Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-c9gpj Total loading time: 0 Render date: 2024-07-16T02:06:11.994Z Has data issue: false hasContentIssue false

8 - Diencephalon: hypothalamus and epithalamus

Published online by Cambridge University Press:  25 August 2009

David L. Clark
Affiliation:
Ohio State University
Nashaat N. Boutros
Affiliation:
Yale University, Connecticut
Mario F. Mendez
Affiliation:
University of California, Los Angeles
Get access

Summary

Hypothalamus

The hypothalamus is the region of the mammalian brain that is most important in the coordination of behaviors essential for the maintenance and continuation of the species. Although the hypothalamus occupies only about 0.15% of the volume of the human brain, it plays a major role in the regulation and release of hormones from the pituitary gland, maintenance of body temperature, and organization of goal-seeking behaviors such as feeding, drinking, mating, and aggression. It is the primary center for the control of autonomic function. It is also the region of the brain that is essential for behavioral adjustments to changes in the internal or external environment (Figure 8.1). The hypothalamus is a very old structure with striking similarity between humans and lower animals. It is made up of a number of nuclei and scattered cell groups. Some hypothalamic cell groups control specific functions (e.g., blood pressure, heart rate, etc.) through the coordinated action of short intrahypothalamic connections. Other nuclei operate by projections to structures outside the confines of the hypothalamus.

Anatomical and behavioral considerations

The hypothalamus lies on either side of the walls of the third ventricle below the level of the hypothalamic sulcus (Figure 8.2, see Figures 9.2, 9.3, and 14.6). It is bounded in front (rostrally) by the lamina terminalis and optic chiasm, laterally by the optic tracts, and behind by the mamillary bodies. Some hypothalamic nuclei are continuous across the floor of the third ventricle.

Type
Chapter
Information
The Brain and Behavior
An Introduction to Behavioral Neuroanatomy
, pp. 128 - 151
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abelson, J. L., and Curtis, G. C 1996. Hypothalamic-pituitary-adrenal axis activity in panic disorder. Arch. Gen. Psychiatry 53:323–331.CrossRefGoogle ScholarPubMed
Bernardis, L. L., and Bellinger, L. L. 1996. The lateral hypothalamic area revisited: ingestive behavior. Neurosci. Biobehav. Rev. 20:189–287.CrossRefGoogle ScholarPubMed
Braak, H., and Braak, E. 1989. Cortical and subcortical argyrophilic grains characterize a disease associated with adult onset dementia. Neuropathol. Appl. Neurobiol. 15:13–26.CrossRefGoogle ScholarPubMed
Bray, G. A. 1992. Genetic, hypothalamic and endocrine features of clinical and experimental obesity. In: D. F. Swabb, M. A. Hofman, M. Mirmiran, R. Ravid, and F. W. van Leeuwen (eds.) The human hypothalamus in health and disease. Prog. Brain Res. 93:333–341.CrossRef
Breningstall, G. N. 1985. Gelastic seizures, precocious puberty, and hypothalamic hamartomas. Neurology 35:1180–1183.CrossRefGoogle Scholar
Burstein, R. 1996. Somatosensory and visceral input to the hypothalamus and limbic system. In: G. Holstege, R. Bandler, and C. B. Saper (eds.) The emotional motor system. Prog. Brain Res. 107: 257–267.CrossRef
