Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-13T21:53:49.825Z Has data issue: false hasContentIssue false

Chapter 6 - Frontal Lobe

Published online by Cambridge University Press:  22 February 2018

David L. Clark
Affiliation:
Ohio State University
Nash N. Boutros
Affiliation:
University of Missouri, Kansas City
Mario F. Mendez
Affiliation:
University of California, Los Angeles
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
The Brain and Behavior
An Introduction to Behavioral Neuroanatomy
, pp. 73 - 102
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Select Bibliography

Fuster, J. M. (2008). The Pre-Frontal Cortex (4th edn). New York, NY: Academic Press.Google Scholar
Miller, B. L. and Cummings, J. C. (2007). The Human Frontal Lobes, Functions and Disorders. (2nd edn) New York, NY: Guilford Press.Google Scholar
Perecman, E. (Ed.). (1987). The Frontal Lobes Revisited. New York, NY: IRBN Press.Google Scholar
Roberts, A. C., Robbins, T. W., and Weiskrantz, L. (2000). The Prefrontal Cortex. Executive and Cognitive Functions. New York, NY: Oxford University Press.Google Scholar
Stuss, D. T., and Knight, R. T. (2012). Principles of Frontal Lobe Function (2nd edn) New York, NY: Oxford University Press.Google Scholar
Uylings, H. B. M., Van Eden, C. G., DeBruin, J. P. C., Corner, M. A., and Feenstra, M. G. P. (Eds) (1990). The Prefrontal Cortex. Its Structure, Function and Pathology. Progress in Brain Research (vol. 85). Amsterdam, Netherlands: Elsevier.Google Scholar

References

Adler, C. M., Holland, S. K., Schmithorst, V., Wilke, M., Weiss, K. L., Pan, H., and Strakowski, S. M. (2004). Abnormal frontal white matter tracts in bipolar disorder: a diffusion tensor imaging study. Bipolar Disord., 6(3), 197203. doi:10.1111/j.1399–5618.2004.00108.xCrossRefGoogle ScholarPubMed
Aganova, E. A., and Uranova, N. A. (1992). Morphometric analysis of synaptic contacts in the anterior limbic cortex in the endogenous psychoses. Neurosci. Behav. Physiol., 22(1), 5965. doi:10.1016/j.jpsychires.2007.07.006Google Scholar
Alexopoulos, G. S., Hoptman, M. J., Yuen, G., Kanellopoulos, D., Seirup, J. K., Lim, K. O., and Gunning, F. M. (2013). Functional connectivity in apathy of late-life depression: a preliminary study. J. Affect. Disord., 149 (1–3), 398405. doi:10.1016/j.jad.2012.11.023Google Scholar
Alonso-Solis, A., Vives-Gilabert, Y., Grasa, E., Portella, M. J., Rabella, M., Sauras, R. B.,… Corripio, I. (2015). Resting-state functional connectivity alterations in the default network of schizophrenia patients with persistent auditory verbal hallucinations. Schizophr. Res., 161(23), 261268. doi:10.1016/j.schres.2014.10.047Google Scholar
Altshuler, L., Bookheimer, S., Proenza, M. A., Townsend, J., Sabb, F., Firestine, A.,… Cohen, M. S. (2005a). Increased amygdala activation during mania: a functional magnetic resonance imaging study. Am. J. Psychiatry, 162(6), 12111213. doi:10.1176/appi.ajp.162.6.1211Google Scholar
Altshuler, L. L., Bookheimer, S. Y., Townsend, J., Proenza, M. A., Eisenberger, N., Sabb, F.,… Cohen, M. S. (2005b). Blunted activation in orbitofrontal cortex during mania: a functional magnetic resonance imaging study. Biol. Psychiatry, 58(10), 763769. doi:10.1016/j.biopsych.2005.09.012Google Scholar
Amodio, D. M., and Frith, C. D. (2006). Meeting of minds: the medial frontal cortex and social cognition. Nat. Rev. Neurosci., 7, 268277. doi:10.1038/nrn1884CrossRefGoogle ScholarPubMed
Amunts, K., Lenzen, M., Friederici, A. D., Schleicher, A., Morosan, P., Palomero-Gallagher, N., and Zilles, K. (2010). Broca’s region: novel organizational principles and multiple receptor mapping. PLoS Biol., 8(9). doi:10.1371/journal.pbio.1000489Google Scholar
Amunts, K., Weiss, P. H., Mohlberg, H., Pieperhoff, P., Eickhoff, S., Gurd, J. M.,… Zilles, K. (2004). Analysis of neural mechanisms underlying verbal fluency in cytoarchitectonically defined stereotaxic space – the roles of Brodmann areas 44 and 45. Neuroimage, 22(1), 4256. doi:10.1016/j.neuroimage.2003.12.031Google Scholar
Anand, A., Li, Y., Wang, Y., Lowe, M. J., and Dzemidzic, M. (2009). Resting state corticolimbic connectivity abnormalities in unmedicated bipolar disorder and unipolar depression. Psychiatry Resh., 171(3), 189198. doi:10.1016/j.pscychresns.2008.03.012Google Scholar
Anderson, M. C., Ochsner, K. N., Kuhl, B., Cooper, J., Robertson, E., Gabrieli, S. W.,… Gabrieli, J. D. (2004). Neural systems underlying the suppression of unwanted memories. Science, 303(5655), 232235. doi:10.1126/science.1089504Google Scholar
Andrews-Hanna, J. R., Reidler, J. S., Sepulcre, J., Poulin, R., and Buckner, R. L. (2010). Functional-anatomic fractionation of the brain’s default network. Neuron, 65(4), 550562. doi:10.1016/j.neuron.2010.02.005Google Scholar
Atmaca, M., Yildirim, H., Ozdemir, H., Tezcan, E., and Poyraz, A. K. (2007). Volumetric MRI study of key brain regions implicated in obsessive-compulsive disorder. Prog. Neuropsychopharmacol. Biol. Psychiatry, 31(1), 4652. doi:10.1016/j.pnpbp.2006.06.008Google Scholar
Badre, D., Poldrack, R. A., Pare-Blagoev, E. J., Insler, R. Z., and Wagner, A. D. (2005). Dissociable controlled retrieval and generalized selection mechanisms in ventrolateral prefrontal cortex. Neuron, 47(6), 907918. doi:10.1016/j.neuron.2005.07.023CrossRefGoogle ScholarPubMed
Baez, S., Manes, F., Huepe, D., Torralva, T., Fiorentino, N., Richter, F.,… Ibanez, A. (2014). Primary empathy deficits in frontotemporal dementia. Front. Aging Neurosci., 6, 262. doi:10.3389/fnagi.2014.00262Google Scholar
Bang, J., Spina, S., and Miller, B. L. (2015). Frontotemporal dementia. Lancet, 386(10004), 16721682. doi:10.1016/S0140-6736(15)00461–4CrossRefGoogle ScholarPubMed
Barbey, A. K., Koenigs, M., and Grafman, J. (2013). Dorsolateral prefrontal contributions to human working memory. Cortex, 49(5), 11951205. doi:10.1016/j.cortex.2012.05.022Google Scholar
Barch, D. M., and Ceaser, A. (2012). Cognition in schizophrenia: core psychological and neural mechanisms. Trends Cogn. Sci., 16(1), 2734. doi:10.1016/j.tics.2011.11.015CrossRefGoogle ScholarPubMed
Barendse, E. M., Hendriks, M. P., Jansen, J. F., Backes, W. H., Hofman, P. A., Thoonen, G.,… Aldenkamp, A. P. (2013). Working memory deficits in high-functioning adolescents with autism spectrum disorders: neuropsychological and neuroimaging correlates. J. Neurodev. Disord., 5(1), 14. doi:10.1186/1866–1955-5–14Google Scholar
Barsalou, L. W. (2013). Mirroring as pattern completion inferences within situated conceptualizations. Cortex, 49(10), 29512953. doi:10.1016/j.cortex.2013.06.010Google Scholar
Baugh, C. M., Robbins, C. A., Stern, R. A., and McKee, A. C. (2014). Current understanding of chronic traumatic encephalopathy. Curr. Treat. Options Neurol., 16(9), 306. doi:10.1007/s11940-014–0306-5CrossRefGoogle ScholarPubMed
