of dispensing pressure and nozzle diameter on cell survival from solid freeform fabrication-based direct cell writing. Tissue Eng. Part A, 14(1), 41–8.CrossRefGoogle ScholarPubMed
Lee, W., Pinckney, J., Lee, V. et al. 2009. Three-dimensional bioprinting of rat embryonic neural cells. Neuroreport, 20(8), 798–803.CrossRefGoogle ScholarPubMed
Hamid, Q., Snyder, J., Wang, C. et al. 2011. Fabrication of three-dimensional scaffolds using precision extrusion deposition with an assisted cooling device. Biofabrication, 3(3), 034109.CrossRefGoogle ScholarPubMed
Mayr, L. M. and Bojanic, D. 2009. Novel trends in high-throughput screening. Curr. Opin. Pharmacol., 9(5), 580–8.CrossRefGoogle ScholarPubMed
Yan, Y., Wang, X., Pan, Y. et al. 2005. Fabrication of viable tissue-engineered constructs with 3D cell-assembly technique. Biomaterials, 26(29), 5864–71.CrossRefGoogle ScholarPubMed
Zhang, T., Yan, Y. N., Wang, X. H. et al. 2007. Three-dimensional gelatin and gelatin/hyaluronan hydrogel structures for traumatic brain injury. J. Bioact. Compat. Pol., 22(1), 19–29.CrossRefGoogle Scholar
Patz, T. M., Doraiswamy, A., Narayan, R. J. et al. 2006. Three-dimensional direct writing of B35 neuronal cells. J. Biomed. Mater. Res. B Appl. Biomater., 78(1), 124–30.CrossRefGoogle ScholarPubMed
Shor, L., Guceri, S., Wen, X. J., Gandhi, M. and Sun, W. 2007. Fabrication of three-dimensional polycaprolactone/hydroxyapatite tissue scaffolds and osteoblast–scaffold interactions in vitro. Biomaterials, 28(35), 5291–7.CrossRefGoogle ScholarPubMed
Lee, W., Debasitis, J. C., Lee, V. K. et al. 2009. Multi-layered culture of human skin fibroblasts and keratinocytes through three-dimensional freeform fabrication. Biomaterials, 30(8), 1587–95.CrossRefGoogle ScholarPubMed
Ringeisen, B. R., Spargo, B. J. and Wu, P. K. 2010. Cell and Organ Printing. New York: Springer.CrossRefGoogle Scholar
Fedorovich, N. E., Dewijn, J. R., Verbout, A. J., Alblas, J. and Dhert, W. J. A. 2008. Three-dimensional fiber deposition of cell-laden, viable, patterned constructs for bone tissue printing. Tissue Eng. Part A, 14(1), 127–33.CrossRefGoogle ScholarPubMed
Hon, K. K. B., Li, L. and Hutchings, I. M. 2008. Direct writing technology – advances and developments. CIRP Ann. – Manufacturing Technol., 57(2), 601.CrossRefGoogle Scholar
Chang, R., Nam, J., Holtorf, H. et al. 2008. Direct cell writing of 3D tissue micro-organs for drug metabolism study. J. Biotechnol., 136(Suppl. 1), S144.CrossRefGoogle Scholar
Chang, R. and Sun, W. 2008. Effects of dispensing pressure and nozzle diameter on cell survival from solid freeform fabrication-based direct cell writing. Tissue Eng. Part A, 14(1), 41–8.CrossRefGoogle ScholarPubMed
Igawa, K., Mochizuki, M., Sugimori, O. et al. 2006. Tailor-made tricalcium phosphate bone implant directly fabricated by a three-dimensional ink-jet printer. J. Artificial Organs, 9(4), 234.CrossRefGoogle ScholarPubMed
Zhang, C., Zhao, K., Hu, T. et al. 2008. Loading dependent swelling and release properties of novel biodegradable, elastic and environmental stimuli-sensitive polyurethanes. J. Controll. Release, 131(2), 128.CrossRefGoogle ScholarPubMed
Zhang, C., Wen, X., Vyavahare, N. R. and Boland, T. 2008. Synthesis and characterization of biodegradable elastomeric polyurethane scaffolds fabricated by the inkjet technique. Biomaterials, 29(28), 3781.CrossRefGoogle ScholarPubMed
Miller, E. D., Fisher, G. W., Weiss, L. E., Walker, L. M. and Campbell, P. G. 2006. Dose-dependent cell growth in response to concentration modulated patterns of FGF-2 printed on fibrin. Biomaterials, 27(10), 2213.CrossRefGoogle ScholarPubMed