Charney, D. S., Nagy, L. M., Bremner, J. D., Goddard, A. W., Yehuda, R., and Southwick, S. M. 1996. Neurobiological mechanisms of human anxiety. In: Fogel, B. S., Schiffer, R. B., and Rao, S. M. (eds.) Neuropsychiatry. Baltimore, Md.: Williams and Wilkins, pp. 257–286.Google Scholar
Corodimas, K. P., Rosenblatt, J. S., Canfield, M. E., and Morrell, J. I. 1993. Neurons in the lateral subdivision of the habenular complex mediate the hormonal onset of maternal behavior in rats. Behav. Neurosci. 107:827–843.CrossRefGoogle ScholarPubMed
Darlington, D. N., Mains, R. E., and Eipper, B. A. 1996. Location of neurons that express regulated endocrine-specific protein-18 in the rat diencephalon. Neuroscience 71:477–488.CrossRefGoogle ScholarPubMed
Dawson, T. M., Gehlert, D. R., McCabe, R. T., Barnett, A., and Wamsley, J. K. 1986. D-1 dopamine receptors in the rat brain: a quantitative autoradiographic analysis. J. Neurosci. 6:2352–2365.CrossRefGoogle ScholarPubMed
Delis, D. C., and Lucas, J. A. 1996. Memory. In: Fogel, B. S., Schiffer, R. B., and Rao, S. M. (eds.) Neuropsychiatry. Baltimore, Md.: Williams and Wilkins, pp. 365–399.Google Scholar
Delville, Y. U., Melloni, R. H. Jr., and Ferris, C. F. 1998. Behavioral and neurobiological consequences of social subjugation during puberty in golden hamsters. J. Neurosci. 18:2667–2672.CrossRefGoogle ScholarPubMed
Demitrack, M. A., and Gold, P. W. 1988. Oxytocin: neurobiologic considerations and their implications for affective illness. Prog. Neuropsychopharmacol. 12:S23–S51.CrossRefGoogle ScholarPubMed
Demitrack, M. A., Lesem, M. D., Listwak, S. J., Brandt, H. A., Jimerson, D. C., and Gold, P. W. 1990. Cerebrospinal fluid oxytocin in anorexia nervosa and bulimia nervosa: clinical and pathophysiological considerations. Am. J. Psychiatry 147:882–886.Google Scholar
DeMoranville, B. M., and Jackson, I. M. D. 1996. Psychoneuroendocrinology. In: Fogel, B. S., Schiffer, R. B., and Rao, S. M. (eds.) Neuropsychiatry. Baltimore, Md.: Williams and Wilkins, pp. 173–192.Google Scholar
DeVries, G. J., and Villalba, C. 1997. Brain sexual dimorphism and sex differences in parental and other social behaviors. In: C. S. Carter, I. I. Lederhendler, and B. Kirkpatrick (eds.) The integrative neurobiology of affiliation. Ann. N.Y. Acad. Sci. U.S.A. 807:273–286.
Dollins, A. B., Lynch, H. J.Wurtman, R. J., Deng, M. H., and Lieberman, H. R. 1993. Effects of illumination on human nocturnal serum melatonin levels and performance. Physiol. Behav. 53:153–160.CrossRefGoogle ScholarPubMed
Ellison, G. 1994. Stimulant-induced psychosis, the dopamine theory of schizophrenia and the habenula. Brain Res. Brain Res. Rev. 19:223–239.CrossRefGoogle ScholarPubMed
Friedman, R. C., and Downey, J. 1993. Neurobiology and sexual orientation. J. Neuropsychiatry Clin. Neurosci. 5:147–148.Google ScholarPubMed
Gjerris, A. 1990. Studies on cerebrospinal fluid in affective disorders. Pharmacol. Toxicol. 66 (Suppl. 3): 133–138.CrossRefGoogle ScholarPubMed
Golombek, D. A., Escolar, E., Burin, L., Brito Sanchez, M. G., and Cardinali, D. P. 1991. Time-dependent melatonin analgesia in mice: inhibition by opiate or benzodiazepine antagonism. Eur. J. Pharmacol. 194:25–30.CrossRefGoogle ScholarPubMed
Golombek, D. A., Pevet, P., and Cardinali, D. P. 1996. Melatonin effects on behavior: possible mediation by the central GABAergic system. Neurosci. Biobehav. Rev. 20:403–412.CrossRefGoogle ScholarPubMed
Hamann, S., Herman, R. A., Nolan, C. L., and Wallen, K. 2004. Men and women differ in amygdala response to visual sexual stimuli. Nature Neurosci. 7:411–416.CrossRefGoogle ScholarPubMed