Bechara, A., Damasio, H., and Damasio, A. R. (2000). Emotion, decision making and the orbitofrontal cortex. Cereb. Cortex, 10(3), 295307. doi:10.1093/cercor/10.3.295CrossRefGoogle ScholarPubMed
Benoit, R. G., Gilbert, S. J., Volle, E., and Burgess, P. W. (2010). When I think about me and simulate you: medial rostral prefrontal cortex and self-referential processes. Neuroimage, 50(3), 13401349. doi:10.1016/j.neuroimage.2009.12.091Google Scholar
Berthoz, S., Armony, J. L., Blair, R. J., and Dolan, R. J. (2002). An fMRI study of intentional and unintentional (embarrassing) violations of social norms. Brain, 125(Pt 8), 16961708. doi:10.1093/brain/awf190CrossRefGoogle ScholarPubMed
Bledowski, C., Kaiser, J., and Rahm, B. (2010). Basic operations in working memory: contributions from functional imaging studies. Behav. Brain Res., 214(2), 172179. doi:10.1016/j.bbr.2010.05.041CrossRefGoogle ScholarPubMed
Boes, A. D., McCormick, L. M., Coryell, W. H., and Nopoulos, P. (2008). Rostral anterior cingulate cortex volume correlates with depressed mood in normal healthy children. Biol. Psychiatry, 63(4), 391397. doi:10.1016/j.biopsych.2007.07.018CrossRefGoogle ScholarPubMed
Bonelli, R. M., and Cummings, J. L. (2007). Frontal-subcortical circuitry and behavior. Dialogues Clin. Neurosci., 9(2), 141151. Retrieved from www.ncbi.nlm.nih.gov/pubmed/17726913Google Scholar
Bonnelle, V., Leech, R., Kinnunen, K. M., Ham, T. E., Beckmann, C. F., De Boissezon, X.,… Sharp, D. J. (2011). Default mode network connectivity predicts sustained attention deficits after traumatic brain injury. J. Neurosci., 31(38), 1344213451. doi:10.1523/JNEUROSCI.1163–11.2011CrossRefGoogle ScholarPubMed
Boone, K. B., Miller, B. L., Rosenberg, L., Durazo, A., McIntyre, M., and Weil, M. (1988). Neuro psychological and behavioral abnormalities in an adolescent with frontal lobe seizure. Neurology, 38(4), 583586. doi.org/10.1212/WNL.38.4.583Google Scholar
Boone, K. B., Miller, B. L., Swartz, R., Lu, P., and Lee, A. (2003). Relationship between positive and negative symptoms and neuropsychological scores in frontotemporal dementia and Alzheimer’s disease. J. Int. Neuropsychol. Soc., 9(5), 698709. doi:10.1017/S135561770395003XCrossRefGoogle ScholarPubMed
Bora, E., Yucel, M., and Pantelis, C. (2009). Theory of mind impairment in schizophrenia: meta-analysis. Schizophr. Res., 109(1–3), 19. doi:10.1016/j.schres.2008.12.020Google Scholar
Bressler, S. L., and Menon, V. (2010). Large-scale brain networks in cognition: emerging methods and principles. Trends. Cogn. Sci., 14(6), 277290. doi:10.1016/j.tics.2010.04.004Google Scholar
Broce, I., Bernal, B., Altman, N., Tremblay, P., and Dick, A. S. (2015). Fiber tracking of the frontal aslant tract and subcomponents of the arcuate fasciculus in 5–8-year-olds: Relation to speech and language function. Brain Lang., 149, 6676. doi:10.1016/j.bandl.2015.06.006Google Scholar
Brooks, J. O., 3rd, Wang, P. W., Bonner, J. C., Rosen, A. C., Hoblyn, J. C., Hill, S. J., and Ketter, T. A. (2009). Decreased prefrontal, anterior cingulate, insula, and ventral striatal metabolism in medication-free depressed outpatients with bipolar disorder. J. Psychiatr. Res., 43(3), 181188. doi:10.1016/j.jpsychires.2008.04.015Google Scholar
Brugger, F., Galovic, M., Weder, B. J., and Kagi, G. (2015). Supplementary Motor Complex and Disturbed Motor Control – a Retrospective Clinical and Lesion Analysis of Patients after Anterior Cerebral Artery Stroke. Front. Neurol., 6, 209. doi:10.3389/fneur.2015.00209Google Scholar
Brunet-Gouet, E., and Decety, J. (2006). Social brain dysfunctions in schizophrenia: a review of neuroimaging studies. Psychiatry Res., 148(2–3), 7592. doi:10.1016/j.pscychresns.2006.05.001Google Scholar
Caggiano, V., Fogassi, L., Rizzolatti, G., Pomper, J. K., Thier, P., Giese, M. A., and Casile, A. (2011). View-based encoding of actions in mirror neurons of area f5 in macaque premotor cortex. Curr. Biol., 21(2), 144148. doi:10.1016/j.cub.2010.12.022Google Scholar
Caggiano, V., Pomper, J. K., Fleischer, F., Fogassi, L., Giese, M., and Thier, P. (2013). Mirror neurons in monkey area F5 do not adapt to the observation of repeated actions. Nat. Commun., 4, 1433. doi:10.1038/ncomms2419Google Scholar
Carrasco, J. L., Tajima-Pozo, K., Diaz-Marsa, M., Casado, A., Lopez-Ibor, J. J., Arrazola, J., and Yus, M. (2012). Microstructural white matter damage at orbitofrontal areas in borderline personality disorder. J. Affect. Disord., 139(2), 149153. doi:10.1016/j.jad.2011.12.019Google Scholar
Casanova, M. F., Buxhoeveden, D. P., Switala, A. E., and Roy, E. (2002). Minicolumnar pathology in autism. Neurology, 58(3), 428432. doi:10.1212/WNL.58.3.428Google Scholar
Caspers, S., Zilles, K., Laird, A. R., and Eickhoff, S. B. (2010). ALE meta-analysis of action observation and imitation in the human brain. Neuroimage, 50(3), 11481167. doi:10.1016/j.neuroimage.2009.12.112Google Scholar
Catani, M., Mesulam, M. M., Jakobsen, E., Malik, F., Martersteck, A., Wieneke, C.,… Rogalski, E. (2013). A novel frontal pathway underlies verbal fluency in primary progressive aphasia. Brain, 136(Pt 8), 26192628. doi:10.1093/brain/awt163Google Scholar
Chanes, L., Chica, A. B., Quentin, R., and Valero-Cabre, A. (2012). Manipulation of pre-target activity on the right frontal eye field enhances conscious visual perception in humans. PLoS One, 7(5), e36232. doi:10.1371/journal.pone.0036232CrossRefGoogle ScholarPubMed
Chang, C. C., Yu, S. C., McQuoid, D. R., Messer, D. F., Taylor, W. D., Singh, K.,… Payne, M. E. (2011). Reduction of dorsolateral prefrontal cortex gray matter in late-life depression. Psychiatry Res., 193(1), 16. doi:10.1016/j.pscychresns.2011.01.003CrossRefGoogle ScholarPubMed
Chen, Y. H., Stone-Howell, B., Edgar, J. C., Huang, M., Wootton, C., Hunter, M. A.,… Canive, J. M. (2015). Frontal slow-wave activity as a predictor of negative symptoms, cognition and functional capacity in schizophrenia. Br. J. Psychiatry, doi:10.1192/bjp.bp.114.156075Google Scholar
Clark, L., and Manes, F. (2004). Social and emotional decision-making following frontal lobe injury. Neurocase, 10(5), 398403. doi:10.1080/13554790490882799Google Scholar
Coricelli, G., Critchley, H. D., Joffily, M., O’Doherty, J. P., Sirigu, A., and Dolan, R. J. (2005). Regret and its avoidance: a neuroimaging study of choice behavior. Nat. Neurosci., 8(9), 12551262. doi:10.1038/nn1514Google Scholar
Coryell, W., Nopoulos, P., Drevets, W., Wilson, T., and Andreasen, N. C. (2005). Subgenual prefrontal cortex volumes in major depressive disorder and schizophrenia: diagnostic specificity and prognostic implications. Am. J. Psychiatry, 162(9), 17061712. doi:10.1176/appi.ajp.162.9.1706Google Scholar