Crowley, K., Morrin, A., Hernandez, A. et al. 2008. Fabrication of an ammonia gas sensor using inkjet-printed polyaniline nanoparticles. Talanta, 77(2), 710.CrossRefGoogle Scholar
Jakab, K., Norotte, C., Damon, B. et al. 2008. Tissue engineering by self-assembly of cells printed into topologically defined structures. Tissue Eng. Part A, 14(3), 413–21.CrossRefGoogle ScholarPubMed
Nagaraj, V. J., Eaton, S., Thirstrup, D. and Wiktor, P. 2008. Piezoelectric printing and probing of Lectin NanoProbeArrays for glycosylation analysis. Biochem. Biophys. Res. Commun., 375(4), 526.CrossRefGoogle ScholarPubMed
Calvert, P. and Crockett, R. 1997. Chemical solid free-form fabrication: making shapes without molds. Chem. Mater., 9, 650.CrossRefGoogle Scholar
Zein, I., Hutmacher, D. W., Tan, K. C. and Teoh, S. H. 2002. Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials, 23(4), 1169–85.CrossRefGoogle ScholarPubMed
Liu, C., Sachlos, E., Wahl, D., Han, Z. and Czernuszka, J. 2007. On the manufacturability of scaffold mould using a 3D printing technology. Rapid Prototyping J., 13, 163.CrossRefGoogle Scholar
Dhariwala, B., Hunt, E. and Boland, T. 2004. Rapid prototyping of tissue-engineering constructs, using photopolymerizable hydrogels and stereolithography. Tissue Eng., 10(9–10), 1316–22.CrossRefGoogle ScholarPubMed
Arcaute, K., Mann, B. K. and Wicker, R. B. 2006. Stereolithography of three-dimensional bioactive poly(ethylene glycol) constructs with encapsulated cells. Ann. Biomed. Eng., 34(9), 1429–41.CrossRefGoogle ScholarPubMed
Dimitrov, D., Schreve, K. and De Beer, N. 2006. Advances in three dimensional printing: state of the art and future perspectives. Rapid Prototyping J., 12(3), 136–47.CrossRefGoogle Scholar
Morissette, S. L., Lewis, J. A., Cesarano, J., Dimos, D. B. and Baer, T. 2000. Solid freeform fabrication of aqueous alumina–poly(vinyl alcohol) gelcasting suspensions. J. Am. Ceram. Soc., 83, 2409.CrossRefGoogle Scholar
Cohen, D. L., Malone, E., Lipson, H. and Bonassar, L. J. 2006. Direct freeform fabrication of seeded hydrogels in arbitrary geometries. Tissue Eng., 12(5), 1325–35.CrossRefGoogle ScholarPubMed
Liu, Z. S., Erhan, S. Z., Xu, J. and Calvert, P. D. 2002. Development of soybean oil-based composites by solid freeform fabrication method: epoxidized soybean oil with bis or polyalkyleneamine curing agents system. J. Appl. Polymer Sci., 85, 2100.CrossRefGoogle Scholar
Peng, J., Lin, T. L. and Calvert, P. 1999. Orientation effects in freeformed short-fiber composites. Composites A, 30, 133.CrossRefGoogle Scholar
Sercombe, T. B., Schaffer, G. B. and Calvert, P. 1999. Freeform fabrication of functional aluminium prototypes using powder metallurgy. J. Mater. Sci., 34, 4245.CrossRefGoogle Scholar
Sirringhaus, H., Kawase, T., Friend, R. H. et al. 2000. High-resolution inkjet printing of all-polymer transistor circuits. Science, 290(5499), 2123–6.CrossRefGoogle ScholarPubMed
Gratson, G. M., Xu, M. and Lewis, J. A. 2004. Microperiodic structures: direct writing of three-dimensional webs. Nature, 428(6981), 386.CrossRefGoogle ScholarPubMed
Yan, K. C., Nair, K. and Sun, W. 2010. Three dimensional multi-scale modelling and analysis of cell damage in cell-encapsulated alginate constructs. J. Biomech., 43(6), 1031–8.Google ScholarPubMed
van Krevelen, D. W. 1990. Properties of Polymers. Amsterdam: Elsevier.Google Scholar
Alamry, K. A., Nixon, K., Hindley, R., Odell, J. A. and Yeates, S. G. 2010. Flow-induced polymer degradation during ink-jet printing. In Nip 26: Digital Fabrication, p. 284.