Hansen, S., and Ferreira, A. 1986. Food intake, aggression, and fear behavior in the mother rat: control by neural systems concerned with milk ejection and maternal behavior. Behav. Neurosci. 100:64–70.CrossRefGoogle Scholar
Hennessy, M. B. 1997. Hypothalamic-pituitary-adrenal responses to brief social separation. Neurosci. Biobehav. Rev. 21:11–29.CrossRefGoogle ScholarPubMed
Herman, J. P., Adams, D., and Prewitt, C. 1995. Regulatory changes in neuroendocrine stress-integrative circuitry produced by a variable stress paradigm. Neuroendocrinology 61:180–190.CrossRefGoogle ScholarPubMed
Hofman, M. A., Puirba, J. S., and Swaab, D. F. 1993. Annual variation in the vasopressin neuron population of the human suprachiasmatic nucleus. Neuroscience 53:1103–1112.CrossRefGoogle ScholarPubMed
Holsboer-Trachsler, E., Stohler, R., and Hatzinger, M. 1991. Repeated administration of the combined dexamethasone–human corticotropin releasing hormone stimulation test during treatment of depression. Psychiatry Res. 38:163–171.CrossRefGoogle ScholarPubMed
Horn, E., Lach, B., Lapierre, Y., and Hrdina, P. 1988. Hypothalamic pathology in the neuroleptic malignant syndrome. Am. J. Psychiatry 145:617–620.Google ScholarPubMed
Katter, J. T., Burstein, R., and Giesler, G. J. 1991. The cells of origin of the spinohypothalamic tract in cats. J. Comp. Neurol. 303:101–112.CrossRefGoogle ScholarPubMed
Korf, H. W., Sato, T., and Oksche, A. 1990. Complex relationship between the pineal organ and the medial habenular nucleus–pretectal region of the mouse as revealed by S-antigen immunocytochemistry. Cell 261:493–500.Google Scholar
Kostic, V. S., Stefanova, E., Svetel, M., and Kovic, D. 1998. A variant of the Kleine–Levin syndrome following head trauma. Behav. Neurol. 11:105–108.CrossRefGoogle ScholarPubMed
Kremer, H. P. H. 1992. The hypothalamic lateral tuberal nucleus: normal anatomy and changes in neurological diseases. In: R. M. Buijs, A. Kalsbeek, H. J. Romijn, C. M. A. Pennartz, and M. Mirmiran (eds.) Hypothalamic integration of circadian rhythms. Prog. Brain Res. 111:249–261.CrossRef
Kruck, M. R. 1991. Ethology and pharmacology of hypothalamic aggression in the rat. Neurosci. Biobehav. Rev. 15:527–538.CrossRefGoogle Scholar
Kupfermann, I. 1991. Hypothalamus and limbic system: peptidergic neurons, homeostasis, and emotional behavior. In: Kandel, E. R., Schwartz, J. H., and Jessell, T. M. (eds.) Principles of neural science, 3rd edn. New York: Elsevier, pp. 735–749.Google Scholar
LeDoux, J. 1996. Emotional networks and motor control: a fearful view. In: G. Holstege, R. Bandler, and C. B. Saper (eds.) The emotional motor system. Prog. Brain Res. 107: 437–446.CrossRef
Legros, J. J., Ansseau, M., and Timsit-Berthier, M. 1993. Neurohypophyseal peptides and psychopathology. Prog. Brain Res. 93:455–461.CrossRefGoogle Scholar
LeVay, S. 1991. A difference in hypothalamic structure between heterosexual and homosexual men. Science 253:1034–1037.CrossRefGoogle ScholarPubMed
LeVay, S., and Hamer, D. H. 1994. Evidence for a biological influence in male homosexuality. Sci. Am. 270:44–49.CrossRefGoogle ScholarPubMed
Lewy, A. J., and Sack, R. L. 1996. The role of melatonin and light in the human circadian system. In: R. M. Buijs, A. Kalsbeek, H. J. Romijn, C. M. A. Pennartz, and M. Mirmiran (eds.) Hypothalamic integration of circadian rhythms. Prog. Brain Res. 111:205–216.