Cross, K. A., and Iacoboni, M. (2014). Neural systems for preparatory control of imitation. Philos. Trans. R. Soc. Lond. B Biol. Sci., 369(1644), 20130176. doi:10.1098/rstb.2013.0176CrossRefGoogle ScholarPubMed
Croxson, P. L., Walton, M. E., O’Reilly, J. X., Behrens, T. E., and Rushworth, M. F. (2009). Effort-based cost-benefit valuation and the human brain. J. Neurosci., 29(14), 45314541. doi:10.1523/JNEUROSCI.4515–08.2009CrossRefGoogle ScholarPubMed
Cubillo, A., Halari, R., Smith, A., Taylor, E., and Rubia, K. (2012). A review of fronto-striatal and fronto-cortical brain abnormalities in children and adults with Attention Deficit Hyperactivity Disorder (ADHD) and new evidence for dysfunction in adults with ADHD during motivation and attention. Cortex, 48(2), 194215. doi:10.1016/j.cortex.2011.04.007CrossRefGoogle ScholarPubMed
Deiber, M. P., Ibanez, V., Caldara, R., Andrey, C., and Hauert, C. A. (2005). Programming effectors and coordination in bimanual in-phase mirror finger movements. Brain Res. Cogn. Brain Res., 23(2–3), 374386. doi:10.1016/j.cogbrainres.2004.11.009Google Scholar
Demirtas-Tatlidede, A., Bahar, S. Z., and Gurvit, H. (2013). Akinetic mutism without a structural prefrontal lesion. Cogn. Behav. Neurol., 26(2), 5962. doi:10.1097/WNN.0b013e31829bd4f5Google Scholar
Deutsch, M. B., Mendez, M. F., and Teng, E. (2015). Interactions between traumatic brain injury and frontotemporal degeneration. Dement. Geriatr. Cogn. Disord., 39 (3–4), 143153. doi:10.1159/000369787CrossRefGoogle ScholarPubMed
Drevets, W. C. (2003). Neuroimaging abnormalities in the amygdala in mood disorders. Ann. N. Y. Acad. Sci., 985, 420444. doi:10.1111/j.1749–6632.2003.tb07098.xCrossRefGoogle ScholarPubMed
Drevets, W. C., Bogers, W., and Raichle, M. E. (2002). Functional anatomical correlates of antidepressant drug treatment assessed using PET measures of regional glucose metabolism. Eur. Neuropsychopharmacol., 12(6), 527544. doi:10.1016/S0924-977X(02)00102–5Google Scholar
Drevets, W. C., Savitz, J., and Trimble, M. (2008). The subgenual anterior cingulate cortex in mood disorders. CNS Spectr., 13(8), 663681. doi:10.1016/j.jad.2013.10.025Google Scholar
Eftekhari, A., Zoeliner, L. A., and Virgil, S. A. (2009). Patterns of emotion regulation and psychopathology. Anx. Stress Coping, 22, 571586. doi:10.1080/10615800802179860Google Scholar
Elsabbagh, M., Mercure, E., Hudry, K., Chandler, S., Pasco, G., Charman, T.,… Team, B. (2012). Infant neural sensitivity to dynamic eye gaze is associated with later emerging autism. Curr. Biol., 22(4), 338342. doi:10.1016/j.cub.2011.12.056Google Scholar
Eslinger, P. J., and Damasio, A. R. (1985). Severe disturbance of higher cognition after bilateral frontal lobe ablation: patient EVR. Neurology, 35(12), 17311741. doi:10.1212/WNL.35.12.1731Google Scholar
Etkin, A., Egner, T., and Kalisch, R. (2011). Emotional processing in anterior cingulate and medial prefrontal cortex. Trends Cogn. Sci., 15(2), 8593. doi:10.1016/j.tics.2010.11.004Google Scholar
Fabbri-Destro, M., and Rizzolatti, G. (2008). Mirror neurons and mirror systems in monkeys and humans. Physiology (Bethesda), 23, 171179. doi:10.1152/physiol.00004.2008Google Scholar
Fales, C. L., Barch, D. M., Rundle, M. M., Mintun, M. A., Mathews, J., Snyder, A. Z., and Sheline, Y. I. (2009). Antidepressant treatment normalizes hypoactivity in dorsolateral prefrontal cortex during emotional interference processing in major depression. J. Affect. Disord., 112(1–3), 206211. doi:10.1016/j.jad.2008.04.027Google Scholar
Fan, Y. T., Decety, J., Yang, C. Y., Liu, J. L., and Cheng, Y. (2010). Unbroken mirror neurons in autism spectrum disorders. J. Child Psychol. Psychiatry, 51(9), 981988. doi:10.1111/j.1469–7610.2010.02269.xGoogle Scholar
Fellows, L. K. (2011). Orbitofrontal contributions to value-based decision making: evidence from humans with frontal lobe damage. Ann. N.Y. Acad. Sci., 1239, 5158. doi:10.1111/j.1749–6632.2011.06229.xCrossRefGoogle ScholarPubMed
Feredoes, E., Heinen, K., Weiskopf, N., Ruff, C., and Driver, J. (2011). Causal evidence for frontal involvement in memory target maintenance by posterior brain areas during distracter interference of visual working memory. Proc. Natl. Acad. Sci. U.S.A., 108(42), 1751017515. doi:10.1073/pnas.1106439108Google Scholar
Filevich, E., Kuhn, S., and Haggard, P. (2012). Intentional inhibition in human action: the power of ‘no’. Neurosci. Biobehav. Rev., 36(4), 11071118. doi:10.1016/j.neubiorev.2012.01.006Google Scholar
Fineberg, N. A., Potenza, M. N., Chamberlain, S. R., Berlin, H. A., Menzies, L., Bechara, A.,… Hollander, E. (2010). Probing compulsive and impulsive behaviors, from animal models to endophenotypes: a narrative review. Neuropsychopharmacology, 35(3), 591604. doi:10.1038/npp.2009.185CrossRefGoogle ScholarPubMed
Forbes, N. F., Carrick, L. A., McIntosh, A. M., and Lawrie, S. M. (2009). Working memory in schizophrenia: a meta-analysis. Psychol. Med., 39(6), 889905. doi:10.1017/S0033291708004558Google Scholar
Frank, M. J., Samanta, J., Moustafa, A. A., and Sherman, S. J. (2007). Hold your horses: impulsivity, deep brain stimulation, and medication in parkinsonism. Science, 318(5854), 13091312. doi:10.1126/science.1146157Google Scholar
Freyer, T., Kloppel, S., Tuscher, O., Kordon, A., Zurowski, B., Kuelz, A. K.,… Voderholzer, U. (2011). Frontostriatal activation in patients with obsessive-compulsive disorder before and after cognitive behavioral therapy. Psychol. Med., 41(1), 207216. doi:10.1017/S0033291710000309Google Scholar
Frith, C. D. (2007). The social brain? Philos. Trans. R. Soc. Lond. B Biol. Sci., 362(1480), 671678. doi:10.1098/rstb.2006.2003Google Scholar
Funahashi, S. (2014). Saccade-related activity in the prefrontal cortex: its role in eye movement control and cognitive functions. Front. Integr. Neurosci., 8, 54. doi:10.3389/fnint.2014.00054Google Scholar
Fuster, J. M. (2002). Frontal lobe and cognitive development. J. Neurocytol., 31(35), 373385. doi:10.1023/A:1024190429920Google Scholar
Gallese, V., Gernsbacher, M. A., Heyes, C., Hickok, G., and Iacoboni, M. (2011). Mirror neuron forum. Perspect. Psychol. Sci., 6(4), 369407. doi:10.1177/1745691611413392Google Scholar
Ghoshal, S., Gokhale, S., Rebovich, G., and Caplan, L. R. (2011). The neurology of decreased activity: abulia. Rev. Neurol. Dis., 8(3–4), e5567. doi:10.3909/rind0286Google ScholarPubMed
Giedd, J. N., Blumenthal, J., Jeffries, N. O., Castellanos, F. X., Liu, H., Zijdenbos, A.,… Rapoport, J. L. (1999). Brain development during childhood and adolescence: a longitudinal MRI study. Nat. Neurosci., 2(10), 861863. doi:10.1038/13158Google Scholar
Gilbert, C. D., and Li, W. (2013). Top-down influences on visual processing. Nat. Rev. Neurosci., 14(5), 350363. doi:10.1038/nrn3476Google Scholar