Hoath, S., Hutchings, I., Martin, G. et al. 2009. Links between ink rheology, drop-on-demand jet formation, and printability. J. Imaging Sci. Technol., 53(4), 041208–041210.CrossRefGoogle Scholar
Hancock, A. and Lin, L. 2004. Challenges of UV curable inkjet printing inks – a formulator’s perspective. Pigment Resin Technol., 33, 280.CrossRefGoogle Scholar
Rowley, J. A., Madlambayan, G. and Mooney, D. J. 1999. Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials, 20(1), 45–53.CrossRefGoogle ScholarPubMed
Jorgensen, T. E., Sletmoen, M., Draget, K. I. and Stokke, B. T. 2007. Influence of oligoguluronates on alginate gelation, kinetics, and polymer organization. Biomacromolecules, 8(8), 2388–97.CrossRefGoogle ScholarPubMed
Nishiyama, Y., Nakamura, M., Henmi, C. et al. 2009. Development of a three-dimensional bioprinter: construction of cell supporting structures using hydrogel and state-of-the-art inkjet technology. J. Biomech. Eng., 131(3), 035001.CrossRefGoogle ScholarPubMed
Xu, T., Baicu, C., Aho, M., Zile, M. and Boland, T. 2009. Fabrication and characterization of bio-engineered cardiac pseudo tissues. Biofabrication, 1(3), 035001.CrossRefGoogle ScholarPubMed
in het Panhuis, M., Heurtematte, A., Small, W. R., and Paunov, V. N. 2007. Inkjet printed water sensitive transparent films from natural gum–carbon nanotube composites. Soft Matter, 3, 840–3.CrossRefGoogle Scholar
Bekard, I. B., Asimakis, P., Bertolini, J. and Dunstan, D. E. 2011. The effects of shear flow on protein structure and function. Biopolymers, 95(11), 733–45.Google ScholarPubMed
Nishioka, G. M., Markey, A. A. and Holloway, C. K. 2004. Protein damage in drop-on-demand printers. J. Am. Chem. Soc., 126(50), 16320–1.CrossRefGoogle ScholarPubMed
Goodall, S., Chew, N., Chan, K., Auriac, D. and Waters, M. J.Aerosolization of protein solutions using thermal inkjet technology. J. Aerosol. Med., 15(3), 351–7.CrossRef
Campbell, P. G. and Weiss, L. E. 2007. Tissue engineering with the aid of inkjet printers. Expert Opin. Biol. Ther., 7(8), 1123–7.CrossRefGoogle ScholarPubMed
Weiss, L. E., Amon, C. H., Finger, S. et al. 2005. Bayesian computer-aided experimental design of heterogeneous scaffolds for tissue engineering. Comput. Aided Design, 37(11), 1127–39.CrossRefGoogle Scholar
Sanjana, N. E. and Fuller, S. B. 2004. A fast flexible ink-jet printing method for patterning dissociated neurons in culture. J. Neurosci. Methods, 136(2), 151–63.CrossRefGoogle ScholarPubMed
Xu, T., Jin, J., Gregory, C., Hickman, J. J. and Boland, T.Inkjet printing of viable mammalian cells. Biomaterials, 26(1), 93–9.CrossRef
Xu, T., Rohozinski, J., Zhao, W. et al. 2009. Inkjet-mediated gene transfection into living cells combined with targeted delivery. Tissue Eng. Part A, 15(1), 95–101.CrossRefGoogle ScholarPubMed
Cui, X. and Boland, T. 2009. Human microvasculature fabrication using thermal inkjet printing technology. Biomaterials, 30(31), 6221–7.CrossRefGoogle ScholarPubMed
Lee, S. S., Yim, Y., Ahn, K. H. and Lee, S. J. 2009. Extensional flow-based assessment of red blood cell deformability using hyperbolic converging microchannel. Biomed. Microdevices, 11(5), 1021–7.CrossRefGoogle ScholarPubMed