Ma, Q. P., Shi, Y. S., and Han, J. S. 1992. Further studies on interactions between periaqueductal gray, nucleus accumbens and habenula in antinociception. Brain Res. 583:292–295.CrossRefGoogle ScholarPubMed
Marson, L., and McKenna, K. E. 1994. Stimulation of the hypothalamus initiates the urethrogenital reflex in male rats. Brain Res. 638:103–108.CrossRefGoogle ScholarPubMed
Martin, J. B., and Riskind, P. N. 1992. Neurologic manifestations of hypothalamic disease. In: D. F. Swabb, M. A. Hofman, M. Mirmiran, R. Ravid, and F. W. van Leeuwen (eds.) The human hypothalamus in health and disease. Prog. Brain Res. 93:31–42.
Martin, J. H. 1996. Neuroanatomy: Text and Atlas. Stamford, Conn.: Appleton and Lange, p. 434.Google Scholar
Matthews-Felton, T., Corodimas, K. P., Rosenblatt, J. S., and Morrell, J. I. 1995. Lateral habenula neurons are necessary for the hormonal onset of maternal behavior and for the display of postpartum estrus in naturally parturient female rats. Behav. Neurosci. 109(6):1172–1188.CrossRefGoogle ScholarPubMed
Michelson, D., Stratakis, C., Hill, L., Reynolds, J., Galliven, E., Chrousos, G., and Gold, P. 1996. Bone mineral density in women with depression. N. Engl. J. Med. 335:1176–1181.CrossRefGoogle ScholarPubMed
Moore, R. Y. 1997. Circadian rhythms: basic neurobiology and clinical applications. Annu. Rev. Med. 48:253–266.CrossRefGoogle ScholarPubMed
Morgan, P. J., Barrett, P., Howell, H. E., and Helliwell, R. 1994. Melatonin receptors: localization, molecular pharmacology and physiological significance. Neurochem. Int. 24:101–146.CrossRefGoogle ScholarPubMed
Nadvornik, P., Sramka, M., and Patoprsta, G. 1975. Transventricular anterior hypothalamotomy in stereotactic treatment of hedonia. In: Sweet, W. H., Obrador, S., and Martin-Rodriguez, J. G. (eds.) Neurosurgical Treatment in Psychiatry, Pain and Epilepsy. Baltimore, Md.: University Park Press, pp. 445–450.Google Scholar
Nishikawa, T., Fage, D., and Scatton, B. 1986. Evidence for and nature of the tonic inhibitory influence of the habenulointerpeduncular pathways upon cerebral dopaminergic transmission in the rat. Brain Res. 373:324–336.CrossRefGoogle ScholarPubMed
Numan, M., and Sheenan, T. P. 1997. Neuroanatomical circuitry for mammalian maternal behavior. In: C. S. Carter, I. I. Lederhendler, and B. Kirkpatrick (eds.) The integrative neurobiology of affiliation. Ann. N.Y. Acad. Sci. 807:101–125.CrossRef
Numan, M., and Smith, H. G. 1984. Maternal behavior in rats: evidence for the involvement of preoptic projections to the ventral tegmental area. Behav. Neurosci. 98:712–727.CrossRefGoogle ScholarPubMed
Pedersen, C. A. 1997. Oxytocin control of maternal behavior: regulation by sex steroids and offspring stimuli. Ann. N. Y. Acad. Sci. 807:126–145.CrossRefGoogle ScholarPubMed
Pedersen, C. A., and Prange, A. J. Jr. 1979. Induction of maternal behavior in virgin rats after intracerebroventricular administration of oxytocin. Proc. Natl. Acad. Sci. U.S.A. 76:6661–6665.CrossRefGoogle ScholarPubMed
Pevet, P., Pitrosky, B., Vuillez, P., Jacob, N., Teclemariam-Mesbah, R., Kirsch, R., Vivien-Roels, B., Lakhdar-Ghazal, N., Canguilhem, B., and Masson-Pevet, M. 1996. The suprachiasmatic nucleus: the biological clock of all seasons. In: R. M. Buijs, A. Kalsbeek, H. J Romijn, C. M. A. Pennartz, and M. Mirmiran (eds.) Hypothalamic integration of circadian rhythms. Prog. Brain Res. 111: 369–384.