Glausier, J. R., and Lewis, D. A. (2013). Dendritic spine pathology in schizophrenia. Neuroscience, 251, 90107. doi:10.1016/j.neuroscience.2012.04.044CrossRefGoogle ScholarPubMed
Goghari, V. M., Macdonald, A. W., 3rd, and Sponheim, S. R. (2014). Relationship between prefrontal gray matter volumes and working memory performance in schizophrenia: a family study. Schizophr. Res., 153(1–3), 113121. doi:10.1016/j.schres.2014.01.032Google Scholar
Gradin, V. B., Waiter, G., O’Connor, A., Romaniuk, L., Stickle, C., Matthews, K.,… Douglas Steele, J. (2013). Salience network-midbrain dysconnectivity and blunted reward signals in schizophrenia. Psychiatry Res., 211(2), 104111. doi:10.1016/j.pscychresns.2012.06.003CrossRefGoogle ScholarPubMed
Grunwald, T., Boutros, N. N., Pezer, N., von Oertzen, J., Fernandez, G., Schaller, C., and Elger, C. E. (2003). Neuronal substrates of sensory gating within the human brain. Biol. Psychiatry, 53(6), 511519. doi:10.1016/S0006-3223(02)01673–6Google Scholar
Haber, S. N., and Knutson, B. (2010). The reward circuit: linking primate anatomy and human imaging. Neuropsychopharmacology, 35(1), 426. doi:10.1038/npp.2009.129Google Scholar
Hahn, C., Lim, H. K., Won, W. Y., Ahn, K. J., Jung, W. S., and Lee, C. U. (2013). Apathy and white matter integrity in Alzheimer’s disease: a whole brain analysis with tract-based spatial statistics. PLoS One, 8(1), e53493. doi:10.1371/journal.pone.0053493Google Scholar
Hardwick, R. M., Rottschy, C., Miall, R. C., and Eickhoff, S. B. (2013). A quantitative meta-analysis and review of motor learning in the human brain. Neuroimage, 67, 283297. doi:10.1016/j.neuroimage.2012.11.020Google Scholar
Harrison, B. J., Pujol, J., Cardoner, N., Deus, J., Alonso, P., Lopez-Sola, M.,… Soriano-Mas, C. (2013). Brain corticostriatal systems and the major clinical symptom dimensions of obsessive-compulsive disorder. Biol. Psychiatry, 73(4), 321328. doi:10.1016/j.biopsych.2012.10.006Google Scholar
Harrison, B. J., Yucel, M., Pujol, J., and Pantelis, C. (2007). Task-induced deactivation of midline cortical regions in schizophrenia assessed with fMRI. Schizophr. Res., 91(1–3), 8286. doi:10.1016/j.schres.2006.12.027Google Scholar
Heyes, C. (2013). A new approach to mirror neurons: developmental history, system-level theory and intervention experiments. Cortex, 49(10), 29462948. doi:10.1016/j.cortex.2013.07.002CrossRefGoogle ScholarPubMed
Hoekert, M., Kahn, R. S., Pijnenborg, M., and Aleman, A. (2007). Impaired recognition and expression of emotional prosody in schizophrenia: review and meta-analysis. Schizophr. Res., 96(1–3), 135145. doi:10.1016/j.schres.2007.07.023Google Scholar
Hoffstaedter, F., Grefkes, C., Zilles, K., and Eickhoff, S. B. (2013). The “what” and “when” of self-initiated movements. Cereb. Cortex, 23(3), 520530. doi:10.1093/cercor/bhr391Google Scholar
Hornberger, M., Geng, J., and Hodges, J. R. (2011). Convergent grey and white matter evidence of orbitofrontal cortex changes related to disinhibition in behavioural variant frontotemporal dementia. Brain, 134(Pt 9), 25022512. doi:10.1093/brain/awr173Google Scholar
Howes, O. D., Kambeitz, J., Kim, E., Stahl, D., Slifstein, M., Abi-Dargham, A., and Kapur, S. (2012). The nature of dopamine dysfunction in schizophrenia and what this means for treatment. Arch. Gen. Psychiatry, 69(8), 776786. doi:10.1001/archgenpsychiatry.2012.169CrossRefGoogle ScholarPubMed
Hulvershorn, L. A., Cullen, K., and Anand, A. (2011). Toward dysfunctional connectivity: a review of neuroimaging findings in pediatric major depressive disorder. Brain Imaging Behav., 5(4), 307328. doi:10.1007/s11682-011–9134-3CrossRefGoogle ScholarPubMed
Iacoboni, M., and Mazziotta, J. C. (2007). Mirror neuron system: basic findings and clinical applications. Ann. Neurol., 62(3), 213218. doi:10.1002/ana.21198Google Scholar
Ibanez, A., and Manes, F. (2012). Contextual social cognition and the behavioral variant of frontotemporal dementia. Neurology, 78(17), 13541362. doi:10.1212/WNL.0b013e3182518375Google Scholar
Johnston, K., and Everling, S. (2008). Neurophysiology and neuroanatomy of reflexive and voluntary saccades in non-human primates. Brain Cogn., 68(3), 271283. doi:10.1016/j.bandc.2008.08.017Google Scholar
Joshi, A., Barsuglia, J. P., Mather, M. J., Jimenez, E. E., Shapira, J., and Mendez, M. F. (2014). Evaluation of emotional blunting in behavioral variant frontotemporal dementia compared to Alzheimer’s disease. Dement. Geriatr. Cogn. Disord., 38(1–2), 7988. doi:10.1159/000357838Google Scholar
Kaneda, K., Phongphanphanee, P., Katoh, T., Isa, K., Yanagawa, Y., Obata, K., and Isa, T. (2008). Regulation of burst activity through presynaptic and postsynaptic GABA(B) receptors in mouse superior colliculus. J. Neurosci., 28(4), 816827. doi:10.1523/JNEUROSCI.4666–07.2008Google Scholar
Kegeles, L. S., Abi-Dargham, A., Frankle, W. G., Gil, R., Cooper, T. B., Slifstein, M.,… Laruelle, M. (2010). Increased synaptic dopamine function in associative regions of the striatum in schizophrenia. Arch. Gen. Psychiatry, 67(3), 231239. doi:10.1001/archgenpsychiatry.2010.10Google Scholar
Kelley, R. E., and El-Khoruy, R. (2016). Frontotemporal dementia. Neurol. Clinics, 34(1), 171181. doi:10.1016/j.ncl.2015.08.007Google Scholar
Kim, J. H., Lee, J. M., Jo, H. J., Kim, S. H., Lee, J. H., Kim, S. T.,… Saad, Z. S. (2010). Defining functional SMA and pre-SMA subregions in human MFC using resting state fMRI: functional connectivity-based parcellation method. Neuroimage, 49(3), 23752386. doi:10.1016/j.neuroimage.2009.10.016Google Scholar
Kim, Y. K., and Shin, S. H. (2014). Comparison of effects of transcranial magnetic stimulation on primary motor cortex and supplementary motor area in motor skill learning (randomized, cross over study). Front. Hum. Neurosci., 8, 937. doi:10.3389/fnhum.2014.00937Google Scholar
Koenigs, M., and Grafman, J. (2009a). The functional neuroanatomy of depression: distinct roles for ventromedial and dorsolateral prefrontal cortex. Behav. Brain Res., 201(2), 239243. doi:10.1016/j.bbr.2009.03.004Google Scholar
Koenigs, M., and Grafman, J. (2009b). Posttraumatic stress disorder: the role of medial prefrontal cortex and amygdala. Neuroscientist, 15(5), 540548. doi:10.1177/1073858409333072Google Scholar
Kohler, C. G., Walker, J. B., Martin, E. A., Healey, K. M., and Moberg, P. J. (2010). Facial emotion perception in schizophrenia: a meta-analytic review. Schizophr. Bull., 36(5), 10091019. doi:10.1093/schbul/sbn192Google Scholar
Konopaske, G. T., Lange, N., Coyle, J. T., and Benes, F. M. (2014). Prefrontal cortical dendritic spine pathology in schizophrenia and bipolar disorder. J.A.M.A. psychiatry, 71(12), 13231331. doi:10.1001/jamapsychiatry.2014.1582Google Scholar
Krainik, A., Lehericy, S., Duffau, H., Vlaicu, M., Poupon, F., Capelle, L.,… Marsault, C. (2001). Role of the supplementary motor area in motor deficit following medial frontal lobe surgery. Neurology, 57(5), 871878. doi:10.1212/WNL.57.5.871Google Scholar
