Skip to main content Accessibility help
×
  • Cited by 36
Publisher:
Cambridge University Press
Online publication date:
August 2009
Print publication year:
2008
Online ISBN:
9780511535956

Book description

This guide to bioremediation in cold regions is designed to aid environmental practitioners, industry, and regulators in the remediation of petroleum spills and contaminated sites in cold regions. Remediation design and technology used in temperate climates does not necessarily work in cold climates, and cleanup takes longer due to shorter treatment seasons, sub-freezing temperatures, ground freezing and thawing, and limited bioactivity. Environmental engineers and scientists from eight countries working in the polar regions combine their experiences and expertise with petroleum contamination to write this book. It contains in-depth discussions on regulations, freezing and frozen ground, identification and adaptations of cold-tolerant bacteria, contaminant transport in cold soils and permafrost, temperature effects on biodegradation, analytical methods, treatability studies, and nutritional requirements for bioremediation. Emphasis is given to practical and effective bioremediation methods for application in cold regions. Emerging technologies are also discussed.

Reviews

Review of the hardback:'… an excellent tool for environmental engineers working in cold regions, but also it will truly satisfy an extensive number of readers (scientists, students, engineers, planners etc.).'

Source: The Geographical Journal

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

  • 1 - Contamination, regulation, and remediation: an introduction to bioremediation of petroleum hydrocarbons in cold regions
    pp 1-37
    • By Ian Snape, Contaminants Geochemist Working for the Australian Antarctic Division in Tasmania, Larry Acomb, Geosphere Inc., 3055 Seawind Drive, Anchorage AK 99516, USA, David L. Barnes, Dept. of Civil and Environmental Engineering, University of Alaska Fairbanks, PO Box 755900, Fairbanks AK 99775, USA, Steve Bainbridge, Contaminated Sites Program, Division of Spill Prevention and Response, Department of Environmental Conservation, 610 University Avenue, Fairbanks AK 99709–3643, USA, Robert Eno, Department of Sustainable Development, Government of Nunavut, PO Box 1000, Stn 1195, Iqaluit NU X0A 0H0, Canada, Dennis M. Filler, Dept. of Civil and Environmental Engineering, University of Alaska Fairbanks, PO Box 755900, Fairbanks AK 99775, USA, Natalie Plato, Department of Sustainable Development, Government of Nunavut, PO Box 1000, Stn 1195, Iqaluit NU X0A 0H0, Canada, John S. Poland, Analytical Services Unit, Queens University, Kingston ON K7L 3N6, Canada, Tania C. Raymond, Environmental Protection and Change Program, Australian Antarctic Division, Channel Highway, Kingston, Tasmania 7050, Australia, John L. Rayner, Environmental Protection and Change Program, Australian Antarctic Division, Channel Highway, Kingston, Tasmania 7050, Australia, Martin J. Riddle, Environmental Protection and Change Program, Australian Antarctic Division, Channel Highway, Kingston, Tasmania 7050, Australia, Anne G. Rike, Dept. of Environmental Technology, Norwegian Geotechnical Institute, PO Box 3930, Ullevaal Stadion, N-0806 Oslo, Norway, Allison Rutter, Analytical Services Unit, Queens University, Kingston ON K7L 3N6, Canada, Alexis N. Schafer, University of Saskatchewan, 51 Campus Drive, Saskatoon, Canada S7N 5A8, Steven D. Siciliano, University of Saskatchewan, 51 Campus Drive, Saskatoon SK S7N 5A8, Canada, James L. Walworth, Dept. of Soil Water and Environmental Science, University of Arizona, 429 Shantz Bldg. #38, Tucson AZ 85721, USA
  • 9 - Landfarming
    pp 170-189
    • By James L. Walworth, Dept. of Soil Water and Environmental Science, University of Arizona, 429 Shantz Bldg. #38, Tucson AZ 85721, USA, C. Mike Reynolds, US Army Engineer Research and Development Center, Cold Regions Research and Engineering Laboratory, 72 Lyme Road, Hanover NH 03755, USA, Allison Rutter, Analytical Services Unit, Queens University, Kingston ON K7L 3N6, Canada, Ian Snape, Environmental Protection and Change Program, Australian Antarctic Division, Channel Highway, Kingston, Tasmania 7050, Australia
  • 11 - Emerging technologies
    pp 212-230
    • By Dale Van Stempvoort, National Water Research Institute, PO Box 5050, Burlington ON, Canada L7R 4A6, Kevin Biggar, BGC Engineering, Inc., 207, 5140–82 Avenue, Edmonton, Alberta, Canada T6B OE6, Dennis M. Filler, Dept. of Civil and Environmental Engineering, University of Alaska Fairbanks, PO Box 755900, Fairbanks AK 99775, USA, Ronald A. Johnson, Dept. of Mechanical Engineering, Institute of Northern Engineering Energy Research Center, University of Alaska Fairbanks, PO Box 755910, Fairbanks AK 99775–5910, USA, Ian Snape, Environmental Protection and Change Program, Australian Antarctic Division, Channel Highway, Kingston, Tasmania 7050, Australia, Kate Mumford, Particulate Fluids Processing Centre (ARC Special Research Centre), Department of Chemical and Biomolecular Engineering, University of Melbourne, Victoria 3010, Australia, William Schnabel, Golder Associates, 1346 West Arrowhead Road, Duluth MN 55811, USA, Steve Bainbridge, Contaminated Sites Program, Division of Spill Prevention and Response, Department of Environmental Conservation, 610 University Avenue, Fairbanks AK 99709–3643, USA
References
References
Aggarwal, P. K., Means, J. L., and Hinchee, R. E. 1991. Formulation of nutrient solutions for in situ bioremediation. In In Situ Bioremediation, Hinchee, R. E. and Olfenbuttel, R. F. (eds.), Columbus, OH Google Scholar, Battelle Press, 51–66.
Aguirre-Puente, J. and Gruson, J. 1983. Measurement of permeabilities of frozen soils. Proc. 4th Int'l. Conf. on Permafrost Google Scholar, 5–9.
Aichberger, H., Hasinger, M., Braun, R., and Loibner, A. P. 2005. Potential of preliminary test methods to predict biodegradation performance of petroleum hydrocarbons in soil. Biodegradation 16 CrossRef | Google Scholar | PubMed: 115–25.
Aiken, G. R., McKnight, D. M., Wershaw, R. L., and MacCarthy, P. 1985. An introduction to humic substances in soil, sediment, and water. In Humic Substances in Soil, Sediment, and Water: Geochemistry, Isolation, and Characterization, Aiken, G. R., McKnight, D. M., Wershaw, R. L., and MacCarthy, P. (eds.), New York, NY Google Scholar, Wiley-Interscience, 1–12.
Aislabie, J. 1997. Hydrocarbon-degrading bacteria in oil-contaminated soils near Scott Base, Antarctica. In Ecosystem Processes in Antarctica's Ice-Free Landscape. Lyons, W. B., Howard-Williams, C., and Hawes, I. (eds.), Rotterdam Google Scholar, Balkema Publishers Ltd., 253–8.
Aislabie, J. M., Balks, M. R., Foght, J. M., and Waterhouse, E. J. 2004. Hydrocarbon spills on Antarctic soils: effects and management. Environ. Sci. Technol. 38(5) CrossRef | Google Scholar: 1265–74.
Aislabie, J., Baraniecki, C., and Foght, J. M. 2002. Distribution and diversity of phenanthrene-degrading bacteria from soils of the Ross Sea region, Antarctica. Proc. 3rd Int'l. Conf. on Contaminants in Freezing Ground Google Scholar, Australian Antarctic Division, 103.
Aislabie, J., Foght, J., and Saul, D. 2000. Aromatic-hydrocarbon degrading bacteria isolated from soil near Scott Base, Antarctica. Polar Biol. 23 CrossRef | Google Scholar: 183–8.
Aislabie, J., Fraser, R., Duncan, S., and Farrell, R. L. 2001. Effects of soil spills on microbial heterotrophs in Antarctic soils. Polar Biol. 24 CrossRef | Google Scholar: 308–13.
Aislabie, J., McLeod, M., and Fraser, R. 1998. Potential of biodegradation of hydrocarbons in soil from the Ross Dependency, Antarctica. Appl. Microbiol. and BioTechnol. 49 CrossRef | Google Scholar: 210–14.
Aksenov, V. I., Klinova, G. I., and Scheikin, I. V. 1998. Material composition and strength characteristics of saline frozen soils. The 7th Int'l. Permafrost Conf Google Scholar., 1–4.
Aldrich, H. P. and Paynter, H. M. 1966. Depth of Frost Penetration in Non-uniform Soil Google Scholar. U.S. Army Cold Regions Research and Engineering Laboratory Special Report 104.
Alexander, M. 1999. Biodegradation and Bioremediation. San Diego, CA Google Scholar, Academic Press.
Allen-King, R. M., Barker, J. F., Gillham, R. W., and Jensen, B. K. 1994. Substrate- and nutrient-limited toluene biotransformation in sandy soil. Environ. Toxicology and Chem. 13 CrossRef | Google Scholar: 693–705.
Amann, R. I., Ludwig, W., and Schleifer, K- H. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59(1) Google Scholar: 143–69.
AMAP. 1998. AMAP Assessment Report: Arctic pollution issues, Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway Google Scholar.
AMAP. 2006. Prospectus for the preparation of the Arctic Council's assessment of oil and gas activities in the Arctic (January 2006 version). Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway. viewed 11 August 2006, www.amap.no/MiscTempFiles/OGAOutline-January2006.doc. Google Scholar
Andersland, O. B. and Ladanyi, B. 1994. An Introduction to Frozen Ground Engineering. London CrossRef | Google Scholar, Chapman & Hall.
Andersland, O. B. and Ladanyi, B. 2004. Frozen Ground Engineering Google Scholar. American Society of Civil Engineers & John Wiley & Sons.
Andersland, O. B., Wiggert, D. C., and Davies, S. H. 1996. Hydraulic conductivity of frozen soils. J. Environ. Eng CrossRef | Google Scholar., March, 212–16.
Anderson, D. M. and Tice, A. R. 1972. Predicting unfrozen water contents in frozen soils from surface area measurements. In Frost Action in Soils, Washington, DC Google Scholar, National Academy of Sciences, 12–18.
Arenson, L. U. and Sego, D. C. 2004. Freezing processes for a coarse sand with varying salinities. Proc. 12th Int'l. Conf. on Ground Freezing Google Scholar, Smith, D. W., Sego, D. C. and Lendzion, C. A. (eds.).
Arey, J. S., Nelson, R. K., Xu, L., and Reddy, C. M. 2005. Using comprehensive two-dimensional gas chromatography retention indices to estimate environmental partitioning properties for a complete set of diesel fuel hydrocarbons. Analytical Chem. 77 CrossRef | Google Scholar | PubMed: 7172–82.
Armstrong J. E., Biggar K., Staudt W., et al. 2002. Assessment of Monitored Natural Attenuation at Upstream Oil & Gas Facilities in Alberta: Final Report. Canadian Association of Petroleum Producers, Research Report 2001-0010. Komex International Ltd., Calgary, AB, Canada. Google Scholar
Aronson, D., Philip, H., and Howard, P. H. 1997. Anaerobic Biodegradation of Organic Chemicals in Groundwater: A Summary of Field and Laboratory Studies. Final report prepared for American Petroleum Institute, Chemical Manufacturer's Association, National Council of the Paper Industry for Air and Stream Improvement, Edison Electric Institute, American Forest and Paper Association. Environmental Science Center, Syracuse Research Corporation, North Syracuse, New York. Google Scholar
Athey, P., Reeder, D., Lukin, J., McKendrick, J., and Conn, J. S. 2001. Tundra Treatment Guidelines Google Scholar, Alaska Department of Environmental Conservation.
Atlas, R. M. 1979. Measurement of hydrocarbon biodegradation potentials and enumeration of hydrocarbon-utilizing microorganisms using carbon-14 hydrocarbon-spiked crude oil. In Native Aquatic Bacteria: Enumeration, Activity, and Ecology, Costerton, J. W. and Colwell, R. R. CrossRef | Google Scholar (eds), Philadelphia, American Society for Testing and Materials. ATSM STP 695, 196–204.
Atlas, R. M. 1981. Microbial degradation of petroleum hydrocarbons: an environmental perspective. Microbiol. Rev. 45(1) Google Scholar: 180–209.
Ausma, S., Edwards, G. C., Fitzgerald-Hubble, C. R.et al. 2002. Volatile hydrocarbon emissions from a diesel fuel-contaminated soil bioremediation facility. J. Air & Waste Mgmt. Assoc. 52 CrossRef | Google Scholar | PubMed: 769–80.
Ausma, S., Edwards, G. C., Wong, E. K.et al. 2001. A micrometeorological technique to monitor total hydrocarbon emissions from landfarms to the atmosphere. J. Environ. Qual. 30 CrossRef | Google Scholar: 776–85.
Baedecker, M. J., Cozzarelli, I. M., Eganhouse, R. P., Siegel, D. I., and Bennett, P. C. 1993. Crude oil in a shallow sand and gravel aquifer – III. Biogeochemical reactions and mass balance modeling in anoxic groundwater. Appl. Geochem. 8 CrossRef | Google Scholar: 569–58.
Baker, G. C. and Osterkamp, T. E. 1988. Salt redistribution during laboratory freezing of saline sand columns. 5th Int'l. Symposium on Ground Freezing Google Scholar, 29–33.
Baker, J. H. 1974. The use of temperature-gradient incubator to investigate the temperature characteristics of some bacteria from Antarctic peat. British Antarct. Surv. B. 39 Google Scholar: 49–59.
Balks, M. R., Holmes, D. J., and Aislabie, J. 2002. The fate and effects of hydrocarbons in Antarctic soil: preliminary results of an experimental fuel spill. In Transactions of the 17th World Congress of Soil science, Kheoruenromne, I. (ed), Bangkok, Thailand Google ScholarInternational Union of Soil Sciences, 320–1 to 320–9.
Banks, P. D. and Brown, K. M. 2002. Hydrocarbon effects on fouling assemblages: the importance of taxonomic differences, seasonal, and tidal variation. Mar. Environ. Res. 53 CrossRef | Google Scholar | PubMed: 311–26.
Baraniecki, C. A., Aislabie, J., and Foght, J. M. 2002. Characterisation of Sphingomonas sp. Ant 17, an aromatic hydrocarbon-degrading bacterium isolated from Antarctic soil. Microbial Ecol. 43 CrossRef | Google Scholar: 44–54.
Barker, J. F, Patrick, G. C., and Major, D. 1987. Natural attenuation of aromatic hydrocarbons in a shallow sand aquifer. Ground Water Monitor. Rev. 7(1) CrossRef | Google Scholar: 64–7.
Barnes, D. L. and Adhikari, H. 2006. Suprapermafrost ground water dynamics in gravel pads located in the Arctic. In Contaminants in Freezing Ground: Proc. 5th Int'l Conf., Rike, A. G.Øvstedal, J., and Vethe, O. (eds.), Oslo, Norway Google Scholar: Norsk Geologisk Forening, 13.
Barnes, D. L. and Filler, D. M. 2003. Spill evaluation of petroleum products in freezing ground. Polar Rec. 39 CrossRef | Google Scholar: 385–90.
Barnes, D. L. and Wolfe, S. M. In press. Influence of ice on the infiltration of petroleum into frozen coarse grain soil. Petroleum Sci. & Technol Google Scholar.
Barnes, D. L., Wolfe, S. M., and Filler, D. M. 2004. Equilibrium distribution of petroleum hydrocarbons in freezing ground. Polar Rec. 40: 245–51. Google Scholar
Barnette, M., Ziervogel, H., Das, D., Clark, J., and Hayden, K. 2005. Bioventing at a heating oil spill site in Yellowknife, Northwest Territories. Proc. '05 Assessment and Remediation of Contaminated Sites in Arctic and Cold Climates (ARCSACC) workshop, Edmonton, Canada Google Scholar, 207–16.
Bathurst, R. J., Rowe, R. K., Zeeb, B. A., and Reimer, K. J. 2006. A geocomposite barrier for hydrocarbon containment in the Arctic. Int. J. Geoeng. Case Histories 1 Google Scholar: 18–34.
Batley, G. E., Burton, G. A., Chapman, P. M., and Forbes, V. E. 2002. Uncertainties in sediment quality weight-of-evidence (WOE) assessments. Hum. Ecol. Risk Assess. 8 CrossRef | Google Scholar: 1517–47.