Pfaff, D. W., Schwartz-Giblin, S., McCarthy, M. M., and Kow, L. -M. 1994. Cellular mechanisms of female reproductive behavior. In: Knobil, E., and Neill, J. (eds.) The Physiology of Reproduction, 2nd edn. New York: Raven Press, pp. 107–220.Google Scholar
Pfaus, J. G., Kleopoulos, S. P., Mobbs, C. V., Gibbs, R. B., and Pfaff, D. W. 1993. Sexual stimulation activates c-fos within estrogen-concentrating regions of the female rat forebrain. Brain Res. 624:253–267.CrossRefGoogle ScholarPubMed
Purba, J. S., Hoogendijk, W. J. G., Hofman, M. A., and Swaab, D. F. 1996. Increased number of vasopressin- and oxytocin-expressing neurons in the paraventricular nucleus of the hypothalamus in depression. Arch. Gen. Psychiatry 53:137–143.CrossRefGoogle ScholarPubMed
Raadsheer, F. C., Hoogendijk, W. J. G., Stam, F. C., Tilders, F. J. H., and Swaab, D. F. 1994. Increased number of corticotropin-releasing hormone neurons in the hypothalamic paraventricular nuclei of depressed patients. Neuroendocrinology 60:436–444.CrossRefGoogle Scholar
Rance, N. E. 1992. Hormonal influences on morphology and neuropeptide gene expression in the infundibular nucleus of post-menopausal women. In: D. F. Swabb, M. A. Hofman, M. Mirmiran, R. Ravid, and F. W. van Leeuwen (eds.) The human hypothalamus in health and disease. Prog. Brain Res. 93:221–236.
Reisine, T. D., Soubrie, P., Artaud, F., and Glowinski, J. 1982. Involvement of lateral habenula-dorsal raphe neurons in the differential regulation of striatal and nigral serotonergic transmission in cats. J. Neurosci. 2: 1062–1071.CrossRefGoogle ScholarPubMed
Reppert, S. M., Rivkees, S. A., and Weaver, D. R. 1989. Prenatal entrainment of a circadian clock. In: Reppert, S. M. (ed.) The Development of Circadian Rhythmicity and Photoperiodism in Mammals. New York: Perinatology Press, pp. 25–44.Google Scholar
Reuss, S. 1996. Components and connections of the circadian timing system in mammals. Cell Tissue Res. 285:353–378.CrossRefGoogle ScholarPubMed
Romijn, H. 1978. The pineal: a tranquilizing organ? Life Sci. 3:2257–2274.CrossRefGoogle Scholar
Ross, E. D., and Stewart, R. M. 1981. Akinetic mutism from hypothalamic damage: successful treatment with dopamine agonists. Neurology 31:1435–1439.CrossRefGoogle ScholarPubMed
Sandyk, R. 1992. Pineal and habenula calcification in schizophrenia. Int. J. Neurosci. 67: 19–30.CrossRefGoogle Scholar
Saper, C. B. 1996. Role of the cerebral cortex and striatum in emotional motor response. In: G. Holstege, R. Bandler, and C. B. Saper (eds.) The emotional motor system. Prog. Brain Res. 107: 537–550.CrossRef
Saver, J. L., Salloway, S. P., Devinsky, O., and Bear, D. M. 1996. Neuropsychiatry of aggression. In: Fogel, B. S., Schiffer, R. B., and Rao, S. M. (eds.) Neuropsychiatry. Baltimore, Md.: Williams and Wilkins, pp. 523–548.Google Scholar