Kurniawan, I. T., Guitart-Masip, M., Dayan, P., and Dolan, R. J. (2013). Effort and valuation in the brain: the effects of anticipation and execution. J. Neurosci., 33(14), 61606169. doi:10.1523/JNEUROSCI.4777–12.2013Google Scholar
Lagarde, J., Valabregue, R., Corvol, J. C., Le Ber, I., Colliot, O., Vidailhet, M., and Levy, R. (2013). The clinical and anatomical heterogeneity of environmental dependency phenomena. J. Neurol., 260(9), 22622270. doi:10.1007/s00415-013–6976-1Google Scholar
Lanius, R. A., Bluhm, R. L., Coupland, N. J., Hegadoren, K. M., Rowe, B., Theberge, J.,… Brimson, M. (2010). Default mode network connectivity as a predictor of post-traumatic stress disorder symptom severity in acutely traumatized subjects. Acta. Psychiatr. Scand., 121(1), 3340. doi:10.1111/j.1600–0447.2009.01391.xGoogle Scholar
Lanius, R. A., Williamson, P. C., Densmore, M., Boksman, K., Gupta, M. A., Neufeld, R. W.,… Menon, R. S. (2001). Neural correlates of traumatic memories in posttraumatic stress disorder: a functional MRI investigation. Am. J. Psychiatry, 158(11), 19201922. doi:10.1176/appi.ajp.158.11.1920Google Scholar
Lau, H. C., Rogers, R. D., Haggard, P., and Passingham, R. E. (2004). Attention to intention. Science, 303(5661), 12081210. doi:10.1126/science.1090973Google Scholar
Leopold, A., Krueger, F., dal Monte, O., Pardini, M., Pulaski, S. J., Solomon, J., and Grafman, J. (2012). Damage to the left ventromedial prefrontal cortex impacts affective theory of mind. Soc. Cogn. Affect. Neurosci., 7(8), 871880. doi:10.1093/scan/nsr071Google Scholar
Leslie, K. R., Johnson-Frey, S. H., and Grafton, S. T. (2004). Functional imaging of face and hand imitation: towards a motor theory of empathy. Neuroimage, 21(2), 601607. doi:10.1016/j.neuroimage.2003.09.038Google Scholar
Levy, B. J., and Wagner, A. D. (2011). Cognitive control and right ventrolateral prefrontal cortex: reflexive reorienting, motor inhibition, and action updating. Ann. N.Y. Acad. Sci., 1224, 4062. doi:10.1111/j.1749–6632.2011.05958.xGoogle Scholar
Levy, R., and Dubois, B. (2006). Apathy and the functional anatomy of the prefrontal cortex-basal ganglia circuits. Cereb. Cortex, 16(7), 916928. doi:10.1093/cercor/bhj043Google Scholar
Liberzon, I., and Sripada, C. S. (2008). The functional neuroanatomy of PTSD: a critical review. Prog. Brain. Res., 167, 151169. doi:10.1016/S0079-6123(07)67011–3Google Scholar
Mano, Q. R., and Brown, G. G. (2013). Cognition-emotion interactions in schizophrenia: emerging evidence on working memory load and implicit facial-affective processing. Cogn. Emot., 27(5), 875899. doi:10.1080/02699931.2012.751360Google Scholar
Manoliu, A., Riedl, V., Doll, A., Bauml, J. G., Muhlau, M., Schwerthoffer, D.,… Sorg, C. (2013). Insular Dysfunction Reflects Altered Between-Network Connectivity and Severity of Negative Symptoms in Schizophrenia during Psychotic Remission. Front. Hum. Neurosci., 7, 216. doi:10.3389/fnhum.2013.00216Google Scholar
Martineau, J., Andersson, F., Barthélémy, C., Cottier, J.-P., and Destrieux, C. (2010). Atypical activation of the mirror neuron system during perception of hand motion in autism. Brain Res., 1320, 168175. doi:10.1016/j.brainres.2010.01.035Google Scholar
Massimo, L., Powers, C., Moore, P., Vesely, L., Avants, B., Gee, J.,… Grossman, M. (2009). Neuroanatomy of apathy and disinhibition in frontotemporal lobar degeneration. Dement. Geriatr. Cogn. Disord., 27(1), 96104. doi:10.1159/000194658Google Scholar
McAlonan, G. M., Cheung, V., Cheung, C., Suckling, J., Lam, G. Y., Tai, K. S.,… Chua, S. E. (2005). Mapping the brain in autism. A voxel-based MRI study of volumetric differences and intercorrelations in autism. Brain, 128(Pt 2), 268276. doi:10.1093/brain/awh332Google Scholar
McKee, A. C., Stern, R. A., Nowinski, C. J., Stein, T. D., Alvarez, V. E., Daneshvar, D. H.,… Cantu, R. C. (2013). The spectrum of disease in chronic traumatic encephalopathy. Brain, 136(Pt 1), 4364. doi:10.1093/brain/aws307Google Scholar
Medendorp, W. P., Beurze, S. M., Van Pelt, S., and Van Der Werf, J. (2008). Behavioral and cortical mechanisms for spatial coding and action planning. Cortex, 44(5), 587597. doi:10.1016/j.cortex.2007.06.001Google Scholar
Mendez, M. F. (2004). Aphemia-like syndrome from a right supplementary motor area lesion. Clin. Neurol. Neurosurg., 106(4), 337339. Retrieved from: www.ncbi.nlm.nih.gov/pubmed/15297011Google Scholar
Mendez, M. F., Bagert, B. A., and Edwards-lee, T. (1997). Self-injurious behavior in frontotemporal dementia. Neurocase, 3(4), 231236. doi.org/10.1080/13554799708405006Google Scholar
Mendez, M. F., McMurtray, A., Licht, E., Shapira, J. S., Saul, R. E., and Miller, B. L. (2006). The scale for emotional blunting in patients with frontotemporal dementia. Neurocase, 12(4), 242246. doi:10.1080/13554790600910375Google Scholar
Mendez, M. F., Paholpak, P., Lin, A., Zhang, J. Y., and Teng, E. (2015). Prevalence of Traumatic Brain Injury in Early Versus Late-Onset Alzheimer’s Disease. J. Alzheimers Dis., 47(4), 985993. doi:10.3233/JAD-143207Google Scholar
Mendez, M. F., and Zander, B. (1992). Reversible frontal lobe dysfunction from meningeal sarcoidoisis. Psychosomatics, 33, 215217. doi:10.1016/S0033-3182(92)71998-7CrossRefGoogle Scholar
Menon, V. (2011). Large-scale brain networks and psychopathology: a unifying triple network model. Trends Cogn. Sci., 15(10), 483506. doi:10.1016/j.tics.2011.08.003Google Scholar
Menzies, L., Chamberlain, S. R., Laird, A. R., Thelen, S. M., Sahakian, B. J., and Bullmore, E. T. (2008). Integrating evidence from neuroimaging and neuropsychological studies of obsessive-compulsive disorder: the orbitofronto-striatal model revisited. Neurosci. Biobehav. Rev., 32(3), 525549. doi:10.1016/j.neubiorev.2007.09.005Google Scholar
Mesholam-Gately, R. I., Giuliano, A. J., Goff, K. P., Faraone, S. V., and Seidman, L. J. (2009). Neurocognition in first-episode schizophrenia: a meta-analytic review. Neuropsychology, 23(3), 315336. doi:10.1037/a0014708Google Scholar
Miller, B. L., Cummings, J. L., McIntyre, H., Ebers, G., and Grode, M. (1986). Hypersexuality or altered sexual preference following brain injury. J. Neurol. Neurosurg. Psychiatry 49, 867873. Retrieved from: www.ncbi.nlm.nih.gov/pmc/articles/PMC1028946Google Scholar
Miller, E. K. (2000). The prefrontal cortex and cognitive control. Nat. Rev. Neurosci., 1(1), 5965. doi:10.1038/35036228CrossRefGoogle ScholarPubMed
Mitchell, J. P., Macrae, C. N., and Banaji, M. R. (2006). Dissociable medial prefrontal contributions to judgments of similar and dissimilar others. Neuron, 50(4), 655663. doi:10.1016/j.neuron.2006.03.040Google Scholar