Bazilescu, I. and Lyhus, B. 1996. Russia Oil Spill. TED Case Studies, No. 265. Washington, DC, American University, viewed 11 August 2006, www.american.edu/ted/KOMI.HTM. Google Scholar
Bej, A. K., Saul, D., and Aislabie, J. 2000. Cold-tolerant alkane-degrading Rhodococcos species from Antarctica. Polar Biol. 23(2) CrossRef | Google Scholar: 100–5.
Bekins, B. A., Warren, E., and Godsy, E. M. 1998. A comparison of zero-order, first-order, and Monod biotransformation models. Ground Water 36 CrossRef | Google Scholar: 261–8.
Bellona, 2006. Three times more oil spills in Komi Republic. Bellona, Oslo, viewed 11 August 2006, www.bellona.org/news/Three_times_more_oil_spills_in_Komi_Republic. Google Scholar
Berchet, V., Thomas, T., Cavicchioli, R., Russell, N. J., and Gounot, A. 2000. Structural analysis of the elongation factor G protein from the low-temperature-adapted bacterium Arthrobacter globiformis SI55. Extremophiles 4 CrossRef | Google Scholar | PubMed: 123–30.
Berlow, E. L. 1999. Strong effects of weak interactions in ecological communities. Nature 398 CrossRef | Google Scholar: 330–4.
Biggar, K. W., Haidar, S., Nahir, M., and Jarrett, P. M. 1998. Site investigation of fuel spill migration into permafrost. J. Cold Regions Eng. 12 CrossRef | Google Scholar(2): 84–104.
Biggar, K. W. and Neufeld, J. C. R. August, 1996. Vertical migration of diesel into silty sand subject to cyclic freeze-thaw. Proc. 8th Int'l. Conf. Cold Regions Eng., Fairbanks, Alaska Google Scholar, 116–27.
Biggar, K. W., Van Stempvoort, D., Iwakun, O., Bickerton, G., and Voralek, J. 2006. Fuel contamination characterization in permafrost fractured bedrock at the Colomac mine site, NWT. In Contaminants in Freezing Ground: Proc. 5th Int'l. Conf., Rike, A. G., Øvstedal, J., and Vethe, Ø. (eds.), Oslo, Norway Google Scholar, Norsk Geologisk Forening, 17.
Billi, D., Friedmann, E. I., Hofer, K. G., Grilli-Caiola, M., and Ocampo-Friedman, R. 2000. Ionizing-radiation resistance in the desiccation-tolerant cyanobacteriumChroococcidiopsis. Appl. and Environ. Microbiol. 66 CrossRef | Google Scholar | PubMed: 1489–92.
Billowits, M. E., Whyte, L.G, Ramsay, J. A., Greer, C., and Nahir, M. 1999. An evaluation of the bioremediation potential of near surface groundwater contaminated with petroleum hydrocarbons in the Yukon. Proc. '99 Assessment and Remediation of Contaminated Sites in Arctic and Cold Climates (ARCSACC) workshop, Edmonton, Canada Google Scholar, 91–100.
Bockheim, J. G. and Tarnocai, C. 1998. Nature, occurrence and origin of dry permafrost. Permafrost, 7th Int'l. Conf., Lewkowicz, A. G. and Allard, M. (eds.), Yellowknife, Canada Google Scholar, June 23–27, 57–63.
B⊘rresen, M. H., Barnes, D. L., and Rike, A. G. 2006. Repeated freeze-thaw cycles and their effects on mineralization of hexadecane and phenanthrene in cold climate soils. Proc. 5th Int'l. Conf. on Contaminants in Freezing Ground, NGF Abstracts and Proceedings of the Geological Society of Norway, No. 2, p. 23. Google Scholar
B⊘rresen, M., Breedveld, G. D., and Rike, A. G. 2003a. Assessment of the biodegradation potential of hydrocarbons in contaminated soil from a permafrost site. Cold Reg. Sci. Technol. 37 CrossRef | Google Scholar: 137–49.
B⊘rresen, M. and Rike, A. G. 2003b. Effect of nutrient content on biodegradation of hydrocarbons in arctic soil. Proc. 3rd Assessment and Remediation of Contaminated Sites in Arctic and Cold Climates (ARCSACC) Conf., Nahir, M., Biggar, K., and Cotta, G. (eds.), Edmonton, Canada Google Scholar, May 4–6, 220–6.
Bowles, J. E. 1988. Foundation Analysis and Design. New York Google Scholar, McGraw-Hill.
Bowles, M. W., Bentley, L. R.et al. (2000). In situ groundwater remediation using the trench and gate system. Ground Water 38 CrossRef | Google Scholar: 172–81.
Braddock, J. F., Harduar, L. N. A., Lindstrom, J. E., and Filler, D. M. 2000. Efficacy of bioaugmentation vs. fertilization only for treatment of diesel contaminated soil at an Arctic site. Proc. 23rd Arctic and Marine Oilspill (AMOP) Technol. Seminar, Vancouver, Environment Canada Google Scholar, 991–1002.
Braddock, J. F., Lindstrom, J., Filler, D. M., and Walworth, J. 2001. Temperature and nutrient effects on bioremediation of petroleum hydrocarbons in cold soils and groundwater. Proc. ‘01 Assessment and Remediation of Contaminated Sites in Arctic and Cold Climates (ARCSACC) Workshop, Nahir, M., Biggar, K., and Cotta, G. (eds.), Edmonton, Canada Google Scholar, 161–7.
Braddock, J. F., Lindstrom, J. E., and Prince, R. C. 2003. Weathering of a subarctic oil spill over 25 years: the Caribou Poker Creeks Research Watershed experiment. Cold Reg. Sci. Technol. 36 CrossRef | Google Scholar(1–3): 11–23.
Braddock, J. F. and McCarthy, K. A. 1996. Hydrologic and microbiological factors affecting persistence and migration of petroleum hydrocarbons spilled in a continuous-permafrost region. Environ. Sci. Technol. 30 CrossRef | Google Scholar: 2626–33.
Braddock, J. F., Ruth, M. L., Catterall, P. H., Walworth, J. L., and McCarthy, K. A. 1997. Enhancement and inhibition of microbial activity in hydrocarbon-contaminated Arctic soils: implications for nutrient-amended bioremediation. Environ. Sci. Technol. 31 CrossRef | Google Scholar(7): 2078–84.
Braddock, J. F., Walworth, J. L., and McCarthy, K. A. 1999. Biodegradation of aliphatic vs. aromatic hydrocarbons in fertilized Arctic soils. Bioremediation J. 3 CrossRef | Google Scholar(2): 105–16.
Bradley, P. M. and Chapelle, F. H. 1995. Rapid toluene mineralization by microorganisms at Adak, Alaska: Implications for intrinsic bioremediation in cold environments. Environ. Sci. Technol. 29 CrossRef | Google Scholar | PubMed: 2778–81.
Braids, O. C. and Miller, R. H. 1975. Fats, waxes, and resins in soil. In Soil Components: Volume 1, Organic Components, Gieseking, J. E. (ed.), New York, NY Google Scholar, Springer-Verlag, 343–68.
Braley, W. A. 1984. A Personal Computer Solution to the Modified Berggren Equation. Institute of Water Resources/Engineering Experiment Station-University of Alaska Fairbanks, Report No. AK-RD-85–19. Google Scholar
Broeze., R. J., Solomon, C. J., and Pope, D. H. 1987. Effects of low temperature on in vivo and in vitro protein synthesis in Escherichia coli and Pseudomonas fluorescens. J. Bacteriol. 134 Google Scholar: 861–74.
Brook, T. R., Stiver, W. H., and Zytner, R. G. 1997. Effect of nitrogen sources on the biodegradation of diesel fuel in unsaturated soil. 1997 CSCE/ASCE Environ. Eng. Conf., Edmonton, Alberta, Canada Google Scholar, July 22–26.
Brook, T. R., Stiver, W. H., and Zytner, R. G. 2001. Biodegradation of diesel fuel in soil under various nitrogen addition regimes. Soil and Sediment Contam. 10 CrossRef | Google Scholar: 539–53.
Brown, E. J. and Braddock, J. F. 1990. Sheen Screen, a miniaturized most-probable-number method for enumeration of oil-degrading microorganisms. Appl. and Environ. Microbiol. 56 Google Scholar | PubMed: 3895–6.
Brown, K. W., Donnelly, K. C., and Deuel, J. 1983. Effects of mineral nutrients, sludge application rate, and application frequency on biodegradation of two oily sludges. Microbial Ecol. 9 CrossRef | Google Scholar | PubMed: 363–73.
Brunner, W. and Focht, D. D. 1984. Deterministic three-half-order kinetic model for microbial degradation of added substrates in soil. Appl. and Environ. Microbiol. 47 Google Scholar | PubMed: 167–72.
Burt, T. P. and Williams, P. J. 1976. Hydraulic conductivity in frozen soils. Earth Sur. Proc. 1 CrossRef | Google Scholar: 349–60
Burton, G. A., Batley, G. E., Chapman, P. M.et al., 2002a. A weight-of-evidence framework for assessing sediment (or other) contamination: Improving certainty in the decision-making process. Hum. Ecol. Risk Assess. 8 CrossRef | Google Scholar: 1675–96.
Burton, G. A., Chapman, P. M., and Smith, E. P. 2002b. Weight-of-evidence approaches for assessing ecosystem impairment. Hum. Ecol. Risk Assess. 8 CrossRef | Google Scholar: 1657–73.
Bury, S. J. and Miller, C. A. 1993. Effect of micellar solubilization on biodegradation rates of hydrocarbons. Environ. Sci. Technol. 27 CrossRef | Google Scholar: 104–10.
Campbell, D. I., MacCulloch, R. J. L., and Campbell, I. B. 1998. Thermal regimes of some soils in the McMurdo Sound region, Antarctica. In Ecosystem Processes in Antarctic Ice-free Landscapes, Lyons, W. B., Howard-Williams, C., and Hawes, I. (eds), Rotterdam, Balkema Google Scholar, 45–56.
Carss, J. G., Agar, J. G., and Surbey, G. E. 1994. In situ bioremediation in Arctic Canada. Proc. ‘93 Bioreclamation Symposium. Boca Raton Florida Google Scholar, Lewis Publishers, 2(2): 323–8.
Cavicchioli, R., Thomas, T., and Curmi, P. M. G. 2000. Cold stress response in Archaea. Extremophiles 4 CrossRef | Google Scholar | PubMed: 321–31.
CCME 1996. A Protocol for the Derivation of Environmental and Human Health Soil Quality Guidelines (PN 1332). Canadian Council of Ministers of the Environment. Google Scholar
CCME 2001. Canada-wide Standard for Petroleum Hydrocarbons (PHC) in Soil: User Guidance. Report 10-6162. Winnipeg: Canadian Council for Ministers for the Environment. Google Scholar
Chablain, P. A., Philippe, G., Groboillot, A., Truffaut, N., and Guespin-Michel, J. F. 1997. Isolation of a soil psychrotrophic toluene-degrading Pseudomonas strain: influence of temperature on the growth characteristics on different substrates. Res. in Microbiol. 148 CrossRef | Google Scholar | PubMed: 153–61.
Chamberlain, E. J. 1983. Frost heave of saline soils. 4th Int'l. Conf. on Permafrost Google Scholar, 121–6.
Chang, Z. Z., Weaver, R. W., and Rhykerd, R. L. 1996. Oil bioremediation in a high and a low phosphorus soil. J. Soil Contam. 5 CrossRef | Google Scholar(3): 215–24.
Chang, Z. Z., and Weaver, R. W. 1997. Nitrification and utilization of ammonium and nitrate during oil bioremediation at different soil water potential. J. Soil Contam. 6 CrossRef | Google Scholar(2): 149–60.
Chapman, P. M. 1986. Sediment quality criteria from the sediment quality triad: an example. Environ. Toxicol. Chem. 5 CrossRef | Google Scholar: 957–64.
Chapman, P. M., Ho, K. T., Munns, J.et al. 2002a. Issues in sediment toxicity and ecological risk assessment. Mar. Pollut. Bull. 44 CrossRef | Google Scholar: 271–8.
Chapman, P. M., McDonald, B. G., and Lawrence, G. S. 2002b. Weight-of-evidence issues and frameworks for sediment quality (and other) assessments. Hum. Ecol. Risk Assess. 8 CrossRef | Google Scholar: 1489–515.
Charbeneau, R., Johns, R., Lake, L., and McAdams, M. 1999. Free-Product Recovery of Petroleum Hydrocarbon Liquids. American Petroleum Institute Publication No. 4682. Google Scholar
Chatham, J. R. 2003. Landfarming on the Alaskan North slope – historical development and recent applications. 10th Annual Int'l. Petroleum Environ. Conf., Houston, TX, November 11–14, 2003 Google Scholar. http://ipec.utulsa.edu/Conf2003/Papers/chatham_35.pdf.
Chattopadhyay, M. A. and Jagannadham, M. V. 2001. Maintenance of membrane fluidity in Antarctic bacteria. Polar Biol. 24 Google Scholar: 386–8.
Chiang, C. Y., Salanitro, J. P., Chai, E. Y., Colthart, J. D., and Klein, C. L. 1989. Aerobic biodegradation of benzene, toluene, and xylene in a sandy aquifer – Data analysis and computer modeling. Ground Water 27 CrossRef | Google Scholar(6): 823–34.
Christensen, K. E. and Shenk, C. G. 2006. Observations of fuel transport from two fuel release events on multi-year sea ice with relevance to site assessment and closure. Contaminants in Freezing Ground: Proc. 5th Int'l Conf., Rike, A. G.Øvstedal, J., and Vethe, Ø. (eds.), Oslo, Norway Google Scholar, Norsk Geologisk Forening, 25.
Chuvilin, E. M. and Miklyaeva, E. S. 2003. An experimental investigation of the influence of salinity and cryogenic structure on the dispersion of oil and oil products in frozen soils. Cold Regions Sci. Technol. 37 CrossRef | Google Scholar: 89–95.
Chuvilin, E. M., Naletova, N. S., Miklyaeva, E. C., Kozlova, E. V., and Istanes, A. 2001. Factors affecting the spreadibility and transportation of oil in regions of frozen ground. Polar Rec. 37 CrossRef | Google Scholar(202): 229–38.
Clarke, P. J. and Ward, T. J. 1994. The response of southern hemisphere saltmarsh plants and gastropods to experimental contamination by petroleum hydrocarbons. J. Exp. Mar. Biol. Ecol. 175 CrossRef | Google Scholar: 43–57.
Collins, C. M., Racine, C. H., and Walsh, M. E. 1994. The physical, chemical and biological effects of crude oil spills after 15 years on a black spruce forest, Interior Alaska. Arctic 47 CrossRef | Google Scholar(2): 164–75.
Colwell, R. R. and Walker, J. D. 1977. Ecological aspects of microbial degradation of petroleum in the marine environment. CRC Crit. Rev. Microbiol. 5 Google Scholar: 423–45.
COMNAP. 2006. Antarctic Facilities in Operation. Council of Managers of National Antarctic Programs. viewed 28 August 2006, (www.comnap.aq/operations/facilities/) Google Scholar
Conner, J. S. 1988. Case study of soil venting. Pollution Eng. 7 Google Scholar: 74–8.
Cookson, J. T. 1995. Bioremediation Engineering: Design and Application, New York Google Scholar, McGraw-Hill.
Council of the European Communities. 2004. Council Directive 75/439/EEC of 16 June 1975 on the disposal of waste oils. viewed 29 August 2006, http://eurlex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31975L0439:EN:HTML Google Scholar
Croft, B. C., Swannell, R. P. J., Grant, A. L., and Lee, K. 1995. The effect of bioremediation agents on oil biodegradation in medium-fine sand. In Appl. Bioremediation of Petroleum Hydrocarbons, Hinchee, R. E., (ed.), Columbus, OH Google Scholar, Battelle Press.
Cross, K., Biggar, K., Semple, K., et al. 2003. Intrinsic bioremediation of invert diesel fuel contaminating groundwater in a bedrock formation. Proc. '03 Assessment and Remediation of Contaminated Sites in Arctic and Cold Climates (ARCSACC) Workshop, Nahir, M., Biggar, K., and Cotta, G. (eds.), Edmonton, Canada Google Scholar, 227–42.