Schwartz, M. W., and Seeley, R. J. 1997. The new biology of body weight regulation. J. Am. Diet. Assoc. 97:558.CrossRefGoogle ScholarPubMed
Segraves, R. T. 1996. Neuropsychiatric aspects of sexual dysfunction. In: Fogel, B. S., Schiffer, R. B., and Rao, S. M. (eds.) Neuropsychiatry. Baltimore, MD.: Williams and Wilkins, pp. 757–770.Google Scholar
Shipley, M. T., Murphy, A. Z., Rizvi, T. A., Ennis, M., and Behbehani, M. M. 1996. Olfaction and brainstem circuits of reproductive behavior in the rat. In: G. Holstege, R. Bandler, and C. B. Saper (eds.) The emotional motor system. Prog. Brain Res. 107:353–377.
Sofroniew, M. W. 1983. Vasopressin and oxytocin in the mammalian brain and spinal cord. Trends Neurosci. 6:467–472.CrossRefGoogle Scholar
Swaab, D. F., Gooren, L. J., and Hofman, M. A. 1995. Brain research, gender and sexual orientation. J. Homosex. 28:283–301.CrossRefGoogle ScholarPubMed
Takeuchi, J., Handa, H., and Miki, Y. 1979. Precocious puberty due to hypothalamic hamartoma. Surg. Neurol. 11:456–460.Google ScholarPubMed
Tonkonogy, J. M., and Geller, J. L. 1992. Hypothalamic lesions and intermittent explosive disorder. J. Neuropsychiatry Clin. Neurosci. 4:45–50.Google ScholarPubMed
Tzichinsky, O., Pal, I., Epstein, R., Dagan, Y., and Lavie, P. 1992. The importance of timing in melatonin administration in a blind man. J. Pineal Res. 12:105–108.CrossRefGoogle Scholar
Uvnas-Moberg, K. 1997. Physiological and endocrine effects of social contact. Ann. N. Y. Acad. Sci. 807:146–163.CrossRefGoogle ScholarPubMed
Van de Poll, N. E., and Van Goozen, S. H. M. 1992. Hypothalamic involvement in sexuality and hostility: comparative psychological aspects. In: D. F. Swabb, M. A. Hofman, M. Mirmiran, R. Ravid, and F. W. van Leeuwen (eds.) The human hypothalamus in health and disease. Prog. Brain Res. 93:343–361.CrossRef
Wehr, T. A. 1991. The duration of human melatonin secretion and sleep respond to changes in daylength (photoperiod). J. Clin. Enocrinol. Metab. 73:1276–1280.CrossRefGoogle Scholar
Weinstock, M. 1997. Does prenatal stress impair coping and regulation of hypothalamic-pituitary-adrenal axis?Neurosci. Biobehav. Rev. 21:1–10.CrossRefGoogle ScholarPubMed
Wiegant, V. M., Ronken, E., Kovacs, G., and DeWied, D. 1992. Endorphins and schizophrenia. In: D. F. Swabb, M. A. Hofman, M. Mirmiran, R. Ravid, and F. W. van Leeuwen (eds.) The human hypothalamus in health and disease. Prog. Brain Res. 93:433–453.
Witt, D. W. 1997. Regulatory mechanisms of oxytocin-mediated sociosexual behavior. Ann. N. Y. Acad. Sci. 807:287–301.CrossRefGoogle ScholarPubMed
Young, P. A., and Young, P. H. 1997. Basic Clinical Anatomy. Baltimore, Md.: Williams and Wilkins.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×