Molenberghs, P., Cunnington, R., and Mattingley, J. B. (2012). Brain regions with mirror properties: a meta-analysis of 125 human fMRI studies. Neurosci. Biobehav. Rev., 36(1), 341349. doi:10.1016/j.neubiorev.2011.07.004Google Scholar
Monk, C. S., Nelson, E. E., McClure, E. B., Mogg, K., Bradley, B. P., Leibenluft, E.,… Pine, D. S. (2006). Ventrolateral prefrontal cortex activation and attentional bias in response to angry faces in adolescents with generalized anxiety disorder. Am. J. Psychiatry, 163(6), 10911097. doi:10.1176/ajp.2006.163.6.1091Google Scholar
Moran, J. M., Young, L. L., Saxe, R., Lee, S. M., O’Young, D., Mavros, P. L., and Gabrieli, J. D. (2011). Impaired theory of mind for moral judgment in high-functioning autism. Proc. Natl. Acad. Sci. U.S.A., 108(7), 26882692. doi:10.1073/pnas.1011734108Google Scholar
Motzkin, J. C., Newman, J. P., Kiehl, K. A., and Koenigs, M. (2011). Reduced prefrontal connectivity in psychopathy. J. Neurosci., 31(48), 1734817357. doi:10.1523/JNEUROSCI.4215–11.2011Google Scholar
Nachev, P. (2006). Cognition and medial frontal cortex in health and disease. Curr. Opin. Neurol., 19(6), 586592. doi:10.1097/01.wco.0000247609.36482.aeGoogle Scholar
Nachev, P., Kennard, C., and Husain, M. (2008). Functional role of the supplementary and pre-supplementary motor areas. Nat. Rev. Neurosci., 9(11), 856869. doi:10.1038/nrn2478Google Scholar
Oblak, A. L., Rosene, D. L., Kemper, T. L., Bauman, M. L., and Blatt, G. J. (2011). Altered posterior cingulate cortical cyctoarchitecture, but normal density of neurons and interneurons in the posterior cingulate cortex and fusiform gyrus in autism. Autism Res., 4(3), 200211. doi:10.1002/aur.188Google Scholar
Ochsner, K. N., Beer, J. S., Robertson, E. R., Cooper, J. C., Gabrieli, J. D., Kihsltrom, J. F., and D’Esposito, M. (2005). The neural correlates of direct and reflected self-knowledge. Neuroimage, 28(4), 797814. doi:10.1016/j.neuroimage.2005.06.069CrossRefGoogle ScholarPubMed
Oertel-knöchel, V., Knöchel, C., Rotarska-Jagiela, A., Reinke, B., Prvulovic, D., Haenschel, C.,… Linden, D. E. (2013). Association between psychotic symptoms and cortical thickness reduction across the schizophrenia spectrum. Cereb. Cortex, 23(1), 6170. doi:10.1093/cercor/bhr380Google Scholar
Ohtani, T., Bouix, S., Hosokawa, T., Saito, Y., Eckbo, R., Ballinger, T.,… Kubicki, M. (2014). Abnormalities in white matter connections between orbitofrontal cortex and anterior cingulate cortex and their associations with negative symptoms in schizophrenia: a DTI study. Schizophr. Res., 157(1–3), 190197. doi:10.1016/j.schres.2014.05.016Google Scholar
Olson, I. R., Von Der Heide, R. J., Alm, K. H., and Vyas, G. (2015). Development of the uncinate fasciculus: Implications for theory and developmental disorders. Dev. Cogn. Neurosci., 14, 5061. doi:10.1016/j.dcn.2015.06.003Google Scholar
Orellana, G., Alvarado, L., Muñoz-Neira, C., Ávila, R., Mendez, M. F. and Slachevsky, A. (2013). Psychosis-related matricide associated with a lesion of the ventromedial prefrontal cortex. J Am. Acad. Psychiatry Law., 41(3), 401406. Retrieved from http://jaapl.org/content/41/3/401.longGoogle Scholar
Palaniyappan, L., White, T. P., and Liddle, P. F. (2012). The concept of salience network dysfunction in schizophrenia: from neuroimaging observations to therapeutic opportunities. Curr. Top. Med. Chem., 12(21), 23242338. doi:10.2174/1568026611212210005Google Scholar
Parsons, L. M., Sergent, J., Hodges, D. A., and Fox, P. T. (2005). The brain basis of piano performance. Neuropsychologia, 43(2), 199215. doi:10.1016/j.neuropsychologia.2004.11.007Google Scholar
Parton, A., Nachev, P., Hodgson, T. L., Mort, D., Thomas, D., Ordidge, R.,… Husain, M. (2007). Role of the human supplementary eye field in the control of saccadic eye movements. Neuropsychologia, 45(5), 9971008. doi:10.1016/j.neuropsychologia.2006.09.007Google Scholar
Parvizi, J. (2012). Disinhibition: more than a misnomer. Soc. Neurosci., 7(3), 311316. doi:10.1080/17470919.2011.614004Google Scholar
Peters, F., Perani, D., Herholz, K., Holthoff, V., Beuthien-Baumann, B., Sorbi, S.,… Salmon, E. (2006). Orbitofrontal dysfunction related to both apathy and disinhibition in frontotemporal dementia. Dement. Geriatr. Cogn. Disord., 21(5–6), 373379. doi:10.1159/000091898Google Scholar
Pezzulo, G. (2013). Studying mirror mechanisms within generative and predictive architectures for joint action. Cortex, 49(10), 29682969. doi:10.1016/j.cortex.2013.06.008Google Scholar
Powers, K. E., Wagner, D. D., Norris, C. J., and Heatherton, T. F. (2013). Socially excluded individuals fail to recruit medial prefrontal cortex for negative social scenes. Soc. Cogn. Affect. Neurosci., 8(2), 151157. doi:10.1093/scan/nsr079Google Scholar
Price, C. J. (2012). A review and synthesis of the first 20 years of PET and fMRI studies of heard speech, spoken language and reading. Neuroimage, 62(2), 816847. doi:10.1016/j.neuroimage.2012.04.062Google Scholar
Price, J. L. (2007). Definition of the orbital cortex in relation to specific connections with limbic and visceral structures and other cortical regions. Ann. N.Y. Acad. Sci., 1121, 5471. doi:10.1196/annals.1401.008Google Scholar
Price, J. L., and Drevets, W. C. (2012). Neural circuits underlying the pathophysiology of mood disorders. Trends Cogn. Sci., 16(1), 6171. doi:10.1016/j.tics.2011.12.011Google Scholar
Price, J. L., Howard, D., Patterson, K., Warburton, E. A., Friston, K., Frackowiak, R. S. J. (1998). A functional neuroimaging description of two deep dyslexic patients. J. Cogn. Neurosci., 10(3), 305315. Retrieved from: https://www.ncbi.nlm.nih.gov/pubmed/9869706Google Scholar
Raczka, K. A., Becker, G., Seese, A., Frisch, S., Heiner, S., Marschhauser, A.,… Schroeter, M. L. (2010). Executive and behavioral deficits share common neural substrates in frontotemporal lobar degeneration – a pilot FDG-PET study. Psychiatry Res., 182(3), 274280. doi:10.1016/j.pscychresns.2010.02.009Google Scholar
Radant, A. D., Millard, S. P., Braff, D. L., Calkins, M. E., Dobie, D. J., Freedman, R.,… Tsuang, D. W. (2015). Robust differences in antisaccade performance exist between COGS schizophrenia cases and controls regardless of recruitment strategies. Schizophr. Res., 163(1–3), 4752. doi:10.1016/j.schres.2014.12.016Google Scholar
Raichle, M. E. (2015). The brain’s default mode network. Ann. Rev. Neurosci., 38, 433447.Google Scholar
Rascovsky, K., Hodges, J. R., Knopman, D., Mendez, M. F., Kramer, J. H., Neuhaus, J.,… Miller, B. L. (2011). Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain, 134(Pt 9), 24562477. doi:10.1093/brain/awr179Google Scholar
Rizzolatti, G., Cattaneo, L., Fabbri-Destro, M., and Rozzi, S. (2014). Cortical mechanisms underlying the organization of goal-directed actions and mirror neuron-based action understanding. Physiol Rev, 94(2), 655706. doi:10.1152/physrev.00009.2013Google Scholar