Nakamura, M., Kobayashi, A., Takagi, F. et al. 2005. Biocompatible inkjet printing technique for designed seeding of individual living cells. Tissue Eng., 11(11–12), 1658–66.CrossRefGoogle ScholarPubMed
Saunders, R. E., Gough, J. E. and Derby, B. 2008. Delivery of human fibroblast cells by piezoelectric drop-on-demand inkjet printing. Biomaterials, 29(2), 193–203.CrossRefGoogle ScholarPubMed
Nair, K., Gandhi, M., Khalil, S. et al. 2009. Characterization of cell viability during bioprinting processes. Biotechnol. J., 4(8), 1168–77.CrossRefGoogle ScholarPubMed
Joly, P., Chavda, N., Eddaoudi, A. and Jayasinghe, S. N. 2010. Bio-electrospraying and aerodynamically assisted bio-jetting whole human blood: interrogating cell surface marker integrity. Biomicrofluidics, 4(1), 11101.CrossRefGoogle ScholarPubMed
Mongkoldhumrongkul, N., Flanagan, J. M. and Jayasinghe, S. N. 2009. Direct jetting approaches for handling stem cells. Biomed. Mater., 4(1), 015018.CrossRefGoogle ScholarPubMed
Ringeisen, B. R., Chrisey, D. B., Pique, A. et al. 2002. Generation of mesoscopic patterns of viable Escherichia coli by ambient laser transfer. Biomaterials, 23(1), 161–6.CrossRefGoogle ScholarPubMed
Hopp, B., Smausz, T., Kresz, N. et al. 2005. Survival and proliferative ability of various living cell types after laser-induced forward transfer. Tissue Eng., 11(11–12), 1817–23.CrossRefGoogle ScholarPubMed
Othon, C. M., Wu, X., Anders, J. J. and Ringeisen, B. R. 2008. Single-cell printing to form three-dimensional lines of olfactory ensheathing cells. Biomed. Mater., 3(3), 034101.CrossRefGoogle ScholarPubMed
Cui, X., Dean, D., Ruggeri, Z. M. and Boland, T. 2010. Cell damage evaluation of thermal inkjet printed Chinese hamster ovary cells. Biotechnol. Bioeng., 106(6), 963–9.CrossRefGoogle ScholarPubMed
Norotte, C., Marga, F. S., Niklason, L. E. and Forgacs, G. 2009. Scaffold-free vascular tissue engineering using bioprinting. Biomaterials, 30(30), 5910–17.CrossRefGoogle ScholarPubMed
De Rosa, M., Carteni, M., Petillo, O. et al. 2004. Cationic polyelectrolyte hydrogel fosters fibroblast spreading, proliferation, and extracellular matrix production: implications for tissue engineering. J. Cell Physiol., 198(1), 133–43.CrossRefGoogle ScholarPubMed
La Gatta, A., Schiraldi, C., Esposito, A., D’Agostino, A. and De Rosa, A. 2009. Novel poly(HEMA-co-METAC)/alginate semi-interpenetrating hydrogels for biomedical applications: synthesis and characterization. J. Biomed. Mater. Res. A, 90(1), 292–302.CrossRefGoogle ScholarPubMed
Detzel, C. J., Larkin, A. L. and Rajagopalan, P. 2011. Polyelectrolyte multilayers in tissue engineering. Tissue Eng. Part B Rev., 17(2), 101–13.CrossRefGoogle ScholarPubMed
Ho, S. T., Cool, S. M., Hui, J. H. and Hutmacher, D. W. 2010. The influence of fibrin based hydrogels on the chondrogenic differentiation of human bone marrow stromal cells. Biomaterials, 31(1), 38–47.CrossRefGoogle ScholarPubMed
Huang, N. F. and Li, S. 2011. Regulation of the matrix microenvironment for stem cell engineering and regenerative medicine. Ann. Biomed. Eng., 39(4), 1201–14.CrossRefGoogle ScholarPubMed