Cunningham, J. 1993. Increased biodegradation rates of diesel fuel in soil using controlled-release nutrients. In Principles and Practices for Diesel Contaminated Soils, Volume II, Kostecki, P. T., Calabrese, E. J., and Barkan, C. P. L. Google Scholar (eds.), Amherst, MA, Association for the Environmental Health of Soils, 29–42.
Curtis, F. and Lammey, J. 1998. Intrinsic remediation of a diesel fuel plume in Goose Bay, Labrador, Canada. Environ. Poll. 103 CrossRef | Google Scholar(2–3): 203–10.
Dean, J. 1998. Extraction Methods for Environmental Analysis. New York Google Scholar, John Wiley and Sons.
DEC. 2005. 18 Alaska Administrative Code 75: Oil and Other Hazardous Substances Pollution Control. Alaska Department of Environmental Conservation. Google Scholar
Delille, D., Coulon, F., and Pelletier, E. 2004a. Effects of temperature warming during a bioremediation study of natural and nutrient-amended hydrocarbon-contaminated sub-Antarctic soils. Cold Reg. Sci. Technol. 40 CrossRef | Google Scholar: 61–7.
Delille, D., Coulon, F., and Pelletier, E. 2004b. Biostimulation of natural microbial assemblages in oil-amended vegetated and desert sub-Antarctic soils. Microbial Ecol. 47 CrossRef | Google Scholar(4): 407–15.
Delille, D., Delille, B., and Pelletier, E. 2002. Effectiveness of bioremediation of crude oil contaminated subantarctic intertidal sediment: The microbial response. Microbial Ecol. 44 CrossRef | Google Scholar | PubMed: 118–26.
Delille, D. and Pelletier, E. 2002. Natural attenuation of diesel-oil contamination in a subantarctic soil (Crozet Island). Polar Biol. 25 Google Scholar: 682–7.
Delille, D., Pelletier, E., Coulon, F., Feller, G., and Delille, B. 2006. Tools for bioremediation of sub-Antarctic soils exposed to petroleum hydrocarbons. Newsletter for the Canadian Antarctic Research Network, 21 Google Scholar: 11–16.
Delille, D., Pelletier, E., Delille, B., and Coulon, F. 2003. Effect of nutrient enrichments on the bacterial assemblage of Antarctic soils contaminated by diesel or crude oil. Polar Rec. 39 CrossRef | Google Scholar(211): 309–18.
Deming, J. W. 2002. Psychrophiles and polar regions. Current Opinions in Microbiol. 5 CrossRef | Google Scholar | PubMed: 301–9.
Demque, D. E., Biggar, K. W., and Heroux, J. A. 1997. Land treatment of diesel contaminated soil. Can. GeoTechnol. J. 34 CrossRef | Google Scholar: 421–31.
Denef, V. J., Park, J., Rodrigues, J. L. M.et al. 2003. Validation of a more sensitive method for using spotted oligonucleotide DNA microarrays for functional genomics on bacterial communities. Environ. Microbiol. 5 CrossRef | Google Scholar | PubMed: 933–43.
Det Norske Veritas. 2003. Russia Pipeline Oil Spill Study. ESMAP Technical Paper 034-03. Joint UNDP/World Bank Energy Sector Management Assistance Programme, Norway, p. 82+app., viewed 11 August 2006, http://wbln0018.worldbank.org/esmap/site.nsf/files/034-03+Russia+Pipeline+Oil+Spill+Study+Report.pdf/$FILE/034-03+Russia+Pipeline+Oil+Spill+Study+Report.pdf Google Scholar
DIAND. 2002. Contaminated Sites Program Management Framework, October 2002. Department of Indian and Northern Affairs Development. Google Scholar
Diaz-Ravina, M., Frostegard, A., and Baath, E. 1994. Thymidine, leucine and acetate incorporation into soil bacterial assemblages at different temperatures. FEMS Microbiol. Ecol. 14 CrossRef | Google Scholar: 221–32.
Dibble, J. T. and Bartha, R. 1979. Effect of environmental parameters on the biodegradation of oil sludge. Appl. and Environ. Microbiol. 37 Google Scholar | PubMed: 729–39.
Dirksen, C. and Miller, R. D. 1966. Closed-system freezing of unsaturated soil. Soil Sci. Soc. of America 30 CrossRef | Google Scholar: 168–73.
DND-NTI. 1998. Agreement between Nunavut Tunngavik Incorporated and Her Majesty in the Right of Canada as represented by the Minister of National Defence for the Clean-up and Restoration of Distant Early Warning Sites within the Nunavut Settlement area. September 1998. Google Scholar
Dörfler, U., Haala, R., Matthies, M., and Scheunert, I. 1996. Mineralization kinetics of chemicals in soils in relation to environmental conditions. Ecotoxicol. and Environ. Safety 34 CrossRef | Google Scholar | PubMed: 216–22.
Dott, W., Feidieker, D., Kampfer, P., Schleibinger, H., and Strechel, S. 1989. Comparison of autochthonous bacteria and commercially available cultures with respect to their effectiveness in fuel oil degradation. J. Indust. Microbiol. 4 CrossRef | Google Scholar: 365–74.
Dragun, J. 1988. The Soil Chemistry of Hazardous Materials. Silver Spring, MD, Hazardous Materials Control Research Institute. Google Scholar
Duffie, J. A. and Beckman, W. A. 1991. Solar Engineering of Thermal Processes, 2nd edn. Google ScholarWiley Interscience.
Dunne, J. A., Williams, R. J., and Martinez, N. D. 2002a. Food-web structure and network theory: the role of connectance and size. Proc. Nat. Acad. Sci. USA99: 12917–22. Google Scholar
Dunne, J. A., Williams, R. J., and Martinez, N. D. 2002b. Network topology and biodiversity loss in food webs: robustness increases with connectance. Ecol. Lett. 5: 558–67. Google Scholar
Durant, N. D., Jonkers, C. A. A., and Bouwer, E. J. 1997. Spatial variability in the naphthalene mineralization response to oxygen, nitrate, and orthophosphate amendments in MGP aquifer sediments. Biodegradation 8 CrossRef | Google Scholar: 77–86.
Eckford, R., Cook, F. D., Saul, D., Aislabie, J., and Foght, J. 2002. Free-living nitrogen-fixing bacteria from Antarctic soils. Appl. and Enviro. Microbiol. 68 CrossRef | Google Scholar | PubMed: 5181–5.
Edwards, D. A., Andriot, M. D., Amoruso, M. A., et al. 1997. Development of fraction specific reference doses (RfDs) and reference concentrations (RfCs) for total petroleum hydrocarbons (TPH). Total Petroleum Hydrocarbon Criteria Working Group series; Volume 4, Amherst, MA, Amherst Scientific Publishers. Google Scholar
EEA-IMS. 2005. Progress in management of contaminated sites (CSI 015) – May 2005 Assessment. European Environment Agency – Indicator Management Service. viewed 18 August 2006, http://ims.eionet.europa.eu/IMS/ISpecs/ISpecification20041007131746/IAssessment1116497286336/view_content. Google Scholar
Eganhouse, R. P., Baedecker, M. J., Cozzarelli, I. M., Aiken, G. R., Thorn, K. A., and Dorsey, T. F. 1993. Crude oil in a shallow sand and gravel aquifer – II. Organic geochemistry. Appl. Geochem. 8 CrossRef | Google Scholar(4): 551–67.
EIA. 2000. Antarctica: Fact Sheet. Energy Information Administration, United States Department of Energy, viewed 13 November 2006, www.eia.doe.gov/emeu/cabs/antarctica.html. Google Scholar
Elliot, D. H. 1988. Antarctica – is there any oil and natural gas. Oceanus 31 Google Scholar: 32–8.
El-Shinnawi, M. M., Bayoumi, N. A., Aboel-naga, S. A., and Mohammed, S. S. 1993. Changes of nitrogen forms in different arid soils during incubation at varying moisture contents. Egyptian J. Soil Sci. 33 Google Scholar(4): 435–61.
EMPCA. 1994. Environmental Management and Pollution Control Act 1994. Tasmania, Australia. Google Scholar
Environment and Food Agency Iceland. 2002. Contaminated Soil in Iceland. Environment and Food Agency, Iceland, viewed 3 October 2006, http://english.ust.is/infobase/pollution-prevention/WasteManagementinIceland/ContaminatedsoilInIceland. Google Scholar
Eriksson, M., Dalhammar, G., and Mohn, W. W. 2002. Bacterial growth and biofilm production on pyrene. FEMS Microbiol. Ecol. 40 CrossRef | Google Scholar | PubMed: 21–7.
Eriksson, S., Hallbeck, L., Ankner, T., Abrahamsson, K., and Sjöling, Å. 2006. Indicators of petroleum hydrocarbon biodegradation in anaerobic granitic groundwater. Geomicrobiol. J. 23 CrossRef | Google Scholar(1): 45–58.
Eriksson, M., Ka, J.-O., and Mohn, W. W. 2001. Effects of low temperature and freeze-thaw cycles on hydrocarbon biodegradation in Arctic tundra soil. Appl. and Environ. Microbiol. 67 CrossRef | Google Scholar | PubMed(11): 5107–12.
Eriksson, M., Sodersten, E., Yu, Z., Dalhammer, G., and Mohn, W. W. 2003. Degradation of polycyclic aromatic hydrocarbons at low temperature under aerobic and nitrate-reducing conditions in enrichment cultures from Northern soils. Appl. and Environ. Microbiol. 69 CrossRef | Google Scholar | PubMed: 275–84.
Eschenbach, A., Wienberg, R., and Mahro, B. 1998. Fate and stability of nonextractable residues of [14C]PAH in contaminated soils under environmental stress conditions. Environ. Sci. Technol CrossRef | Google Scholar. 32: 2585–90.
ESG. 1993. The Environmental Impact of the DEW Line on the Canadian Arctic. Environmental Sciences Group, Royal Military College, Kingston, Ontario, Canada. Google Scholar
Fan, X., Guigard, S., Foght, J.Semple, K., and Biggar, K. W. 2006. A mesocosm study of enhanced anaerobic biodegradation of petroleum hydrocarbons in groundwater from a flare pit site. Proc. 59th Canadian Geotechnical Conf., Vancouver, Canada Google Scholar, Paper No. 346.
Farouki, O. 1981. Thermal Properties of Soils CrossRef | Google Scholar. U.S. Army Cold Regions Research and Engineering Laboratory Monograph 81–1.
Farr, A. M., Houghtalen, R. J., and McWhorter, D. B. 1990. Volume estimation of light nonaqueous phase liquids in porous media. Ground Water 28 CrossRef | Google Scholar(1): 48–56.
Fayad, N. M. and Overton, E. B. 1995. A unique biodegradation pattern of the oil spilled during the 1991 gulf war. Mar. Pollut. Bull. 30 CrossRef | Google Scholar(4): 239–46.
Ferguson, C. C. and Kasamas, H. 1999 Google Scholar. Risk Assessment for Contaminated Sites in Europe. Policy Framework. Nottingham, LQM Press.
Ferguson, S. H., Franzmann, P. D., Revill, A. T., Snape, I., and Rayner, J. L. 2003a. The effects of nitrogen and water on mineralisation of diesel-contaminated terrestrial Antarctic sediments. Cold Reg. Sci. Technol. 37 CrossRef | Google Scholar: 197–212.
Ferguson, S. H., Franzmann, P. D., Snape, I.et al. 2003b. Effects of temperature on mineralisation of petroleum in contaminated Antarctic terrestrial sediments. Chemosphere 52 CrossRef | Google Scholar(6): 975–87.
Filler, D. F. 1997. Thermally enhanced bioventing of petroleum hydrocarbons in cold regions. Doctoral Thesis, Dept. of Civil and Environ. Eng., University of Alaska Fairbanks. Google Scholar
Filler, D. M. and Barnes, D. L. 2003. Technical procedures for recovery and evaluation of chemical spills on tundra. Cold Reg. Sci. Technol. 37 CrossRef | Google Scholar: 121–35.
Filler, D. M. and Carlson, R. F. 2000. Thermal insulation systems for bioremediation in cold regions. J. Cold Regions Eng. 14 CrossRef | Google Scholar(3): 119–29.
Filler, D. A., Lindstrom, J. E., Braddock, J. F., Johnson, R. A., and Nickalaski, R. 2001. Integral biopile components for successful bioremediation in the Arctic. Cold Reg. Sci. Technol. 32 CrossRef | Google Scholar(2–3): 143–56.
Filler, D. M., Reynolds, C. M., Snape, I.et al. 2006. Advances in engineered remediation for use in the Arctic and Antarctica. Polar Rec. 42 CrossRef | Google Scholar: 111–20.
Fine, P., Graber, E. R., and Yaron, B. 1997. Soil interactions with petroleum hydrocarbons: abiotic processes. Soil Technol. 10 CrossRef | Google Scholar: 133–53.
Foght, J. and Aislabie, J. 2005. Enumeration of soil microorganisms. In Soil Biology, Volume 5. Manual for Soil Analysis, Margesin, R. and Schinner, F. Google Scholar (eds.), Springer-Verlag, 261–80.
Fourie, W., Barnes, D. L., and Shur, Y. 2007. The formation of ice from the infiltration of water in frozen coarse grain soils. Cold Reg. Sci. Technol. (in press CrossRef | Google Scholar).
Frankenberger, W. T. 1988. Use of urea as a nitrogen-fertilizer in bioreclamation of petroleum-hydrocarbons in soil. Bulletin of Environ. Contam. and Toxicol. 40 CrossRef | Google Scholar | PubMed(1): 66–8.
Franzmann, P. D., Zappia, L. R., Power, T. R., Davis, G. B., and Patterson, B. M. 1999. Microbial mineralisation of benzene and characterisation of microbial biomass in soil above hydrocarbon contaminated groundwater. FEMS Microbiol. Ecol. 30 CrossRef | Google Scholar, 67–76.
Garland, D. S. 1999. Quantifying biogenic interference in petroleum contamination tests of organic soil using pyrolysis-GC/FID Google Scholar, MS Thesis, University of Alaska Fairbanks.
Garland, J. L. and Mills, A. L. 1991. Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilization. Appl. Environ. Microbiol. 57 Google Scholar | PubMed: 2351–9.
Garland, D. S., White, D. M., and Woolard, C. R. 1999. Contaminant analysis in tundra by pyrolysis-GC/FID. Proc. 10th Int'l. Cold Regions Eng.: Putting Research into Practice, American Society of Civil Engineers, Reston, VA Google Scholar, 352–62.
Gavril'ev, R. I. 2004. Thermal properties of soils and surface covers. In Thermal Analysis, Construction, and Monitoring Methods for Frozen Ground, Esch, D. C. CrossRef | Google Scholar (ed.), American Society of Civil Engineers, 277–94.
Genouw, G., Naeyer, F. D., Meenan, P. V.et al. 1994. Degradation of oil sludge by landfarming: a case study at the Ghent Harbour. Biodegradation 5 CrossRef | Google Scholar: 37–46.
Geosphere, & CH2MHILL. 2006. Three- and Four-Phase Partitioning of Petroleum Hydrocarbons and Human Health Risk Calculations Technical Background Report. Report prepared for the SOCWG. Google Scholar
Gibb, A., Chu, A., Wong, R. C. K., and Goodman, R. H. 2001. Bioremediation kinetics of crude oil at 5 °C. J. Environ. Eng CrossRef | Google Scholar. Sept. 818–24.
Gill, R. A. and Robotham, P. 1989. Composition, sources, and source identification of petroleum hydrocarbons and their residues. In The Fate and Effects of Oil in Freshwater, Green, J. and Trett, M. (eds.), New York CrossRef | Google Scholar, Elsevier Appl. Science, 11–40.
GNWT. 1998. Guideline for Contaminated Site Remediation in the NWT. Government of the Northwest Territories. Google Scholar
Goering, D. J. and Kumar, P. 1994. Roadway Stabilization Using Air Convection Embankments, Transportation Research Center, Report No. INE/TRC 94.01. Google Scholar
Goldstein, J., Pollit, N. S., and Inouye, M. 1990. Major cold shock protein of Escherichia coli. Proc. Nat'l. Academy of Sci. USA 87 CrossRef | Google Scholar | PubMed: 283–7.
Goldsworthy, P. M., Canning, E. A., and Riddle, M. J. 2003. Soil and water contamination in the Larsemann Hills, East Antarctica. Polar Rec. 39 CrossRef | Google Scholar: 319–37.