Rizzolatti, G., and Craighero, L. (2004). The mirror-neuron system. Ann. Rev. Neurosci., 27, 169192. doi:10.1146/annurev.neuro.27.070203.144230Google Scholar
Rizzolatti, G., Fadiga, L., Gallese, V., and Fogassi, L. (1996). Premotor cortex and the recognition of motor actions. Brain Res. Cogn. Brain Res., 3(2), 131141. doi:10.1016/0926–6410(95)00038–0Google Scholar
Rizzolatti, G., and Fogassi, L. (2014). The mirror mechanism: recent findings and perspectives. Philos. Trans. R. Soc. Lond. B Biol. Sci., 369(1644), 20130420. doi:10.1098/rstb.2013.0420Google Scholar
Rochat, M. J., Caruana, F., Jezzini, A., Escola, L., Intskirveli, I., Grammont, F.,… Umilta, M. A. (2010). Responses of mirror neurons in area F5 to hand and tool grasping observation. Exp. Brain Res., 204(4), 605616. doi:10.1007/s00221-010–2329-9Google Scholar
Rolls, E. T., and Grabenhorst, F. (2008). The orbitofrontal cortex and beyond: from affect to decision-making. Prog. Neurobiol., 86(3), 216244. doi:10.1016/j.pneurobio.2008.09.001Google Scholar
Rosano, C., Sweeney, J. A., Melchitzky, D. S., and Lewis, D. A. (2003 ). The human precentral sulcus: chemoarchitecture of a region corresponding to the frontal eye fields. Brain Res., 972(1–2), 1630. doi:10.1016/S0006-8993(03)02431–4Google Scholar
Rosen, H. J., Allison, S. C., Schauer, G. F., Gorno-Tempini, M. L., Weiner, M. W., and Miller, B. L. (2005). Neuroanatomical correlates of behavioural disorders in dementia. Brain, 128(Pt 11), 26122625. doi:10.1093/brain/awh628Google Scholar
Rosen, H. J., Pace-Savitsky, K., Perry, R. J., Kramer, J. H., Miller, B. L., and Levenson, R. W. (2004). Recognition of emotion in the frontal and temporal variants of frontotemporal dementia. Dement. Geriatr. Cogn. Disord., 17(4), 277281. doi:10.1159/000077154Google Scholar
Rotge, J.-Y., Langbour, N., Guehl, D., Bioulac, B., Jaafari, N., Allard, M.,… Burbaud, P. (2010). Gray matter alterations in obsessive-compulsive disorder: an anatomic likelihood estimation meta-analysis. Neuropsychopharmacology, 35(3), 686691. doi:10.1038/npp.2009.175Google Scholar
Roy, M., Shohamy, D., and Wager, T. D. (2012). Ventromedial prefrontal-subcortical systems and the generation of affective meaning. Trends Cogn. Sci., 16(3), 147156. doi:10.1016/j.tics.2012.01.005Google Scholar
Rubia, K. (2011). “Cool” inferior frontostriatal dysfunction in attention-deficit/hyperactivity disorder versus “hot” ventromedial orbitofrontal-limbic dysfunction in conduct disorder: a review. Biol. Psychiatry, 69(12), e6987. doi:10.1016/j.biopsych.2010.09.023Google Scholar
Rudebeck, P. H., Mitz, A. R., Chacko, R. V., and Murray, E. A. (2013). Effects of amygdala lesions on reward-value coding in orbital and medial prefrontal cortex. Neuron, 80(6), 15191531. doi:10.1016/j.neuron.2013.09.036Google Scholar
Ruocco, A. C., Amirthavasagam, S., and Zakzanis, K. K. (2012). Amygdala and hippocampal volume reductions as candidate endophenotypes for borderline personality disorder: a meta-analysis of magnetic resonance imaging studies. Psychiatry Res., 201(3), 245252. doi:10.1016/j.pscychresns.2012.02.012Google Scholar
Rusch, N., van Elst, L. T., Ludaescher, P., Wilke, M., Huppertz, H. J., Thiel, T.,… Ebert, D. (2003). A voxel-based morphometric MRI study in female patients with borderline personality disorder. Neuroimage, 20(1), 385392. doi:10.1371/journal.pone.0147938Google Scholar
Rushworth, M. F., Noonan, M. P., Boorman, E. D., Walton, M. E., and Behrens, T. E. (2011). Frontal cortex and reward-guided learning and decision-making. Neuron, 70(6), 10541069. doi:10.1016/j.neuron.2011.05.014Google Scholar
Sacher, J., Neumann, J., Funfstuck, T., Soliman, A., Villringer, A., and Schroeter, M. L. (2012). Mapping the depressed brain: a meta-analysis of structural and functional alterations in major depressive disorder. J. Affect. Disord., 140(2), 142148. doi:10.1016/j.jad.2011.08.001Google Scholar
Sahyoun, C., Floyer-Lea, A., Johansen-Berg, H., and Matthews, P. M. (2004). Towards an understanding of gait control: brain activation during the anticipation, preparation and execution of foot movements. Neuroimage, 21(2), 568575. doi:10.1016/j.neuroimage.2003.09.065Google Scholar
Saleem, K. S., Kondo, H., and Price, J. L. (2008). Complementary circuits connecting the orbital and medial prefrontal networks with the temporal, insular, and opercular cortex in the macaque monkey. J. Comp. Neurol., 506(4), 659693. doi:10.1002/cne.21577Google Scholar
Schall, J. D., and Boucher, L. (2007). Executive control of gaze by the frontal lobes. Cogn. Affect. Behav. Neurosci., 7(4), 396412. doi:10.3758/CABN.7.4.396Google Scholar
Seeley, W. W., Bauer, A. M., Miller, B. L., Gorno-Tempini, M. L., Kramer, J. H., Weiner, M., and Rosen, H. J. (2005). The natural history of temporal variant frontotemporal dementia. Neurology, 64(8), 13841390. doi:10.1212/01.WNL.0000158425.46019.5CGoogle Scholar
Seeley, W. W., Menon, V., Schatzberg, A. F., Keller, J., Glover, G. H., Kenna, H.,… Greicius, M. D. (2007). Dissociable intrinsic connectivity networks for salience processing and executive control. J. Neurosci., 27(9), 23492356. doi:10.1523/JNEUROSCI.5587–06.2007Google Scholar
Selemon, L. D., Rajkowska, G., and Goldman-Rakic, P. S. (1995 ). Abnormally high neuronal density in the schizophrenic cortex. A morphometric analysis of prefrontal area 9 and occipital area 17. Arch. Gen. Psychiatry, 52, 805818. Retrieved from: www.ncbi.nlm.nih.gov/pubmed/7575100Google Scholar
Senkowski, D., and Gallinat, J. (2015). Dysfunctional prefrontal gamma-band oscillations reflect working memory and other cognitive deficits in schizophrenia. Biol. Psychiatry, 77(12), 10101019. doi:10.1016/j.biopsych.2015.02.034Google Scholar
Sescousse, G., Redoute, J., and Dreher, J. C. (2010). The architecture of reward value coding in the human orbitofrontal cortex. J. Neurosci., 30(39), 1309513104. doi:10.1523/JNEUROSCI.3501–10.2010Google Scholar
Shamay-Tsoory, S. G., Aharon-Peretz, J., and Perry, D. (2009). Two systems for empathy: a double dissociation between emotional and cognitive empathy in inferior frontal gyrus versus ventromedial prefrontal lesions. Brain, 132(Pt 3), 617627. doi:10.1093/brain/awn279Google Scholar
Shamay-Tsoory, S. G., Harari, H., Aharon-Peretz, J., and Levkovitz, Y. (2010). The role of the orbitofrontal cortex in affective theory of mind deficits in criminal offenders with psychopathic tendencies. Cortex, 46(5), 668677. doi:10.1016/j.cortex.2009.04.008Google Scholar
Sharp, D. J., Beckmann, C. F., Greenwood, R., Kinnunen, K. M., Bonnelle, V., De Boissezon, X.,… Leech, R. (2011). Default mode network functional and structural connectivity after traumatic brain injury. Brain, 134(Pt 8), 22332247. doi:10.1093/brain/awr175Google Scholar