Bhatia, S. R., Khattak, S. F. and Roberts, S. C. 2005. Polyelectrolytes for cell encapsulation. Curr. Opin. Colloid Interf. Sci., 10, 45.CrossRefGoogle Scholar
Varghese, D., Deshpande, M., Xu, T. et al. 2005. Advances in tissue engineering: cell printing. J. Thorac. Cardiovasc. Surg., 129(2), 470–72.CrossRefGoogle ScholarPubMed
Silver, F. H., Freeman, J. W. and Seehra, G. P. 2003. Collagen self-assembly and the development of tendon mechanical properties. J. Biomech., 36(10), 1529–53.CrossRefGoogle ScholarPubMed
Huang, J., Foo, C. W. P. and Kaplan, D. L. 2007. Biosynthesis and applications of silk-like and collagen-like proteins. Polym. Rev., 47, 29–62.CrossRefGoogle Scholar
Zhao, X. and Zhang, S. 2007. Designer self-assembling peptide materials. Macromolec. Biosci., 7(1), 13–22.CrossRefGoogle ScholarPubMed
Zhang, S. 2002. Emerging biological materials through molecular self-assembly. Biotechnol. Adv., 20(5–6), 321–39.CrossRefGoogle ScholarPubMed
Simsek-Ege, F. A., Bond, G. M. and Stringer, J. 2002. Matrix molecular weight cut-off for encapsulation of carbonic anhydrase in polyelectrolyte beads. J. Biomater. Sci. Polym. Edition, 13(11), 1175–87.CrossRefGoogle ScholarPubMed
Decher, G., Hong, J. D. and Schmitt, J. 1992. Buildup of ultrathin multilayer films by a self-assembly process: III. Consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces. Thin Solid Films, 210/211, 831.CrossRefGoogle Scholar
Bertrand, P., Jonas, A., Laschewsky, A. and Legras, R. 2000. Ultrathin polymer coatings by complexation of polyelectrolytes at interfaces: suitable materials, structure and properties. Macromolec. Rapid Commun., 21, 319.3.0.CO;2-7>CrossRefGoogle Scholar
Limem, S., Li, D. P., Iyengar, S. and Calvert, P. 2009. Multi-material inkjet printing of self-assembling and reacting coatings. J. Macromolec. Sci. Part A – Pure Appl. Chem., 46, 1205.CrossRefGoogle Scholar
Cellesi, F., Tirelli, N. and Hubbell, J. A. 2004. Towards a fully-synthetic substitute of alginate: development of a new process using thermal gelation and chemical cross-linking. Biomaterials, 25(21), 5115–24.CrossRefGoogle ScholarPubMed
Vernon, B., Tirelli, N., Bachi, T., Haldimann, D. and Hubbell, J. A. 2003. Water-borne, in situ crosslinked biomaterials from phase-segregated precursors. J. Biomed. Mater. Res. A, 64(3), 447–56.CrossRefGoogle ScholarPubMed
Biase, M. D., Saunders, R. E., Tirelli, N. and Derby, B. 2011. Inkjet printing and cell seeding thermoreversible photocurable gel structures. Soft Matter, 7, 2639.CrossRefGoogle Scholar
Zarowna-Dabrowska, A., McKenna, E. O., Schutte, M. E. et al. 2012. Generation of primary hepatocyte microarrays by piezoelectric printing. Colloids Surf. B Biointerfaces, 89, 126–32.CrossRefGoogle ScholarPubMed
Duocastella, M., Fernandez-Pradas, J. M., Morenza, J. L., Zafra, D. and Serra, P. 2010. Novel laser printing technique for miniaturized biosensors preparation. Sensors Actuat. B – Chem., 145(1), 596–600.CrossRefGoogle Scholar
Kattamis, N., Brown, M. and Arnold, C. B. 2010. Incident beam shape effects on thick-film laser induced forward transfer. In 2010 Conference on Lasers and Electro-Optics (CLEO) and Quantum Electronics and Laser Science Conference (QELS) 2010.