Gore, D. B., Heiden, E. S., Snape, I., Nash, G., and Stevens, G. W. 2006a. Grain size of activated carbon, and untreated and modified granular clinoptilolite under freeze-thaw: applications to permeable reactive barriers. Polar Rec. 42 CrossRef | Google Scholar(2): 121–6.
Gore, D. B., Heiden, E. S., Stevens, G. W., and Snape, I. 2004. Grain size of selected permeable reactive barrier materials under freeze-thaw (+/− water and diesel). Proc. 4th Int'l. Conf. on Contaminants in Freezing Ground, Filler, D. M. and Barnes, D. L. (eds.), Fairbanks, Alaska Google Scholar, 30 May – 3 June, 18.
Gore, D. B., Revill, A. T., and Guille, D. 1999. Petroleum hydrocarbons ten years after spillage at a helipad in Bunger Hills, East Antarctica. Antarctic Sci. 11 CrossRef | Google Scholar: 427–9.
Gore, D. B., Snape, I., Rayner, J. L., Dixon, E., and Stevens, G. W. 2006b. In Hydraulics of permeable reactive barrier materials under freezing conditions, Proc. 5rd Int'l. Conf. on Contaminants in Freezing Ground Contaminants in Freezing Ground, Rike, A. G., Øvstedal, J., and Vethe, Ø. (eds.), Norsk Geologisk Forening, Oslo, Norway Google Scholar, p. 37.
Gounot, A. M. and Russell, N. J. 1999. Physiology of cold-adapted microorganisms. In Cold-Adapted Organisms, Margesin, R., and Schinner, F. (eds.), Ecology, physiology, enzymology and molecular biology, Berlin, Springer-Verlag CrossRef | Google Scholar, 33–55.
Graham, D. W., Smith, V. H., Cleland, D. L., and Law, K. P. 1999. Effects of nitrogen and phosphorus supply on hexadecane biodegradation in soil systems. Water, Air, Soil Poll. 111 CrossRef | Google Scholar: 1–18.
Grechishchev, S.E., Chistotinov, L. V., and Shur, Y. L. 1980. Cryogenic physics-geological processes and their forecast. Moscow, “Nedra” Google Scholar.
Grechishchev, S. E., Pavlov, A. V., and Ponomarev, V. V. 1998. Phase equilibrium and kinetics of saline soil water freezing, 7th Int'l. Permafrost Conf Google Scholar., 351–7.
Grigg, B. C., Assaf, N. A., and Turco, R. F., 1997. Removal of atrazine contamination in soil and liquid systems using bioaugmentation. Pestic. Sci.50: 211–20. Google Scholar
Gustafson, J. B., Tell, J. G., and Orem, D. 1997. Selection of representative TPH fractions based on fate and transport considerations. In Total Petroleum Hydrocarbon Criteria Working Group series; Volume 3, Amherst, MA, Amherst Scientific Publishers. Google Scholar
Haines, J. R., Kadkhokayan, M., Mocsny, D. J., et al. 1994. Effect of salinity, oil type, and incubation temperature on oil degradation. In Applied BioTechnology for Site Remediation, Hinchee, R. (ed.), Boca Raton, FL Google Scholar, Lewis Publishers, 75–83.
Hallet, B. 1978. Solute redistribution in freezing ground. 3rd Int'l. Conf. on Permafrost Google Scholar, 86–91.
Hayward, S. A. L., Worland, M. R., Convey, P., and Bale, S. 2003. Temperature preferences of the mite, Alaskozetes antarcticus, and the collembolan, Cryptopygus antarcticus from the maritime Antarctic. Physiol. Entomol. 28 CrossRef | Google Scholar: 114–21.
Head, I. M., Saunders, J. R., and Pickup, R. W. 1998. Microbial evolution, diversity, and ecology: A decade of ribosomal RNA analysis of uncultivated microorganisms. Microbial Ecol. 35 CrossRef | Google Scholar | PubMed: 1–21.
Helweg, A., Fomsgaard, I. S., Reffstrup, T. K., and Sorensen, H. 1998. Degradation of mecoprop and isoproturon in soil influence on initial concentration. Int'l. J. Environ. Analytical Chem. 70 CrossRef | Google Scholar: 133–48.
Herrington, R. T., Benson, L., Downey, D., and Hansen, J. 1997. Validation of fuel hydrocarbon attenuation in low-temperature groundwater environments. Proc. In Situ and On-Site Bioremediation Symposium, Columbus, OH Google Scholar, Battelle Press, 4(1): 303–8.
Hinzman, L. D., Bettez, N. D., Bolton, W. R.et al. 2005. Evidence and implications of recent climate change in Northern Alaska and other arctic regions, Climate Change 72 CrossRef | Google Scholar: 251–98.
Horiguchi, K. and Miller, R. D. 1980. Experimental studies with frozen soil in an ‘Ice Sandwich’ permeater. Cold Reg. Sci. Technol. 3 CrossRef | Google Scholar: 177–83.
Hoyle, B.L, Scow, K. M., Fogg, G. E., and Darby, J. L. 1995. Effect of carbon: nitrogen ratio on kinetics of phenol biodegradation by Acinetobactor Johnsonii in saturated sand. Biodegradation 6 CrossRef | Google Scholar: 283–93.
Huesemann, M. H. 1994. Guidelines for land-treating petroleum hydrocarbon-contaminated soils. J. Soil Contam. 3 CrossRef | Google Scholar: 299–318.
Huesemann, M. H. and Truex, M. J. 1996. The role of oxygen diffusion in passive bioremediation of petroleum contaminated soils. J. Haz. Materials 15 CrossRef | Google Scholar: 93–113.
Hunt, P. G., Rickard, W. E., Deneke, F. J., Koutz, F. R., and Murrman, R. P. 1973. Terrestrial oil spills in Alaska: environmental effects and recovery. Proc. Joint Conf. on Prevention and Control of Oil Spills, American Petroleum Institute and United States Coast Guard, Washington D.C. Google Scholar, March 13–15.
Huntjens, J. L. M., Potter, H. D., and Barendrecht, J. 1986. The degradation of oil in soil. In Contaminated Soil, Assink, J. W. and Brink, W. J. V. D. (eds.), Dordrecht, Netherlands CrossRef | Google Scholar, Marinus Nijhoff, 121–4.
Hutchins, S. R., Sewell, G. W., Kovacs, D. A., and Smith, G. A. 1991. Biodegradation of aromatic-hydrocarbons by aquifer microorganisms under denitrifying conditions. Environ. Sci. and Technol. 25 CrossRef | Google Scholar(1): 68–76.
Jackson, R. D. 1965. Water vapor diffusion in relatively dry soil: IV. Temperature and pressure effects on sorption diffusion coefficients. Soil Sci. Soc. of America Proc. 30 CrossRef | Google Scholar: 144–8.
Jansson, S. L. and Persson, J. 1982. Mineralization and immobilization of soil nitrogen. In Nitrogen in Agricultural Soils, Stevenson, F. J. (ed.), Madison, WS, American Society of Agronomy Google Scholar, 229–52.
Jobson, A., McLaughlin, M., Cook, F. D., and Westlake, W. S. 1974. Effects of amendments on the microbial utilization of oil applied to soil. Appl. Microbiol. 27 Google Scholar(1): 166–71.
Johansen, O. 1975. Thermal conductivity of soils. Ph.D. Dissertation, Norwegian Technical Univ., Trondheim; also, U.S. Army Cold Regions Research and Engineering Laboratory Transl. 637, July 1977. Google Scholar
Johnsen, A. R., Bendixen, K., and Karlson, U. 2002. Detection of microbial growth on polycyclic aromatic hydrocarbons in microtitre plates using the respiration indicator WST-1. Appl. and Environ. Microbiol. 68 CrossRef | Google Scholar: 2683–9.
Johnson, L. A., Sparrow, E. B., Jenkins, T. F., et al. 1980. The Fate and Effect of Crude Oil Spilled on Subarctic Permafrost Terrain in Interior Alaska, U.S. Environmental Protection Agency, Corvallis Environmental Research Laboratory, Office of Research and Development, EPA-600/3-80-040. Google Scholar
Johnson, P. C., Kemblowski, M. W., and Colthart, J. D. 1990. Quantitative analysis for the cleanup of hydrocarbon contaminated soils by in-situ soil venting. Ground Water 28 CrossRef | Google Scholar(3): 413–29.
Johnson, R. A. 1990. Cogeneration and diesel electric power production. The Cogeneration J. 5 Google Scholar: 44–60.
Jordán, F. 2001. Strong threads and weak chains? – a graph theoretical estimation of the power of indirect effects. Community Ecol.2: 17–20. Google Scholar
Kade, A., Walker, D. A., and Raynolds, M. K. 2005. Plant communities and soils in cryoturbated tundra along a bioclimate gradient in the Low Arctic, Alaska. Phytocoenologia35: 761–820. Google Scholar
Kandror, O., DeLeon, A., and Goldberg, A. L. 2002. Trehalose synthesis is induced upon exposure of Echerichia coli to cold and is essential for viability at low temperatures. Proc. Natl. Acad. Sci. 99 CrossRef | Google Scholar(15): 9727–32.
Kane, D. L., Gieck, R. E., and Hinzman, L. D. 1990. Evapotranspiration from a small Alaskan arctic watershed. Nord. Hydrol. 21 CrossRef | Google Scholar: 253–72.
Kane, D. L. and Slaughter, C. W. 1974. Recharge of a central Alaska lake by subpermafrost groundwater. Proc. 2nd In'l. Conf. on Permafrost Google Scholar, Yakutsk, USSR, North American Contribution, 458–72.
Kennicutt, M. C. 2003. Spatial and Temporal Scales of Human Disturbance: McMurdo Station, Antarctica. Final Report. Geochemical and Environmental Research Group and Department of Geography, College of Geosciences, Texas A&M University and Marine Science Institute, The University of Texas at Austin. Google Scholar
Kerry, E. 1990. Microorganisms colonizing plants and soil subjected to different degrees of human activity, including petroleum contamination in the Vestfold Hills and MacRobertson Land Antarctica. Polar Biol. 10 CrossRef | Google Scholar: 423–30.
Kerry, E. 1993. Bioremediation of experimental petroleum spills on mineral soils in the Vestfold Hills, Antarctica. Polar Biol. 13 CrossRef | Google Scholar: 163–70.
Kersten, M. S. 1949. Thermal properties of soils. University of Minnesota Engineering Experiment Station Bulletin Google Scholar, no 28.
Khimenkov, A. N. and Brushkov, A. V. 2003. Oceanic cryo-lithogenesis, Moscow Google Scholar, “Nauka” (In Russian).
Kireeva, A. 2006. Murmansk Region oil-spill cleanup plan: just empty words on paper? Bellona Oslo, viewed 11 August 2006, http://bellona.no/bellona.org/english_import_area/energy/42017. Google Scholar
Klein, A. G., Kennicutt, M. C., Montana, P. A., et al. 2006. A long-term environmental monitoring program at McMurdo Station, Antarctica. In 2nd SCAR Open Science Conference ‘Antarctica in the Earth System’, Hobart. Google Scholar
Klonowski, M. R., Breedveld, G. D., and Aagaard, P. 2005. Natural gradient experiment on transport of jet fuel derived hydrocarbons in an unconfined sandy aquifer. Environ. Geol. 48 CrossRef | Google Scholar(8): 1040–57.
Kolenc, R. J., Innis, W. E., Glick, B. R., Robinson, C. W., and Mayfield, C. I. 1988. Transfer and expression of mesophilic plasmid-mediated degradative capacity in a psychrotrophic bacterium. Appl. and Environ. Microbiol. 54 Google Scholar: 638–41.
Konrad, J. M. and McCammon, A. W. 1990. Solute partitioning in freezing soils. Can. GeoTechnical J. 25 Google Scholar: 108–18.
Konrad, J.-M. and Seto, J. C. T. 1991. Freezing of a clayey silt contaminated with an organic solvent. J. Contam. Hydrol. 8 CrossRef | Google Scholar: 335–55.
Kudriavtsev, V. A. (ed.). 1978. General Permafrost Science (Geocryology), Moscow Google Scholar, Moscow State University (in Russian).
Kumar, G. S., Jagannadham, M. V., and Ray, M. K. 2002. Low-temperature-induced changes in composition and fluidity of lipopolysaccharides in the Antarctic psychrotrophic bacterium Pseudomonas syringae. J. Bacteriology 184 CrossRef | Google Scholar | PubMed: 6746–9.
Lai, V., Biggar, K., Mullick, A., et al. 2001. Natural attenuation of 1,1,1 TCA and BTEX from a landfill in northern Alberta. Proc. '01 Assessment and Remediation of Contaminated Sites in Arctic and Cold Climates (ARCSACC) Workshop, Nahir, M., Biggar, K., and Cotta, G. (eds.), Edmonton, Canada Google Scholar, 215–25.
Laurie, A. D. and Lloyd-Jones, G. 2000. Quantification of phnAc and nahAc in contaminated New Zealand soils by competitive PCR. Appl. and Environ. Microbiol. 66 CrossRef | Google Scholar | PubMed: 1814–17.
Leahy, J. G. and Colwell, R. R. 1990. Microbial degradation of hydrocarbons in the environment. Microbiol. Rev. 54 Google Scholar | PubMed(3): 305–15.
Lee, R. F. and Silva, M. 1994. Polycyclic aromatic hydrocarbon removal rates in oiled sediments treated with urea, urea-fish protein, or ammonium nitrate. In Appl. Biotechnol. for Site Remediation, Hinchee, R. E. (ed.), London, Lewis Google Scholar, 320–5.
Leeson, A., Hinchee, R. E., Kittel, J. A., and Foote, E. A. 1995. Environics TOC Task 3 Bioventing Feasibility Study, Eielson AFB site. Final report to Environmental Quality Directorate of the Armstrong Laboratory, Tyndall Air Force Base, Florida. Google Scholar
Lehner, C. A. 1995. Evaluation of controlled freezing to remove trapped residual NAPL Google Scholar. Unpublished MSc Thesis, Department of Civil and Environmental Engineering, Michigan State University.
Leszkiewicz, C. G. 2001. The effect of freeze-thaw temperature fluctuations on microbial metabolism of petroleum hydrocarbon contaminated Antarctic soil. Civil Engineering, University of New Hampshire, New Hampshire Google Scholar.
Lewis, D. L., Kollig, H. P., and Hodson, R. E. 1986. Nutrient limitation and adaptation of microbial populations to chemical transformations. Appl. and Environ. Microbiol. 51 Google Scholar | PubMed(3): 598–603.
Liebeg, E. W. and Cutright, T. J. 1999. The investigation of enhanced bioremediation through the addition of macro and micro nutrients in a PAH contaminated soil. Int'l. Biodeterioration and Biodegradation 44 CrossRef | Google Scholar: 55–64.
Lindstrom, J. E., Prince, R. C., Clark, J. C.et al. 1991. Microbial populations and hydrocarbon biodegradation potentials in fertilized shoreline sediments affected by the T/V Exxon Valdez Oil Spill. Appl. and Environ. Microbiol. 57 Google Scholar: 2514–22.
Line, M. A. 1988. Microbial flora of some soils of Mawson Base and the Vestfold Hills, Antarctica. Polar Biol. 8 CrossRef | Google Scholar: 421–7.
Linell, K. A. 1973. Long term effects of vegetation cover on permafrost stability in an area of discontinuous permafrost. Proc. 2nd Int'l. Conf. on Permafrost, Yakutsk, USSR, North American Contribution Google Scholar, 688–93.
Long, E. R. and Chapman, P. M. 1985. A sediment quality triad: Measures of sediment contamination, toxicity and infaunal community composition in Puget Sound. Mar. Pollut. Bull. 16 CrossRef | Google Scholar: 405–15.
Lunardini, V. J. 1978. Theory of n-factors and correlation of data. Proc. 3rd Int'l. Conf. on Permafrost, Edmonton, Alberta. Ottawa Google Scholar: National Research Council of Can., 1: 41–6.
Mackay, D., Charles, M. E., and Phillips, C. R. 1974a. The Physical Aspects of Crude Oil Spills on Northern Terrain. Northern Pipelines, Task Force on Northern Oil Development, Environmental – Social Committee, Report No. 74-25. Google Scholar
Mackay, D., Charles, M. E., and Phillips, C. R. 1974b. The Physical Aspects of Crude Oil Spills on Northern Terrain (Second Report). Northern Pipelines, Task Force on Northern Oil Development, Environmental – Social Committee, Report No. 73-42. Google Scholar
Mackay, D., Charles, M. E., and Phillips, C. R. 1975. The Physical Aspects of Crude Oil Spills on Northern Terrain (Final Report). Arctic Land Use Research Program, Northern Natural Resources and Environmental Branch, Department of Indian Affairs and Northern Development, INA Publication No. QS 8060-00-EE-A1. Google Scholar
Mahar, L. J., Wilson, R. M., and Vinson, T. S. 1983. Physical and numerical modeling of uniaxial freezing in a saline gravel. 4th Int'l. Conf. on Permafrost Google Scholar, 773–8.
Manefield, M., Whiteley, A. S., Griffiths, R. I., and Bailey, M. J. 2002. RNA stable isotope probing, a novel means of linking microbial community function to phylogeny. Appl. and Environ. Microbiol. 68 CrossRef | Google Scholar: 5367–73.
Manilal, V. B. and Alexander, M. 1995. Factors affecting the microbial degradation of phenanthrene in soil. Appl. Microbiol. and BioTechnol. 35 Google Scholar: 401–5.
Margesin, R. 2000. Potential of cold-adapted microorganisms for bioremediation of oil-polluted Alpine soils. Int. Biodet. Biodegrad. 46 CrossRef | Google Scholar: 3–10.
Margesin, R., Labbe, D., Schinner, F., Greer, C. W., and Whyte, L. G. 2003. Characterization of hydrocarbon-degrading microbial population in contaminated and pristine alpine soils. Appl. and Environ. Microbiol. 69 CrossRef | Google Scholar: 3085–92.
Margesin, R. and Schinner, F. 1997a. Bioremediation of diesel-oil-contaminated alpine soils at low temperatures. Appl. Microbiol. and BioTechnol. 47 CrossRef | Google Scholar: 462–8.
Margesin, R. and Schinner, F. 1997b. Effect of temperature and oil degradation by a psychrotrophic yeast in liquid culture and in soil. FEMS Microbiol. Ecol. 24 CrossRef | Google Scholar: 243–9.
Margesin, R. and Schinner, F. 1997c. Efficiency of indigenous and inoculated cold-adapted soil microorganisms for biodegradation of diesel oil in Alpine soils. Appl. and Environ. Microbiol. 63 Google Scholar: 2660–4.
Margesin, R. and Schinner, F. 1997d. Laboratory bioremediation experiments with soil from a diesel-oil contaminated site – significant role of cold-adapted microorganisms and fertilizers. J. Chem. Technol. Biotechnol. 70 CrossRef | Google Scholar: 92–8.
Margesin, R. and Schinner, F. 1998. Oil biodegradation potential in alpine soils. Arctic Alpine Res. 30 CrossRef | Google Scholar: 262–5.
Margesin, R. and Schinner, F. 2001. Bioremediation (natural attenuation and biostimulation) of diesel-oil-contaminated soil in an alpine glacier skiing area. Appl. and Environ. Microbiol. 67 CrossRef | Google Scholar: 3127–33.
Mariner, P. E., Jin, M., and Jackson, R. E. 1997. An algorithm for the estimation of NAPL saturation and composition from typical soil chemical analysis. Ground Water Monitor. Remed. 17 CrossRef | Google Scholar: 122–9.
Master, E. R. and Mohn, W. W. 1998. Psychrotolerant bacteria isolated from Arctic soil that degrade polychlorinated biphenyls at low temperatures. Appl. and Environ. Microbiol. 64 Google Scholar | PubMed: 4823–9.
McCarthy, K., Walker, L., and Vigoren, L. 2004. Subsurface fate of spilled petroleum hydrocarbons in continuous permafrost. Cold Reg. Sci. Technol CrossRef | Google Scholar. 38(1): 43–54.
McCarthy, K., Walker, L., Vigoren, L., and Bartel, J. 2004. Remediation of spilled petroleum hydrocarbons by in situ landfarming at an arctic site. Cold Reg. Sci. Technol. 40 CrossRef | Google Scholar: 31–9.
McCauley, C. A., White, D. M., Lilly, M. R., and Nyman, D. M. 2002. A comparison of hydraulic conductivities, permeabilities and infiltration rates in frozen and unfrozen soils, Cold Reg. Sci. Technol. 34 CrossRef | Google Scholar: 117–25.
McFarland, M. J. and Sims, R. C. 1991. Thermodynamic framework for evaluating PAH degradation in the subsurface. Ground Water CrossRef | Google Scholar29(6): 885–96.
McIntyre, C., Harvey, P. M., Ferguson, S. H.et al. 2007. Determining the extent of biodegradation of fuels using the diastereomers of the acyclic isoprenoids. Environ. Sci. Technol CrossRef | Google Scholar | PubMed. 41: 2452–8.
McNamara, N. P., Black, H. I. J., Beresford, N. A., and Parekh, N. R. 2003. Effects of acute gamma irradiation on chemical, physical and biological properties of soils. Appl. Soil Ecol. 24 CrossRef | Google Scholar: 117–32.
Mercer, J. W. and Cohen, R. M. 1990. A review of immiscible fluids in the subsurface: properties, models, characterization and remediation. J. Contam. Hydrol. 6 CrossRef | Google Scholar: 107–63.
Mesarch, W. W., Nakatsu, C. H. and Nies, L. 2000. Development of catechol 2,3-dioxygenase-specific primers for monitoring bioremediation by competitive quantitative PCR. Appl. and Environ. Microbiol. 66 CrossRef | Google Scholar | PubMed: 678–83.
Metcalf, & Eddy, , Inc. 1991. Wastewater Engineering: Treatment, Disposal, Reuse, 3rd edn. Boston, Massachusetts Google Scholar, McGraw Hill, Inc.
Metzger, L. O. Y., Munier-Lamy, C., Belgy, M. J.et al. 1999. A laboratory study of the mineralization and binding of 14C labelled herbicide rimsulfuron in a rendzina soil. Chemosphere 39 CrossRef | Google Scholar: 1889–901.
Meyles, C. A. and Schmidt, B. 2005. Report on Soil Protection and Remediation of Contaminated Sites in Iceland: A Preliminary Study. Environ. and Food Agency of Iceland, viewed 18 August 2006 Google Scholar, http://english.ust.is/media/skyrslur2005/Report_about_Soil_ Protection_and_Remediation_of_Contaminated_Sites_in_Iceland.doc.
MFE. 2003. Contaminated Land Management, Guidelines No. 2. Ministry for the Environment, Wellington, New Zealand. Google Scholar
Michel, V., Lehoux, I., Depret, G.et al. 1997. The cold shock response of the psychrotrophic bacterium Pseudomonas fragi involves four low-molecular-mass nucleic acid-binding proteins. J. Bacteriol CrossRef | Google Scholar | PubMed. 179(23): 7331–42.
Mills, S. A. and Frankenberger, W. T. 1994. Evaluation of phosphorus sources promoting bioremediation of diesel fuel in soil. Bulletin of Environ. Contam. and Toxicol. 53 CrossRef | Google Scholar | PubMed: 280–4.
Mitchell, I. and Friedrich, G. 2001. Multi-phase vacuum extraction at Bar-1 Komakuk Beach, Yukon Territory. Proc. '01 Assessment and Remediation of Contaminated Sites in Arctic and Cold Climates (ARCSACC) Workshop, Nahir, M., Biggar, K., and Cotta, G. (eds.), Edmonton, Canada Google Scholar, 84–97.
Mohn, W. W., Radziminski, C. Z., Fortin, M. C., and Reimer, K. J. 2001a. On site bioremediation of hydrocarbon-contaminated arctic tundra soils in inoculated biopiles. Appl. Microbiol. and BioTechnol Google Scholar. 57(1–2): 242–7.
Mohn, W. W., Reimer, K. J., Dalhammer, G., et al. 2001b. Bioremediation of Arctic soils contaminated by petroleum hydrocarbons. In Assessment and Remediation of Contaminated Sites in Arctic and Cold Climates, Nahir, M., Biggar, K., and Cotta, G. (eds.), Edmonton, Canada Google Scholar, 169–78.
Mohn, W. W. and Stewart, G. R. 2000. Limiting factors for hydrocarbon biodegradation at low temperature in arctic soils. Soil Biol. and Biochem CrossRef | Google Scholar. 32(8–9): 1161–72.
Moles, A., Rice, S. D., and Norcross, B. L. 1994. Non-avoidance of hydrocarbon laden sediments by juvenile flatfishes. Neth. J. Sea Res.32: 361–7. Google Scholar
Moller, S., Korber, D. R., Wolfaardt, G. M., Molin, S., and Caldwell, D. E. 1997. Impact of nutrient composition on a degradative biofilm community. Appl. and Environ. Microbiol. 63 Google Scholar | PubMed: 2432–8.
Moore, B. J., Armstrong, J. E., Baker, J., and Hardisty, P. E. 1995. Effects of flow rate and temperature during bioventing in cold climates. In In Situ Aeration: Air Sparging, Bioventing, and Related Remediation Processes, Hinchee, R. E.et al. (eds.), Bioremediation Series, Book 3(2), 3rd Int'l. In situ and On Site Bioreclamation Symposium, Columbus, OH Google Scholar, Batelle Press, 307–14.
Morgan, P. and Watkinson, R. J. 1989. Hydrocarbon degradation in soils and methods for soil biotreatment. Critical Rev. BioTechnol. 8 CrossRef | Google Scholar | PubMed: 305–33.
Morgan, P. and Watkinson, R. J. 1990. Assessment of the potential for in situ biotreatment of hydrocarbon-contaminated soils. Water Sci. and Technol CrossRef | Google Scholar. 22(6): 63–8.
Morita, R. T. 1975. Psychrophilic bacteria. Bacteriol. Rev. 29 Google Scholar: 144–67.
Mumford, K., Snape, I., Stevens, G., Rayner, J. L., and Walworth, J. L. 2006. Use of zeolite as a controlled release fertilization system for petroleum hydrocarbon remediation at low temperatures. 5th Int'l. Conf. on Contaminants in Freezing Ground, May 21–25, 2006, Oslo, Norway Google Scholar.
Nakano, Y, Tice, A., and Oliphant, J. 1984. Transport of water in frozen soil: III. Experiments on the effects of ice content. Adv. Water Res. 7 CrossRef | Google Scholar (1): 28–34.
Nelson, F. E., Shiklimanov, N. I., Hinkel, K. M., and Christiansen, H. H. 2004. Introduction: The Cirumpolar Active Layer Monitoring (CALM) workshop and the CALM II program, Polar Geog. 28 CrossRef | Google Scholar: 253–66.
NEPC. 2005. Review of the National Environmental Protection (Assessment of Site Contamination) Measure: Issues Paper. Adelaide, National Environmental Protection Council Service Corporation. Google Scholar
Newman, L. and Reynolds, C. M. 2004. Phytoremediation of organics. Current Opinion in BioTechnol. 15 CrossRef | Google Scholar: 225–30.
Niemeyer, T. and Schiewer, S. 2003. Effect of temperature and nutrient supply on the bioremediation rate of diesel contaminated soil from two Alaskan sites. Proc. 3rd Assessment and Remediation of Contaminated Sites in Arctic and Cold Climates Conference (ARCSACC) Google Scholar, Edmonton, May 4–6, 212–19.
NREL, National Renewable Energy Lab, Solar Radiation Resource Information, http://rredc.nrel.gov/solar/ (accessed July 2006). Google Scholar
Oechel, W. C. and Billings, W. D. 1992. Anticipated effects of global change on carbon balance of arctic plants and ecosystems. In Arctic Physiological Processes in a Changing Climate, ChapinIII, F. S., Jeffries, R. L., Shaver, G. R., Reynolds, J. F., and Svobada, J. (eds.), San Diego, CA Google Scholar, Academic Press, 139–68.
Oechel, W. and Vourlitis, G. 1995. Effect of global change on carbon storage in cold soils. In Soils and Global Change, Lal, R., Kimble, J., Levine, E., and Stewart, B. (eds.), New York Google Scholar, Lewis Publishers, 117–30.
Olovin, B. A. 1993. Permeability of Perennially Frozen Soils. Novosibirsk, “Nauka” Google Scholar (in Russian).
Osterkamp, T. E. and Romanovsky, V. E. 1999. Evidence for warming and thawing of discontinuous permafrost in Alaska, Permafrost Periglac. 10 CrossRef | Google Scholar (1): 17–37.
Paetz, A. and Wilke, B.-M. 2005. Soil sampling and storage. In Manual for Soil Analysis – Monitoring and Assessing Soil Bioremediation, Margesin, R. and Schinner, F. (eds), Berlin Google Scholar, Springer-Verlag, 1–45.
Panicker, G., Aislabie, J., Saul, D., and Bej, A. K. 2002. Cold tolerance of Pseudomonas sp. 30–3 isolated from oil-contaminated soil, Antarctica. Polar Biol. 25 CrossRef | Google Scholar (1): 5–11.
Pankow, J. F. and Cherry, J. A. 1996. Dense Chlorinated Solvents and Other DNAPLs in Groundwater, Portland, Oregon Google Scholar, Waterloo Press.
Paudyn, K., Poland, J. S., Rutter, A, and Rowe, R.K. 2005. Remediation of hydrocarbon contaminated soils in the Can. arctic with landfarms. Proc. 4th Assessment and Remediation of Contaminated Sites in Arctic and Cold Climates Conference (ARCSACC), Edmonton, Alberta Google Scholar, 233–9.
Paudyn, K., Rutter, A., Rowe, R. K., and Poland, J. S. 2006. Remediation of hydrocarbon contaminated soils in the Canadian Arctic with landfarms. In Contaminants in Freezing Ground: Proc. 5th Int'l Conf., Rike, A. G., Øvstedal, J., and Vethe, Ø. (eds.), Oslo, Norway, Norsk Geologisk Forening. Google Scholar
Paul, E. A. and Clark, F. E. 1996. Soil Microbiology and Biochemistry. San Diego, California Google Scholar, Academic Press.
Pawelczyk, A., Grabas, Kazimierz K., Kolwzan, Barbara B., and Steininger, M. 2003. Remediation of grounds at the former soviet military airfields contaminated by petroleum products. Proc. 2nd European Bioremediation Conf., Chania, Crete, Greece Google Scholar, June 30–July 4, 2003, 184–7.
Pelletire, F., Prévost, D., Laliberté, G., and Bochove, E. 1999. Seasonal response of denitrifiers to temperature in a Quebec cropped soil. Can. J. Soil Sci. 79 CrossRef | Google Scholar: 551–6.
Pelz, O., Chatzinotas, A., Andersen, N.et al. 2001. Use of isotopic and molecular techniques to link toluene degradation in denitrifying aquifer microcosms to specific microbial populations. Archives of Microbiol. 175 CrossRef | Google Scholar | PubMed: 270–81.
PhytoPet© 2007. Phytoremediation of petroleum hydrocarbons web database developed by the University of Saskatchewan, www.phytopet.usask.ca/index.html. Google Scholar
Piotrowski, M. R., Aaserude, R. G., and Schmidt, F. J. 1992. Bioremediation of diesel contaminated soil and tundra in an Arctic environment. In: Contaminated Soils: Diesel Fuel Contamination, Kostecki, P. T. and Calabrese, E. J. (eds), Chelsea, MI Google Scholar, Lewis Publishers, 115–42.
Poland, J. S., Mitchell, S., and Rutter, A. 2001. Remediation of former military bases in the Canadian Arctic. Cold Regions Sci. Technol.32: 93–105. Google Scholar
Poland, J. S., Riddle, M. J., and Zeeb, B. A. 2003. Contaminants in the Arctic and the Antarctic: a comparison of sources, impacts, and remediation options. Polar Rec. 39 CrossRef | Google Scholar: 369–84.
Poland, J. S., Rutter, A., Rowe, K., McWatters, R., and Kalinovich, I. 2004. Design and application of a funnel and gate barrier system for PCB containment and remediation in the Canadian Arctic. Contaminants in Freezing Ground: Proceedings of the 4th International Conference, Filler, D. M. and Barnes, D. L. (eds.), Fairbanks, Alaska Google Scholar.
Pombo, S. A., Pelz, O., Schroth, M. H., and Zeyer, J. 2002. Field-scale 13C-labeling of phospholipid fatty acids (PLFA) and dissolved inorganic carbon: tracing acetate assimilation and mineralization in a petroleum hydrocarbon-contaminated aquifer. FEMS Microbiol. Ecol. 41 CrossRef | Google Scholar: 259–67.