Arnold, C. B., Serra, P. and Pique, A. 2007. Laser direct-write techniques for printing of complex materials. Mater. Res. Soc. Bull., 32(1), 23–31.CrossRefGoogle Scholar
Tolbert, W. A., Lee, I. Y. S., Wen, X. N. et al. 1993. Laser-ablation transfer imaging using picosecond optical pulses – ultra-high-speed, lower threshold and high-resolution. J. Imaging Sci. Technol., 37(5), 485–9.Google Scholar
Barron, J. A., Wu, P., Ladouceur, H. D. and Ringeisen, B. R. 2004. Biological laser printing: a novel technique for creating heterogeneous 3-dimensional cell patterns. Biomed. Microdevices, 6(2), 139–47.CrossRefGoogle ScholarPubMed
Hopp, B., Smausz, T., Kresz, N. et al. 2005. Survival and proliferative ability of various living cell types after laser-induced forward transfer. Tissue Eng., 11(11–12), 1817–23.CrossRefGoogle ScholarPubMed
Doraiswamy, A., Narayan, R. J., Lippert, T. et al. 2006. Excimer laser forward transfer of mammalian cells using a novel triazene absorbing layer. Appl. Surf. Sci., 252(13), 4743–7.CrossRefGoogle Scholar
Nahmias, Y. K., Gao, B. Z. and Odde, D. J. 2004. Dimensionless parameters for the design of optical traps and laser guidance systems. Appl. Opt., 43(20), 3999–4006.CrossRefGoogle ScholarPubMed
Kubota, Y., Kleinman, H. K., Martin, G. R. and Lawley, T. J. 1988. Role of laminin and basement membrane in the morphological differentiation of human endothelial cells into capillary-like structures. J. Cell Biol., 107(4), 1589–98.CrossRefGoogle ScholarPubMed
Vernon, R. B., Angello, J. C., Iruela-Arispe, M. L., Lane, T. F. and Sage, E. H. 1992. Reorganization of basement membrane matrices by cellular traction promotes the formation of cellular networks in vitro. Lab. Invest., 66(5), 536–47.Google ScholarPubMed
Neuman, K. C., Chadd, E. H., Liou, G. F., Bergman, K. and Block, S. M. 1999. Characterization of photodamage to Escherichia coli in optical traps. Biophys. J., 77(5), 2856–63.CrossRefGoogle ScholarPubMed
Liang, H., Vu, K. T., Krishnan, P. et al. 1996. Wavelength dependence of cell cloning efficiency after optical trapping. Biophys. J., 70(3), 1529–33.CrossRefGoogle ScholarPubMed
Renn, M. J., Montgomery, D., Vdovin, O. et al. 1995. Laser-guided atoms in hollow-core optical fibers. Phys. Rev. Lett., 75(18), 3253–6.CrossRefGoogle ScholarPubMed
Renn, M. J. and Pastel, R. 1998. Particle manipulation and surface patterning by laser guidance. J. Vac. Sci. Technol. B, 16(6), 3859–63.CrossRefGoogle Scholar
Nahmias, Y. and Odde, D. J. 2006. Micropatterning of living cells by laser-guided direct writing: application to fabrication of hepatic-endothelial sinusoid-like structures. Nature Protoc. 1(5), 2288–96.CrossRefGoogle ScholarPubMed
Narmoneva, D. A., Vukmirovic, R., Davis, M. E., Kamm, R. D. and Lee, R. T. 2004. Endothelial cells promote cardiac myocyte survival and spatial reorganization: implications for cardiac regeneration. Circulation, 110(8), 962–8.CrossRefGoogle ScholarPubMed
Lammert, E., Cleaver, O. and Melton, D. 2001. Induction of pancreatic differentiation by signals from blood vessels. Science, 294(5542), 564–7.CrossRefGoogle ScholarPubMed
Akselrod, G. M., Timp, W., Mirsaidov, U. et al. 2006. Laser-guided assembly of heterotypic three-dimensional living cell microarrays. Biophys. J., 91(9), 3465–73.CrossRefGoogle ScholarPubMed
Ho, C. T., Lin, R. Z., Chang, W. Y., Chang, H. Y. and Liu, C. H. 2006. Rapid heterogeneous liver-cell on-chip patterning via the enhanced field-induced dielectrophoresis trap. Lab Chip, 6(6), 724–34.CrossRefGoogle ScholarPubMed
Gruene, M., Deiwick, A., Koch, L. et al. 2014. Laser printing of stem cells for biofabrication of scaffold-free autologous grafts. Tissue Eng. Part C Methods, to be published.