Potter, T. and Simmons, K. E. 1998a. Composition of Petroleum Mixtures. Amherst, MA Google Scholar, Amherst Scientific Publishers.
Potter, T. and Simmons, K. E. 1998b. Analysis of Petroleum Hydrocarbons in Environmental Media. Amherst, MA Google Scholar, Amherst Scientific Publishers.
Potts, M. 1994. Desiccation tolerance of prokaryotes. Microbiol. Rev. 58 Google Scholar | PubMed: 755–805.
Pouliot, Y., Pokiak, C., Moreau, N., Thomassin-Lacroix, E., and Faucher, C. 2003. Soil remediation of a former tank farm site in western arctic Canada. Proc. 3rd Assessment and Remediation of Contaminated Sites in Arctic and Cold Climates Conference (ARCSACC) Google Scholar, Edmonton, May 4–6, 262–7.
Poulsen, M. M. and Kueper, B. H. 1992. A field experiment to study the behavior of tetrachloroethylene in unsaturated porous media. Environ. Sci. Technol. 26 CrossRef | Google Scholar(5): 889–95.
Powell, S. M., Bowman, J. P., and Snape, I. 2004. Degradation of nonane by bacteria from Antarctic marine sediment. Polar Biol. 27 CrossRef | Google Scholar: 573–8.
Powell, S. M., Bowman, J. P., Snape, I., and Stark, J. S. 2003. Microbial community variation in pristine and polluted nearshore Antarctic sediments. FEMS Microbiol. Ecol. 45 CrossRef | Google Scholar | PubMed: 135–45.
Powell, S. M., Ferguson, S. H., Bowman, J. P., and Snape, I. 2006a. Using real-time PCR to assess changes in the hydrocarbon-degrading microbial community in Antarctic soil during bioremediation. Microbial Ecol CrossRef | Google Scholar. 52: 523–32.
Powell, S. M., Ferguson, S. H., Snape, I., and Siciliano, S. D. 2006b. Fertilization stimulates anaerobic fuel degradation of Antarctic soils by denitrifying microorganisms. Environ. Sci. Technol. 40 CrossRef | Google Scholar (6): 2011–17.
Powell, S. M., Harvey, P. M., Stark, J. S., Snape, I., and Riddle, M. J. 2007. Biodegradation of petroleum products in experimental plots in Antarctic marine sediments is location dependent. Mar. Pollut. Bull. 54 CrossRef | Google Scholar | PubMed: 434–40.
Powell, S. M., Snape, I., Bowman, J. P.et al. 2005. A comparison of the short term effect of diesel fuel and lubricant oils on Antarctic benthic microbial communities. J. Exp. Mar. Biol. Ecol. 322 CrossRef | Google Scholar: 53–65.
Prince, R. C., Owens, E. H., and Sergy, G. A. 2002. Weathering of an Arctic oil spill over 20 years: the BIOS experiment revisited. Mar. Pollut. Bull. 44 CrossRef | Google Scholar | PubMed (11): 1236–42.
Pritchard, P. H. and Costa, C. F. 1991. EPA's Alaska oil spill bioremediation project. Environ. Sci. Technol. 25 CrossRef | Google Scholar: 372–9.
Pruthi, V. and Cameotra, S. S. 1997. Production and properties of a biosurfactant synthesized by Arthrobacter protophormiae – an Antarctic strain. World J. Microbiol. and BioTechnol. 13 CrossRef | Google Scholar: 137–9.
Purkamo, L., Salminen, J., and J⊘rgensen, K. 2004. Diversity of bacteria and archaea in petroleum hydrocarbon contaminated subsurface samples from Southern Finland. Paper (in English) in publication by Finland's environmental administration: Maaperänsuojelu, Geologian tutkimuskeskuksen ja, Suomen ympäristökeskuksen, tutkimusseminaari 5.11.2004 (J. Seppälä, H. Idman, eds.), Ympäristönsuojelu Suomenympäristö 726, 40–6. Google Scholar
Rasiah, V., Voroney, R. P., and Kachanoski, R. G. 1991. Effect of N-amendment on C-mineralisation of an oily waste. Water, Air Soil Poll. 59 CrossRef | Google Scholar (3–4): 249–59.
Rasiah, V., Voroney, R. P., and Kachanoski, R. G. 1992. Biodegradation of an oily waste as influenced by nitrogen forms and sources. Water, Air Soil Poll. 65 CrossRef | Google Scholar (1–2): 143–51.
Ratkowsky, D. A., Lowry, R. K., McMeekin, T. A., Stokes, A. N., and Chandler, R. E. 1983. Model for bacterial culture growth rate though out the entire biokinetic temperature range. J. Bacteriology 154 Google Scholar: 1222–6.
Ratkowsky, D. A., Olley, J., McMeekin, T. A., and Ball, A. 1982. Relationship between temperature and growth rate of bacterial cultures. J. Bacteriology 149 Google Scholar | PubMed: 1–5.
Rayner, J. L., Snape, I., Walworth, J. L., Harvey, P. M., and Ferguson, S. H. 2007. Petroleum-hydrocarbon contamination and remediation by microbioventing at sub-Antarctic Macquarie Island. Cold Reg. Sci. Technol Google Scholar. 48: 139–53.
Reardon, K. F., Mosteller, D. C., and Rogers, J. D. B. 2000. Biodegradation kinetics of benzene, toluene, and phenol as single and mixed substrates for Pseudomonas putida F1. BioTechnol. and Bioeng. 69 CrossRef | Google Scholar | PubMed: 385–400.
Redfield, A. C., Ketchum, B. H., and Richards, F. A. 1963. The influence of organisms on the composition of seawater. In The Sea, Hill, M. N. (ed.), New York Google Scholar, Wiley, 26–77.
Reimer, K. J., Colden, M., Francis, P.et al. 2003. Cold climate bioremediation – a comparison of various approaches. Proc. 3rd Assessment and Remediation of Contaminated Sites in Arctic and Cold Climates Conference (ARCSACC) Google Scholar, Edmonton, May 4–6, 290–300.
Reimer, K. J., Zeeb, B. A., Koch, I.et al. 2005. A critical review of bioremediation. Proceedings of 4th Assessment and Remediation of Contaminated Sites in Arctic and Cold Climates Conference (ARCSACC) Google Scholar, Edmonton, May, 195–232.
Reinuk, I. T. 1959. Condensation in the active layer of permafrost. Magadan, VNIIzoloto. (in Russian). Google Scholar
Revill, A. T., Snape, I., Jucieer, A., and Guille, D. 2007. Constraints on transport and weathering of petroleum hydrocarbons at Casey Station, Antarctica. Cold Reg. Sci. Technol CrossRef | Google Scholar. 48: 154–67.
Reynolds, C. M. 1993. Field measured bioremediation rates in a cold region landfarm: spatial variability relationships. In Hydrocarbon Contaminated Soils, Kostecki, P. T. and Calabrese, E. J. (eds.), Chelsea, MI Google Scholar, Lewis Publishers, 487–99.
Reynolds, C. M. 2004a. Cyclic temperature effects on soil microbial activity and possible impacts on remediating contaminated soil. Proc. 4th Int'l. Contaminants in Freezing Ground Conf., Filler, D. M. and Barnes, D. L. (eds.), Fairbanks, Alaska Google Scholar.
Reynolds, C. M. 2004b. Technology Demonstration Final Report – Field Demonstration of Rhizosphere-Enhanced Treatment of Organics-Contaminated Soils on Native American Lands with Application to Northern FUD Sites. ESTCP Final Report. CRREL LR-04-18. www.crrel.usace.army.mil/techput/CRREL_Reports/reports/LR-04-18.pdf Google Scholar
Reynolds, C. M., Braley, W. A., Travis, M. D., Perry, L. B., and Iskandar, I. K. 1998. Bioremediation of Hydrocarbon-Contaminated Soils and Groundwater in Northern Climates. CRREL Special Report 98–5. Google Scholar
Reynolds, C. M., Travis, M., Braley, W. A., and Scholze, R. J. 1994. Applying field expedient bioreactors and landfarming in cold climates. In Hydrocarbon Bioremediation, Hinchee, R., Miller, R. N., and Hoeppel, R. E. (eds.), Chelsea, MI Google Scholar, Lewis Publishers, 100–6.
Rhodes, M., Wardell-Johnson, G. W., Rhodes, M. P., and Raymond, B. 2006. Applying network theory to the conservation of habitat tress in urban environments: a case study from Brisbane, Australia. Conserv. Biol.20: 861–70. Google Scholar
Rhykerd, R. L., Weaver, R. W., and McInnes, K. J. 1995. Influence of salinity on bioremediation of oil in soil. Environ. Pollution 90 CrossRef | Google Scholar | PubMed: 127–30.
Richmond, S. A., Lindstrom, J. E., and Braddock, J. F. 2001. Assessment of natural attenuation of chlorinated aliphatics and BTEX in subarctic groundwater. Environ. Sci. Technol. 35 CrossRef | Google Scholar | PubMed (20): 4038–45.
Rike, A. G., B⊘rresen, M., and Instances, A. 2002. Response of cold-adapted microbial populations in a permafrost profile to hydrocarbon contaminants. Polar Rec. 37 CrossRef | Google Scholar (202): 239–48.
Rike, A. G., Haugen, K. B., B⊘rresen, M., Engene, B., and Kolstad, P. 2003a. In situ biodegradation of petroleum hydrocarbons in frozen arctic soils. Cold Reg. Sci. Technol. 37 CrossRef | Google Scholar (2): 97–120.
Rike, A. G., Haugen, K. B., B⊘rresen, M., Kolstad, P., and Engene, B. 2003b. In-situ monitoring of hydrocarbon biodegradation in the winter months at Longyearbyen, Spitsbergen. Proc. 3rd Assessment and Remediation of Contaminated Sites in Arctic and Cold Climates (ARCSACC) Conference, Nahir, M., Biggar, K., and Cotta, G. (eds.), St. Joseph's Print Group, Edmonton Google Scholar, May 4–6, 268–78.
Rike, A. G., Haugen, K. B., and Engene, B. 2005. In situ biodegradation of hydrocarbons in arctic soil at sub-zero temperatures – field monitoring and theoretical simulation of the microbial activation temperature at a Spitsbergen contaminated site. Cold Reg. Sci. Technol. 41 CrossRef | Google Scholar: 189–209.
Riser-Roberts, E. 1998. Remediation of Petroleum Contaminated Soils: Biological, Physical, and Chemical Processes, Boca Raton CrossRef | Google Scholar, Lewis Publishers.
Ristinen, R. and Kraushaar, J. 1999. Energy and Problems of a Technical Society, New York Google Scholar, John Wiley and Sons.
Rivkina, E. M., Friedmann, E. I., McKay, C. P., and Gilichinsky, D. A. 2000. Metabolic activity of permafrost bacteria below the freezing point. Appl. and Environ. Microbiol. 66 CrossRef | Google Scholar | PubMed (8): 3230–3.
Rosenberg, E. 1992. Hydrocarbon-oxidising bacteria (Chapter 19). In The Procaryotes: A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications. 2nd Edition, Balows, A.et al. (eds.), New York Google Scholar, Springer-Verlag, 446–59.
Rothwell, D. R. and Davis, R. 1997. Antarctic Environmental Protection: A Collection of Australian and International Instruments NSW, The Federation Press. Google Scholar
Roura, R. 2004. Monitoring and remediation of hydrocarbon contamination at the former site of Greenpeace's World Park Base, Cape Evans, Ross Island, Antarctica. Polar Rec.40: 51–67. Google Scholar
Rowsell, S. 2003. A decision tree for selecting bioremediation in cold climates. Proc. 3rd Assessment and Remediation of Contaminated Sites in Arctic and Cold Climates (ARCSACC) Conference, Nahir, M., Biggar, K., and Cotta, G. (eds), St. Joseph's Print Group, Edmonton Google Scholar, May 4–6, 183–96.
Ruberto, L., Vazquez, S. C., and MacCormack, W. P. 2003. Effectiveness of the natural bacterial flora, biostimulation and bioaugmentation on the bioremediation of a hydrocarbon contaminated Antarctic soil. Int'l. Biodeterioration & Biodegradation 52 CrossRef | Google Scholar: 115–25.
Russell, N. J. 1990. Cold adaptation of microorganisms. Phil. Trans. R. Soc. Lond. B 326 CrossRef | Google Scholar | PubMed: 595–611.
Russell, N. J. 2000. Toward a molecular understanding of cold activity of enzymes from psychrophiles. Extremophiles 4 CrossRef | Google Scholar: 83–90.
Russell, N. J. 2002. Bacterial membranes: the effects of chill storage and food processing. An overview. Int'l. J. Food Microbiol. 79 CrossRef | Google Scholar | PubMed: 27–34.
Ryden, B. E. and Kostov, L. 1977. Ground water and the water-frost cycle in a tundra mire, Striae 4 Google Scholar: 17–19.
Salanitro, J. P. 1993. The role of bioattenuation in the management of aromatic hydrocarbon plumes in aquifers. Ground Water Monitor. & Remed. 13 CrossRef | Google Scholar: 150–61.
Salminen, J. M., Tuomi, P. M., Suortti, A.-M., and J⊘rgensen, K. S. 2004. Potential for aerobic and anaerobic biodegradation of petroleum hydrocarbons in boreal subsurface. Biodegradation 15 CrossRef | Google Scholar | PubMed: 29–39.
Sandvik, S., Lode, A., and Pedersen, T. A. 1986. Biodegradation of oily sludge in Norwegian soils. Appl. Microbiol. and BioTechnol. 23 CrossRef | Google Scholar: 297–301.
Saul, D. J., Aislabie, J., Brown, C. E., Harris, L., and Foght, J. M. 2005. Hydrocarbon contamination changes the bacterial diversity of soil from around Scott Base, Antarctica. FEMs Microbiol. Ecol. 53 CrossRef | Google Scholar | PubMed: 141–55.
Schafer, A. N., Snape, I., and Siciliano, S. D. 2007. Soil biogeochemical toxicity endpoints for sub-Antarctic Islands contaminated with petroleum hydrocarbons. Environ. Toxicol. Chem. 26 CrossRef | Google Scholar: 890–7.
Schiewer, S. and Niemeyer, T. 2006. Soil heating and optimized nutrient addition for accelerating bioremediation in cold climates. Polar Rec. 42 CrossRef | Google Scholar (1): 23–31.
Schinder-Keel, U., Lejb⊘lle, Bang K., Baehler, E., Haas, D., and Keel, C. 2001. The sigma factor AlgU (AlgT) controls exopolysaccharide production and tolerance towards desiccation and osmotic stress in the biocontrol agent Pseudomonas fluorescens CHA0. Appl. and Environ. Microbiol. 67 CrossRef | Google Scholar: 5683–93.
Schmidtke, T., White, D., and Woolard, C. 1999. Oxygen release kinetics from solid phase oxygen in Arctic Alaska. J. Haz. Mat'ls. B64 CrossRef | Google Scholar: 157–65.
Schnitzer, M. 1991. Soil organic matter – the next 75 years. Soil Sci. 151 CrossRef | Google Scholar: 41–58.
Schofield, R. K. 1935. The pH of the water in soil. Proc. 3rd Int'l. Congress on Soil Sci. 2: 37–48; 3 Google Scholar: 182–6.
Scow, K. M. 1982. Rate of biodegradation. In Handbook of Chemical Property Estimation Methods, Environmental Behavior of Organic Compounds, Lyman, W. J., Reehl, W. F., and Rosenblatt, D. H. (eds.), New York Google Scholar, McGraw-Hill, Chapter 16.
Scow, K. M., Simkins, S., and Alexander, M. 1986. Kinetics of mineralisation of organic compounds at low concentrations in soils. Appl. and Environ. Microbiol. 51 Google Scholar: 1028–35.
Semple, K. T., Morris, A. W. J., and Paton, G. I. 2003. Bioavailability of hydrophobic organic contaminants in soils: fundamental concepts and techniques for analysis. European J. Soil Sci. 54 CrossRef | Google Scholar: 809–18.
SERDP. 2005. Final report. SERDP and ESTCP Expert Panel Workshop on Research and Development Needs for the Environmental Remediation Application of Molecular Biological Tools.http://docs.serdp-estcp.org/viewfile.cfm?Doc=SedimentsFinalReport.pdf. Google Scholar
Sexstone, A. J. and Atlas, R. M. 1977. Response of microbial populations in Arctic tundra soils to crude oil. Can. J. of Microbiol. 23 CrossRef | Google Scholar | PubMed: 1327–33.
Seyfried, M. S. and Murdock, M. D. 1997. Use of air permeability to estimate infiltrability of frozen soils, J. of Hydrol. 202 CrossRef | Google Scholar: 95–107.
SFT. 1999. Guidelines for the Risk Assessment of Contaminated Sites, Report 99:06. Oslo, Norway, Norwegian Pollution Control Authority. Google Scholar
Shapley, D. 1974. Antarctica – world hunger for oil spurs Security Council review. Science 184 CrossRef | Google Scholar | PubMed: 776–81.
Shields, D., Janzen, P., McCartney, D., and Man, A. 1997. In situ bioremediation in a sub-Arctic climate. Proc. '97 In Situ and On-Site Bioremediation Symposium, Columbus, OH Google Scholar, Battelle Press, 4(1): 319.
Shur, Y. L. 1988a. Upper Permafrost Horizon and Thermokarst Google Scholar. Novosibirsk, “Nauka”.
Shur, Y. L. 1988b. The upper horizon of permafrost soil. Proc. 5th Int'l. Permafrost Conf., Trondheim, Norway Google Scholar, 867–71.
Shur, Y. L., Hinkel, K. M., and Nelson, F. E. 2005. The transient layer: Implications for geocryology and climate-change science, Permafrost Periglac. 16 CrossRef | Google Scholar: 5–17.
Shur, Y. L. and Ping, C. L. 1994. Permafrost dynamics and soil formation. Proc. of the Meeting on the Classification, Correlation, and Management of Permafrost-Affected Soils, Soil Conservation Service, Lincoln, Nebraska Google Scholar, 112–17.
Sierra, J. and Renault, P. 1995. Oxygen consumption by soil microorganisms as affected by oxygen and carbon dioxide levels. Appl. Soil Ecol. 2 CrossRef | Google Scholar: 175–84.
Sims, J. L., Sims, R. C., and Matthews, J. E. 1989. Bioremediation of Contaminated Surface Soils. U.S. Environmental Protection Agency, EPA/600/9–89/073, Washington, D.C. Google Scholar
Smith, E. P., Lipkovich, I., and Ye, K. Y. 2002. Weight-of-evidence (WOE): Quantitative estimation of probability of impairment for individual and multiple lines of evidence. Hum. Ecol. Risk Assess.8: 1585–96. Google Scholar
Smith, M. W. and Burn, C. R. 1987. Outward flux of vapour from frozen soils at Mayo, Yukon, Canada: results and interpretation. Cold Reg. Sci. Technol. 13 CrossRef | Google Scholar: 143–54.
Snape, I., Ferguson, S. H., Harvey, P. M., and Riddle, M. J. 2006a. Investigation of evaporation and biodegradation of fuel spills in Antarctica: II – Extent of natural attenuation at Casey Station. Chemosphere 63 CrossRef | Google Scholar: 89–98.
Snape, I., Ferguson, S., and Revill, A. 2003. Constraints of rates of natural attenuation and in situ bioremediation of petroleum spills in Antarctica. Proc. 3rd Assessment and Remediation of Contaminated Sites in Arctic and Cold Climates (ARCSACC) Conference, Nahir, M., Biggar, K., and Cotta, G. (eds.), St. Joseph's Print Group, Edmonton Google Scholar, May 4–6, 257–61.
Snape, I., Gore, D. B., Cole, C. M., and Riddle, M. J. 2002. Contaminant dispersal and mitigation at Casey Station: an example of how applied geoscience research can reduce environmental risks in Antarctica. Royal Soc. of New Zealand Bulletin 35 Google Scholar: 641–8.
Snape, I., Harvey, P. M., Ferguson, S. H., Rayner, J. L., and Revill, A. T. 2005. Investigation of evaporation and biodegradation of fuel spills in Antarctica: I – a chemical approach using GC-FID. Chemosphere 61 CrossRef | Google Scholar | PubMed: 1485–94.
Snape, I., Morris, C.E, and Cole, C. M. 2001. The use of permeable reactive barriers to control contaminant dispersal during site remediation in Antarctica. Cold Reg. Sci. Technol. 32 CrossRef | Google Scholar: 157–74.
Snape, I., Riddle, M. J., Gore, D. G., and Cole, C. M. 1998. Interim Report on the Contaminated Sites of the ‘Old’ Casey Tip and Abandoned Wilkes Station. A report to the Environmental Management Section, Australian Antarctic Division, Hobart, Australia. Google Scholar
Snape, I., Riddle, M. J., Stark, J. S., Cole, C. M., King, C. K., Duquesne, S., and Gore, D. B. 2001. Management and remediation of contaminated sites at Casey Station, Antarctica. Polar Rec. 37 CrossRef | Google Scholar: 199–214.
Snape, I., Siciliano, S., Schafer, A., Rayner, J. L., and Riddle, M. J. 2006b. Development of fuel spill remediation guidelines for Antarctica. 2nd SCAR Open Science Conference ‘Antarctica in the Earth System’, Hobart, 143. Google Scholar
Snape, I., Siciliano, S., Schafer, A., et al. 2006c. Development of petroleum remediation guidelines for polar regions. Contaminants in Freezing Ground: Proc. 5th Int'l. Conf., Rike, A. G., Øvstedal, J., and Vethe, Ø. (eds.), Oslo, Norway Google Scholar, Norsk Geologisk Forening, 87.
Soehnlen, G. 1991. Cleansing Contaminated, Granular Soils by Controlled Freezing, Masters Report, Michigan State University. Google Scholar
Solé, R. V. and Montoya, J. M. 2001. Complexity and fragility in ecological networks. Proc. Roy. Soc.268: 2039–45. Google Scholar
Soloway, D. A., Nahir, M., Billowits, M. E., and Whyte, L. G. 2001. In situ bioremediation of diesel-contaminated soil in Canada's Arctic territory: A case study at the Whitehorse International Airport, Yukon Territory. Polar Rec. 37 CrossRef | Google Scholar (202): 267–72.
Stallwood, B., Shears, J., Williams, P. A., and Hughes, K. A. 2005. Low temperature bioremediation of oil-contaminated soil using biostimulation and bioaugmentation with a Pseudomonas sp from maritime Antarctica. J. of Appl. Microbiol. 99 CrossRef | Google Scholar | PubMed: 794–802.
Stark, S. C., Gardner, D., Snape, I., and Mclvor, E. 2003. Assessment of contamination by heavy metals and petroleum hydrocarbons at Atlas Cove Station, Heard Island. Polar Rec. 39 CrossRef | Google Scholar: 397–414.
Starr, R. C. and Cherry, J. A. 1994. In situ remediation of contaminated ground water: the funnel and gate system. Ground Water 32 CrossRef | Google Scholar: 465–76.
Stevenson, F. J. 1985. Geochemistry of soil humic substances. In Humic Substances in Soil, Sediment, and Water: Geochemistry, Isolation, and Characterization, Aiken, G. R., McKnight, D. M., Wershaw, R. L., and MacCarthy, P. Google Scholar (eds.), New York, Wiley-Interscience, 13–52.
Stevenson, F. J. and Cole, M. A. 1999. The nitrogen cycle in soil: Global and ecological aspects. In Cycles of Soil: Carbon, Nitrogen, Phosphorus, Sulfur, Micronutrients, New York Google Scholar, Wiley, 139–90.
Stow, J. P., Sova, J., and Reimer, K. J. 2005. The relative influence of distant and local (DEW-line) PCB sources in the Canadian Arctic. Sci. Total Environ.342: 107–18. Google Scholar
Stumm, W. and Morgan, J. J. 1996. Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters, 3rd Edn, New York Google Scholar, John Wiley & Sons.
Suarez, M. P. and Rifai, H. S. 1999. Biodegradation rates for fuel hydrocarbons and chlorinated solvents in groundwater. Bioremed. J. 3(4) CrossRef | Google Scholar: 337–62.
Swedish EPA. 2002. Environmental quality criteria for contaminated sites. Swedish Environmental Protection Agency, viewed 21 December 2006, www.internat.naturvardsverket.se/index.php3?main=/documents/legal/assess/assedoc/cont.htm. Google Scholar
Thieringer, H. A., Jones, P. G., and Inouye, M. 1998. Cold shock and adaptation. BioEssays 20 CrossRef | Google Scholar | PubMed: 49–57.
Thomas, H., Jensen, D., and Authier, B. 1995. Remediation of crude-oil-contaminated soils beneath a containment liner. Proc. Geophysical Environmental 2000 Google Scholar, Reston, VA American Society of Civil Engineers, 52–8.
Thomassin-Lacroix, E. J. M., Eriksson, M., Reimer, K. J., and Mohn, W. W. 2002. Biostimulation and bioaugmentation for on-site treatment of weathered diesel fuel in Arctic soil. Appl. Microbiol. Biotechnol. 59 Google Scholar | PubMed: 551–6.
Thomassin-Lacroix, E. J. M., Yu, Z.., Reimer, K., and Mohn, W. W. 2001. DNA-based and culture-based characterization of a hydrocarbon-degrading consortium enriched from Arctic soil. Can. J. of Microbiol. 47 CrossRef | Google Scholar | PubMed: 1107–15.
Thompson, B. A. W., Davies, N. W., Goldsworthy, P. M.et al. 2006. In situ lubricant degradation in Antarctic marine sediments. 1. Short-term changes. Environ. Toxicol. Chem. 25 CrossRef | Google Scholar | PubMed: 356–66.
Tice, A. R., Anderson, D. M., and Banin, A. 1976. The Prediction of Unfrozen Water Contents in Frozen Soils from Liquid Limit Determinations Google Scholar. U.S. Army Cold Regions Research and Engineering Laboratory Report CRREL 76–8.
Tisdale, S. L., Nelson, W. L., Beaton, J. D., and Havlin, J. L. 1993. Soil Fertility and Fertilizers, New York Google Scholar, MacMillan.
Tishin, M. I. 1983. Thermal regime formation under large lakes in Central Yakutia. In Thermal Physics Studies in Siberia Ktyolitozone, Pavlov, A. (ed.), Novosibirsk “Nauka” Google Scholar, 127–35 (in Russian).
Tolstikhin, N. I. and Tolstikhin, O. N. 1973. Underground and surface water of the permafrost region. In General Permafrost Science, Mel'nikov, P. I. and Tostikhin, N. I. (eds.), Novosibirsk, “Nauka” Google Scholar, 192–229 (in Russian).
Torsvik, V. and Øvreås, L. 2002. Microbial diversity and function in soil: from genes to ecosystems. Current Opinions in Microbiol. 5 CrossRef | Google Scholar | PubMed: 240–5.
TPHCWG. 1998a. Analysis of Petroleum Hydrocarbons in Environmental Media. Total Petroleum Hydrocarbon Criteria Working Group series; Volume 1. Amherst, MA, Amherst Scientific Publishers. Google Scholar
TPHCWG. 1998b. Characterisation of C6 to C35 Petroleum Hydrocarbons in Environmental Samples. Total Petroleum Hydrocarbon Criteria Working Group series. Amherst, MA, Amherst Scientific Publishers. Google Scholar
Trefry, M. G. and Franzmann, P. D. 2003. An extended kinetic model accounting for non-ideal microbial substrate mineralisation in environmental samples. Geomicrobiol. J. 20 CrossRef | Google Scholar: 113–29.
Ulrich, A. C., Biggar, K. W., Armstrong, J.et al. 2006. Impact of cold temperatures on biodegradation rates. Proc. Sea to Sky Geotechnique 2006, 59th Canadian Geotech. Conf., and 7th Joint CGS/IAH-CNC Groundwater Specialty Conf., Vancouver, Canada Google Scholar, paper no. 484.
UNEP-WCMC. 1994. Russian Arctic Oil Pipeline Spill. United Nations Environment Programme / World Conservation Monitoring Centre, Cambridge, UK, viewed 28 August 2006, www.unep=wcmc.org/latenews/emergency/usinsk_pipeline_1994/usinsk.htm. Google Scholar
United States Environmental Protection Agency. 1995. How to Evaluate Alternative Cleanup Technologies for Underground Storage Tank Sites: A Guide for Corrective Action Plan Reviewers. U.S. Environmental Protection Agency, EPA 510-B-95-007. Washington, DC. Google Scholar
USEPA. 1996. Soil Screening Guidance: Technical Background Document. Second Edition. Publication 9355.4-17A. Office of Emergency and Remedial Response, U.S. Environmental Protection Agency, Washington, DC. Google Scholar
UST. 2005. Contaminated Soil in Iceland. Environment and Food Agency of Iceland (UST), viewed 28 November 2006, http://english.ust.is/infobase/pollution-prevention/WasteManagementinIceland/Contaminatedsoillniceland/nr/3064. Google Scholar
UST. 2006. Waste Management in Iceland. Environment and Food Agency of Iceland (UST). Google Scholar
van Everdingen, R. O. 1974. Groundwater in permafrost regions of Canada. Proc. of Permafrost Hydrology workshop, Can. National Committee for the International Hydrologic Decade, Ottawa Google Scholar, 83–93.
Loon, W. K. P., Haneghem, I. A., and Boshoven, H. P. A. 1988. Thermal and hydraulic conductivity of unsaturated sands. 5th Int'l. Symposium on Ground Freezing Google Scholar, 81–90.
Stempvoort, D. R., Armstrong, J., and Mayer, B. 2002. Bacterial sulfate reduction in biodegradation of hydrocarbons in low-temperature, high-sulfate groundwater, Western Canada. Proc. '02 Petroleum Hydrocarbons Conf. and Organic Chemicals in Ground Water: Prevention, Detection, and Remediation Google Scholar, Westerville, OH, National Ground Water Association (ed.), 244–59.
Stempvoort, D., Armstrong., J., and Mayer, B. 2007a. Microbial reduction of sulfate injected to gas condensate plumes in cold groundwater. J. Contam. Hydrol. (in press Google Scholar).
Van Stempvoort, D., Armstrong., J., and Mayer, B. 2007b. Seasonal recharge and replenishment of sulfate associated with biodegradation of a hydrocarbon plume, Ground Water Monitor. Remed. (in press). Google Scholar
Stempvoort, D. R., Bickerton, G., Lesage, S., and Millar, K. 2004. Cold-climate, in situ biodegradation of petroleum fuel in ground water, Moose Factory, Ontario, Canada. Proc. '04 Petroleum Hydrocarbons and Organic Chemicals in Ground Water: Prevention, Assessment, and Remediation Conf., National Ground Water Association (ed.), Westerville, OH Google Scholar, 131–8.
Stempvoort, D. and Biggar, K. W. 2007. Potential for bioremediation of petroleum hydrocarbons in groundwater under cold climate conditions: A review. Cold Reg. Sci. Technol Google Scholar. (in press).
Van Stempvoort, D., Biggar, K. W., Iwakun, O., Bickerton, G., and Voralek, J. 2006. Characterization of Fuel Spill Plumes in Fractured Rock at a Permafrost Site: Colomac Mine, NWT. 2005/2006 Program Progress Report, April 2006, National Water Research Institute and University of Alberta. Google Scholar
Stempvoort, D., Maathuis, H., Jaworski, E., Mayer, B., and Rich, K. 2005. Oxidation of fugitive methane in ground water linked to bacterial sulfate reduction. Ground Water 43(2) CrossRef | Google Scholar: 187–99.
Venosa, D. V., Haines, J. R., and Allen, D. M. 1992. Efficacy of commercial inocula in enhancing biodegradation of weathered crude oil contaminating a Prince William Sound beach. J. Ind. Microbiol. 10 CrossRef | Google Scholar: 1–11.
Vidali, M. 2001. Bioremediation. An overview. Pure and Appl. Chem. 73(7) CrossRef | Google Scholar: 1163–72.
Vigil, M. F. and Kissel, D. E. 1991. Equations for estimating the amount of nitrogen mineralized from crop residues. J. Soil Sci. Soc. of America 55 CrossRef | Google Scholar: 757–61.
Virginia, R. A. and Wall, D. H. 1999. How soils structure communities in the Antarctic dry valleys. Bioscience 49 CrossRef | Google Scholar: 973–83.