Koch, L., Kuhn, S., Sorg, H. et al. 2010. Laser printing of skin cells and human stem cells. Tissue Eng. Part C Methods, 16(5), 847–54.CrossRefGoogle ScholarPubMed
Chen, C. Y., Barron, J. A., Ringeisen, B. R. 2006. Cell patterning without chemical surface modification: cell–cell interactions between printed bovine aortic endothelial cells (BAEC) on a homogeneous cell-adherent hydrogel. Appl. Surf. Sci., 252(24), 8641–5.CrossRefGoogle Scholar
Barron, J. A., Ringeisen, B. R., Kim, H. S., Spargo, B. J. and Chrisey, D. B. 2004. Application of laser printing to mammalian cells. Thin Solid Films, 453, 383–7.CrossRefGoogle Scholar
Ringeisen, B. R., Kim, H., Barron, J. A. et al. 2004. Laser printing of pluripotent embryonal carcinoma cells. Tissue Eng., 10(3–4), 483–91.CrossRefGoogle ScholarPubMed
Guillemot, F., Souquet, A., Catros, S. et al. 2010. High-throughput laser printing of cells and biomaterials for tissue engineering. Acta Biomater., 6(7), 2494–500.CrossRefGoogle ScholarPubMed
Duocastella, M., Fernandez-Pradas, J. M., Morenza, J. L. and Serra, P. 2009. Time-resolved imaging of the laser forward transfer of liquids. J. Appl. Phys., 15, 106 (8 pp.).Google Scholar
Unger, C., Gruene, M., Koch, L., Koch, J. and Chichkov, B. N. 2011. Time-resolved imaging of hydrogel printing via laser-induced forward transfer. Appl. Phys. A – Mater., 103(2), 271–7.CrossRefGoogle Scholar
Gruene, M., Unger, C., Koch, L., Deiwick, A. and Chichkov, B. 2011. Dispensing pico to nanolitre of a natural hydrogel by laser-assisted bioprinting. Biomed. Eng., .
Guillotin, B. and Guillemot, F. 2011. Cell patterning technologies for organotypic tissue fabrication. Trends Biotechnol., 29(4), 183–90.CrossRefGoogle ScholarPubMed
Kattamis, N. T., Purnick, P. E., Weiss, R. and Arnold, C. B. 2007. Thick film laser induced forward transfer for deposition of thermally and mechanically sensitive materials. Appl. Phys. Lett., 91, 171120.CrossRefGoogle Scholar
Arrabito, G. and Pignataro, B. 2010. Inkjet printing methodologies for drug screening. Anal. Chem., 82(8), 3104–7.CrossRefGoogle ScholarPubMed
Ringeisen, B. R., Othon, C. M., Barron, J. A., Young, D. and Spargo, B. J. 2006. Jet-based methods to print living cells. Biotechnol. J., 1(9), 930–48.CrossRefGoogle ScholarPubMed
Nakamura, M., Kobayashi, A., Takagi, F. et al. 2005. Biocompatible inkjet printing technique for designed seeding of individual living cells. Tissue Eng., 11(11–12), 1658–66.CrossRefGoogle ScholarPubMed
Schiele, N. R., Corr, D. T., Huang, Y. et al. 2010. Laser-based direct-write techniques for cell printing. Biofabrication, 2(3), 032001.CrossRefGoogle ScholarPubMed
Duocastella, M., Colina, M., Fernandez-Pradas, J. M. et al. 2007. Study of the laser-induced forward transfer of liquids for laser bioprinting. Appl. Surf. Sci., 253(19), 7855–9.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×