Vorhees, D. J., Weisman, W. H., and Gustafson, J. B. 1999. Human Health Risk-Based Evaluation of Petroleum Release Sites: Implementing the Working Group Approach. Total Petroleum Hydrocarbon Criteria Working Group series; Volume 5. Amherst, MA, Amherst Scientific Publishers. Google Scholar
Waksman, S. A. 1924. Influence of microorganisms upon the carbon-nitrogen ratio in the soil. J. Agricultural Sci. 14 CrossRef | Google Scholar: 555–62.
Wall, D. H. and Virginia, R. A. 1999. Controls on soil biodiversity: insights from extreme environments. Appl. Soil Ecol. 13 CrossRef | Google Scholar: 137–50.
Walworth, J., Braddock, J., and Woolard, C. 2001. Nutrient and temperature interactions in bioremediation of cryic soils. Cold Reg. Sci. Technol. 32 CrossRef | Google Scholar: 85–91.
Walworth, J., Pond, A., Snape, I., Rayner, J. L., and Harvey, P. M. 2007. Nitrogen requirements for maximizing petroleum bioremediation in a sub-Antarctic soil. Cold Reg. Sci. Technol. (in press CrossRef | Google Scholar).
Walworth, J. L. and Reynolds, C. M. 1995. Bioremediation of a petroleum contaminated soil: Effects of phosphorus, nitrogen and temperature. J. Soil Contam. 4(3) CrossRef | Google Scholar: 299–310.
Walworth, J. L., Woolard, C. R., Acomb, L., and Wallace, M. 1999. Nutrient and temperature interactions in bioremediation of petroleum-contaminated cryic soils. In-Situ and On-Site Bioremediation 5 Google Scholar(3): 505–10.
Walworth, J. L., Woolard, C. R., and Braddock, J. F. 1999. Nitrogen management in bioremediation. Soil and Groundwater Cleanup Google Scholar Feb/March: 12–15.
Walworth, J. L., Woolard, C. R., Braddock, J. F., and Reynolds, C. M. 1997a. Enhancement and inhibition of soil petroleum biodegradation through the use of fertilizer nitrogen: An approach to determining optimum levels. J. Soil Contam. 6(5) CrossRef | Google Scholar: 465–80.
Walworth, J. L., Woolard, C. R., and Harris, K. C. 1997b. Bioremediation of petroleum-contaminated soil using fish bonemeal in cold climates. AgroBorealis 29 Google Scholar: 31–4.
Walworth, J. L., Woolard, C. R., and Harris, K. C. 2003. Nutrient amendments for contaminated peri-glacial soils: Use of cod bone meal as a controlled release nutrient source. Cold Reg. Sci. Technol. 43 Google Scholar: 1–8.
Wang, Z., Fingas, M., Blenkinsopp, S.et al. 1998. Comparison of oil composition changes due to biodegradation and physical weathering in different oils. J. Chromatography A 809 CrossRef | Google Scholar | PubMed: 89–107.
Wang, Z. D. and Fingas, M. 2003. Fate and identification of spilled oils and petroleum products in the environment by GC-MS and GC-FID. Energ. Sources 25 CrossRef | Google Scholar: 491–508.
Wang, Z. D., Yang, C., Fingas, M.et al. 2005. Characterization, weathering, and application of sesquiterpanes to source identification of spilled lighter petroleum products. Environ. Sci. Technol. 39 CrossRef | Google Scholar | PubMed: 8700–7.
Wartena, E. G. and Evenset, A. 1997. Effects of the Komi oil spill 1994 in the Nenets Okrug. Oil Components and Other Contaminants in Sediments and Fish from the Pechora River. 1995. Report APN514.789.1. Akvaplan-niva, Tromso. Google Scholar
Watanabe, K. and Hamamura, N. 2003. Molecular and physiological approaches to understanding the ecology of pollutant degradation. Current Opinion in Biotechnol. 14 CrossRef | Google Scholar | PubMed: 289–95.
Waterhouse, E. J. and Roper-Gee, R. 2002. From dig and ship to watch and wait? Fuel spill management in the New Zealand Antarctic programme. 3rd Contaminants in Freezing Ground. Snape, I. and Warren, R. (eds.), Hobart Google Scholar, Australian Antarctic Division.
Watson, S. W., Bock, E., Harms, H., Koops, H. P., and Hooper, A. B. 1989. Nitrifying bacteria. In Bergey's Manual of Systematic Bacteriology, Staley, J. T.et al. (eds.), Baltinpre, MD Google Scholar, William and Wilkins, 1808–43.
Watts, J. R., Corey, J. C., and McLeod, K. W. 1982. Land application studies of industrial waste oils. Environ. Pollution 28 CrossRef | Google Scholar: 165–75.
Westervelt, W. W., Lawson, P. W., Wallace, M. N., and Fosbrook, C. 1997. Intrinsic remediation of arctic diesel fuel near drinking water wells. Proc. '97 In Situ and On-Site Bioreremediation Symposium Google Scholar, Columbus, OH Battelle Press, 4(1):61–6.
Westlake, D. W. S., Jobson, A. M., and Cook, F. D. 1977. In situ degradation of oil in a soil of the boreal region of the Northwest Territories. Can. J. Microbiol. 24 CrossRef | Google Scholar: 254–60.
Westlake, D. W. S., Jobson, A., Phillippe, R., and Cook, F. D. 1973. Biodegradability and crude oil composition. Can. J. Microbiol. 20 CrossRef | Google Scholar: 915–28.
White, D. M. 1995. Bioremediation of crude oil in the active layer overlying Alaska's North Slope Permafrost, Ph.D. Dissertation, Univ. of Notre Dame. Google Scholar
White, D. M., Collins, C. M., Barnes, D., and Byard, H. 2004. Effects of a crude oil spill on permafrost after 24 years in interior Alaska. Proc. Cold Regions Engineering and Construction Conf., American Society of Civil Engineers, Edmonton Google Scholar, May 16–19.
White, D. M., Garland, D. S., Beyer, L., and Yoshikawa, K. 2004. Pyrolysis-GC/MS fingerprinting of environmental samples. J. Analytical and Appl. Pyrolysis 71 CrossRef | Google Scholar: 107–18.
White, D. M. and Irvine, R. L. 1996. The bituminous material in Arctic peat: implications for analyses of petroleum contamination. J. Haz. Mat'ls. 49 Google Scholar: 81–196.
White, D. M. and Irvine, R. L. 1998a. Analysis of bioremediation in organic soils. In: Bioremediation: Principles and Practice, Volume 1, Fundamentals and Applications, Sikdar, S. K. and Irvine, R. L. (eds.), Lancaster, PA Google Scholar, Technomic Publishing, 185–221.
White, D. M. and Irvine, R. L. 1998b. Potential applications for pyrolysis-GC/MS in bioremediation. Environ. Monitoring and Assessment 50 CrossRef | Google Scholar: 53–65.
White, D. M., Luong, H., and Irvine, R. L. 1998. Pyrolysis-GC/MS analysis of contaminated soils in Alaska. J. Cold Regions Eng. 12 CrossRef | Google Scholar: 1–10.
White, T. L. and Williams, P. J. 1994. Cryogenic alteration of frost-susceptible soils. Proc. 7th Int'l. Symposium on Freezing Ground, Nancy, France, 17–24. Google Scholar
White, T. L. and Williams, P. J. 1996. The role of microstructure – geotechnical properties of freezing soils. Proc. 5th Int'l. Symposium on Thermal Eng. and Sci. for Cold Regions, Ottawa, Canada Google Scholar, 415–26.
Whyte, L. G., Bourbonnière, L., Bellerose, C., and Greer, C. W. 1999a. Bioremediation assessment of hydrocarbon-contaminated soils from high arctic. Bioremediation J. 3(1) CrossRef | Google Scholar: 69–79.
Whyte, L. G., Bourbonnière, L., and Greer, C. W. 1997. Biodegradation of petroleum hydrocarbons by psychrotrophic Pseudomonas strains possessing both alkane (alk) and naphthalene (nah) catabolic pathways. Appl. and Environ. Microbiol. 63 Google Scholar | PubMed: 3719–23.
Whyte, L. G., Bourbonnière, L., Roy, R., and Greer, C. W. 1998. Bioremediation Assessment of Whitehorse Airport Contaminated Aquifer. Phase 1 – Final Report prepared for: Public Works and Government Services Canada. Environmental Microbiology, NRC – Biotechnology Research Institute, Montreal, Quebec, Canada. Google Scholar
Whyte, L. G., Goalen, B., Labbé, D., Greer, C. W., and Nahir, M. 2001. Bioremediation treatability assessment of hydrocarbon-contaminated soils from Eureka, Nunavut. Cold Reg. Sci. Technol. 32(2–3) CrossRef | Google Scholar: 121–32.
Whyte, L. G., Greer, C. W., and Inniss, W. E. 1996. Assessment of the biodegradation potential of psychrotrophic microorganisms. Can. J. Microbiol. 42 CrossRef | Google Scholar | PubMed: 99–106.
Whyte, L. G., Hawari, J., Zhou, E.et al. 1998. Biodegradation of variable chain length alkanes at low temperatures by a psychrotrophic Rhodococcus sp. Appl. and Environ. Microbiol. 64 Google Scholar | PubMed: 2578–84.
Whyte, L. G. and Innis, W. E. 1992. Cold shock proteins and cold acclimation proteins in a psychrotrophic bacterium. Can. J. Microbiol. 38 CrossRef | Google Scholar: 1281–5.
Whyte, L. G., Labbé, D., Goalen, B., et al. 2003. In-situ bioremediation of hydrocarbon contaminated soils in the high arctic. Proc. 3rd Assessment and Remediation of Contaminated Sites in Arctic and Cold Climates (ARCSACC) Conference, Nahir, M., Biggar, K., and Cotta, G. (eds), St. Joseph's Print Group, Edmonton Google Scholar, May 4–6, 245–56.
Whyte, L. G., Schultz, A., Beilen, J. B.et al. 2002a. Prevalence of alkane monooxygenase genes in Arctic and Antarctic hydrocarbon-contaminated and pristine soils. FEMS Microbiol. Ecol. 41 Google Scholar: 141–50.
Whyte, L. G., Slagman, S. J., Pietrantonio, F.et al. 1999b. Physiological adaptations involved in alkane assimilation at low temperatures by Rhodococcus sp. Strain Q15. Appl. and Environ. Microbiol. 65 Google Scholar: 2961–8.
Whyte, L. G., Smits, T. M. H., Labbe, D.et al. 2002b. Gene cloning and characterization of multiple alkane hydroxylases in Rhodococcus sp. strains Q15 and NRRL B-16531. Appl. and Environ. Microbiol. 68 CrossRef | Google Scholar: 5933–42.
Wiggert, D. C., Andersland, O. B., and Davies, S. H. 1997. Movement of liquid contaminants in partially saturated frozen granular soils. Cold Reg. Sci. Technol. 25 CrossRef | Google Scholar: 111–17.
Williams, P. J. 1968. Unfrozen Water Content of Frozen Soils and Soil Moisture Suction Google Scholar. Division of Building Research National Research Council of Canada, Research Paper no. 359: 11–26.
Wilson, B. H., Bledsoe, B. E., Kampbell, D. H.et al. 1986. Biological fate of hydrocarbons at an aviation gasoline spill site. Proc. Conf. on Petroleum Hydrocarbons and Organic Chemicals in Ground Water, National Water Well Association (ed.), Columbus, OH Google Scholar, 78–90.
Wilson, J. L., Conrad, S. H., Mason, W. R., Peplinski, W., and Hagan, E. 1990. Laboratory Investigation of Residual Liquid Organics From Spills, Leaks, and the Disposal of Hazardous Wastes Google Scholar. Robert S. Kerr Environmental Research Laboratory Office of Research and Development, U.S. EPA, EPA/600/6-90/004.
Wilson, J., Rowsell, S., Chu, A., MacDonald, A, and Hetman, R. 2003. Biotreatability and pilot scale study for remediation of arctic diesel at 10 C. Proc. 3rd Assessment and Remediation of Contaminated Sites in Arctic and Cold Climates (ARCSACC) Conference, Nahir, M., Biggar, K., and Cotta, G. (eds), St. Joseph's Print Group, Edmonton Google Scholar, May 4–6, 279–89.
Wingrove, T. 1997. Diesel contamination remediation at a remote site in a cold climate. Practice Periodical of Haz., Toxic, and Radioactive Waste Mgm't. 1(1) CrossRef | Google Scholar: 30–4.
Woinarski, A. Z., Snape, I., Stevens, G. W., and Morris, C. E. 2002. Development of a natural zeolite permeable reactive barrier for the treatment of contaminated water in Antarctica. Proc. 3rd Int'l. Conf. on Contaminants in Freezing Ground, Snape, I., and Warren, R. (eds.), Hobart, Australia Google Scholar, 14–18 April, 87–8.
Woinarski, A. Z., Snape, I., Stevens, G. W., and Stark, S. C. 2003. The effects of cold temperature on copper ion exchange by natural zeolite for use in a permeable reactive barrier in Antarctica. Cold Reg. Sci. Technol. 37(2) CrossRef | Google Scholar: 159–68.
Woinarski, A. Z., Stevens, G. W., and Snape, I. 2006. A natural zeolite permeable reactive barrier to treat heavy-metal contaminated waters in Antarctica: kinetic and fixed-bed studies. IChemE 84 Google Scholar (B2): 109–16.
Wong, R. C. K., Chu, A., Ng, R., and Duchscherer, T. M. 2003. An experimental study of biodegradation kinetics for distillated fractions of Alberta crude oil at 5 °C and 20 °C. Proc. 3rd Assessment and Remediation of Contaminated Sites in Arctic and Cold Climates (ARCSACC) Conference, Nahir, M., Biggar, K., and Cotta, G. (eds), St. Joseph's Print Group, Edmonton Google Scholar, May 4–6, 197–203.
Wood, J. A. and Williams, P. J. 1985. Further experimental investigation of regelation flow with an ice sandwich permeater. In Freezing and Thawing of Soil-water Systems, Anderson, D. M. and Williams, P. J. (eds.), Technical Council on Cold Regions Engineering Monograph, New York Google Scholar, American Society of Civil Engineers, 85–94.
Woolard, C. R., Walworth, J. L., and White, D. M. 2000. Contaminated soil bioremediation in cold climates: nutrient management strategies to enhance hydrocarbon biodegradation rates. ISCORD 2000, Proc. 6th Int'l. Symposium on Cold Region Development, Hobart, Tasmania, Australia, 48–51. Google Scholar
Woolard, C. R., White, D. M., Walworth, J. L., and Hannah, M. E. 1999a. The magnitude and variability of biogenic interference in cold regions soils. J. Cold Regions Eng. 13(3) CrossRef | Google Scholar: 113–21.
Wrenn, B. A., Haines, J. R., Venosa, A. D., Kadkhodayan, M., and Suidan, M. T. 1994. Effects of nitrogen source on crude oil biodegradation. J. Ind. Microbiol. 13 CrossRef | Google Scholar: 279–86.
Yakimov, M. M., Giuliano, L., Bruni, V., Scarfi, S., and Golyshin, P. N. 1999. Characterization of Antarctic hydrocarbon-degrading bacteria capable of producing bioemulsifiers. Microbiologica 22 Google Scholar | PubMed: 249–56.
Yen, Y. C., Cheng, K. C., and Fukusako, S. 1991. Review of intrinsic thermophysical properties of snow, ice, sea ice, and frost. Proc. 3rd Int'l. Symposium on Cold Regions Heat Transfer Google Scholar, 187–218.
Yu, Z., Stewart, G. R., and Mohn, W. W. 2000. Apparent contradiction: psychrotolerant bacteria from hydrocarbon-contaminated Arctic tundra soils that degrade diterpenoids synthesized by trees. Appl. and Environ. Microbiol. 66 CrossRef | Google Scholar | PubMed: 5148–54.
Zarling, J. P. and Braley, W. A. 1988. Geotechnical thermal analysis. In Embarkment Design and Construction in Cold Regions: Technical Council on Cold Regions Engineering Monograph, Reston, VA Google Scholar, American Society of Civil Engineers, 35–44.
Zhou, J. 2003. Microarrays for bacterial detection and microbial community analysis. Current Opinion in Microbiol. 6 CrossRef | Google Scholar | PubMed: 288–94.
Zhou, E. and Crawford, R. L. 1995. Effects of oxygen, nitrogen, and temperature on gasoline biodegradation in soil. Biodegradation 6 CrossRef | Google Scholar | PubMed: 127–40.

Metrics

Usage data cannot currently be displayed.