Shepherd, A. M., Laurens, K. R., Matheson, S. L., Carr, V. J., and Green, M. J. (2012). Systematic meta-review and quality assessment of the structural brain alterations in schizophrenia. Neurosci. Biobehav. Rev., 36(4), 13421356. doi:10.1016/j.neubiorev.2011.12.015Google Scholar
Sleegers, K., Cruts, M., Van Broeckhoven, C. (2010). Molecular pathways of frontotemporal lobar degeneration. Ann. Rev. Neurosci., 33(1): 7188. doi:10.1146/annurev-neuro-060909–153144Google Scholar
Snyder, J., Miller, C. L., and Gray, G. (2011). Relative versus absolute standards for everyday risk in adolescent HIV prevention trials: expanding the debate. Am. J. Bioethics: AJOB, 11(6), 513. doi:10.1080/15265161.2011.568576Google Scholar
Sosnik, R., Flash, T., Sterkin, A., Hauptmann, B., and Karni, A. (2014). The activity in the contralateral primary motor cortex, dorsal premotor and supplementary motor area is modulated by performance gains. Front. Hum. Neurosci., 8, 201. doi:10.3389/fnhum.2014.00201Google Scholar
Sowell, E. R., Thompson, P. M., Tessner, K. D., and Toga, A. W. (2001). Mapping continued brain growth and gray matter density reduction in dorsal frontal cortex: Inverse relationships during postadolescent brain maturation. J. Neurosci., 21(22), 88198829. Retrieved from www.ncbi.nlm.nih.gov/pubmed/11698594Google Scholar
Spalletta, G., Fagioli, S., Caltagirone, C., and Piras, F. (2013). Brain microstructure of subclinical apathy phenomenology in healthy individuals. Hum. Brain Mapp., 34(12), 31933203. doi:10.1002/hbm.22137Google Scholar
Stalnaker, T. A., Cooch, N. K., and Schoenbaum, G. (2015). What the orbitofrontal cortex does not do. Nat. Neurosci., 18(5), 620627. doi:10.1038/nn.3982Google Scholar
Starkstein, S. E., Garau, M. L., and Cao, A. (2004). Prevalence and clinical correlates of disinhibition in dementia. Cogn. Behav. Neurol., 17(3), 139147. Retrieved from www.ncbi.nlm.nih.gov/pubmed/15536301CrossRefGoogle ScholarPubMed
Stein, T. D., Alvarez, V. E., and McKee, A. C. (2014). Chronic traumatic encephalopathy: a spectrum of neuropathological changes following repetitive brain trauma in athletes and military personnel. Alzheimers Res. Ther., 6(1), 4. doi:10.1186/alzrt234Google Scholar
Stevens, F. L., Hurley, R. A., and Taber, K. H. (2011). Anterior cingulate cortex: unique role in cognition and emotion. J. Neuropsychiatry Clin. Neurosci., 23(2), 120125. doi:10.1176/appi.neuropsych.23.2.121Google Scholar
Stoppel, C. M., Boehler, C. N., Strumpf, H., Heinze, H. J., Hopf, J. M., and Schoenfeld, M. A. (2011). Neural processing of reward magnitude under varying attentional demands. Brain Res., 1383, 218229. doi:10.1016/j.brainres.2011.01.095Google Scholar
Stuss, D. T. (2011). Functions of the frontal lobes: relation to executive functions. J. Int. Neuropsychol. Soc., 17(5), 759765. doi:10.1017/S1355617711000695Google Scholar
Swann, N. C., Cai, W., Conner, C. R., Pieters, T. A., Claffey, M. P., George, J. S.,… Tandon, N. (2012). Roles for the pre-supplementary motor area and the right inferior frontal gyrus in stopping action: electrophysiological responses and functional and structural connectivity. Neuroimage, 59(3), 28602870. doi:10.1016/j.neuroimage.2011.09.049Google Scholar
Szczepanski, C., Tenstad, O., Baumann, A., Martinez, A., Myklebust, R., Bjerkvig, R., and Prestegarden, L. (2014). Identification of a novel lytic peptide for the treatment of solid tumours. Genes & Cancer, 5(5–6), 186200. doi:10.18632/genesandcancer.14CrossRefGoogle ScholarPubMed
Takayanagi, M., Wentz, J., Takayanagi, Y., Schretlen, D. J., Ceyhan, E., Wang, L.,… Cascella, N. G. (2013). Reduced anterior cingulate gray matter volume and thickness in subjects with deficit schizophrenia. Schizophr. Res., 150(2–3), 484490. doi:10.1016/j.schres.2013.07.036CrossRefGoogle ScholarPubMed
Tanaka, S. C., Yamada, K., Yoneda, H., and Ohtake, F. (2014). Neural mechanisms of gain-loss asymmetry in temporal discounting. J. Neurosci., 34(16), 55955602. doi:10.1523/JNEUROSCI.5169–12.2014Google Scholar
Tang, Q., Li, G., Liu, T., Wang, A., Feng, S., Liao, X.,… Mu, Q. (2015). Modulation of interhemispheric activation balance in motor-related areas of stroke patients with motor recovery: Systematic review and meta-analysis of fMRI studies. Neurosci. Biobehav. Rev., 57, 392400. doi:10.1016/j.neubiorev.2015.09.003Google Scholar
Tebartz van Elst, L., Hesslinger, B., Thiel, T., Geiger, E., Haegele, K., Lemieux, L.,… Ebert, , D. (2003). Frontolimbic brain abnormalities in patients with borderline personality disorder: a volumetric magnetic resonance imaging study. Biol. Psychiatry, 54(2), 163171. doi:10.1016/S0006-3223(02)01743–2Google Scholar
Tsuchida, A., Doll, B. B., and Fellows, L. K. (2010). Beyond reversal: a critical role for human orbitofrontal cortex in flexible learning from probabilistic feedback. J. Neurosci., 30(50), 1686816875. doi:10.1523/JNEUROSCI.1958–10.2010Google Scholar
Tully, L. M., Lincoln, S. H., Liyanage-Don, N., and Hooker, C. I. (2014). Impaired cognitive control mediates the relationship between cortical thickness of the superior frontal gyrus and role functioning in schizophrenia. Schizophr. Res., 152(2–3), 358364. doi:10.1016/j.schres.2013.12.005Google Scholar
Turella, L., Pierno, A. C., Tubaldi, F., and Castiello, U. (2009). Mirror neurons in humans: consisting or confounding evidence? Brain Lang., 108(1), 1021. doi:10.1016/j.bandl.2007.11.002Google Scholar
Tursich, M., Ros, T., Frewen, P. A., Kluetsch, R. C., Calhoun, V. D., and Lanius, R. A. (2015). Distinct intrinsic network connectivity patterns of post-traumatic stress disorder symptom clusters. Acta Psychiatr. Scand., 132(1), 2938. doi:10.1111/acps.12387Google Scholar
Uranova, N. A., Vostrikov, V. M., Orlovskaya, D. D., and Rachmanova, V. I. (2004). Oligodendroglial density in the prefrontal cortex in schizophrenia and mood disorders: a study from the Stanley Neuropathology Consortium. Schizophr. Res., 67(2–3), 269275. doi:10.1016/S0920-9964(03)00181–6Google Scholar
van den Heuvel, M. P., and Hulshoff Pol, H. E. (2010). Exploring the brain network: a review on resting-state fMRI functional connectivity. Eur. Neuropsychopharmacol., 20(8), 519534. doi:10.1016/j.euroneuro.2010.03.008Google Scholar
Vergani, F., Lacerda, L., Martino, J., Attems, J., Morris, C., Mitchell, P.,… Dell’Acqua, F. (2014). White matter connections of the supplementary motor area in humans. J. Neurol. Neurosurg. Psychiatry, 85(12), 13771385. doi:10.1136/jnnp-2013–307492Google Scholar
Vernet, M., Quentin, R., Chanes, L., Mitsumasu, A., and Valero-Cabre, A. (2014). Frontal eye field, where art thou? Anatomy, function, and non-invasive manipulation of frontal regions involved in eye movements and associated cognitive operations. Front. Integr. Neurosci., 8, 66. doi:10.3389/fnint.2014.00066Google Scholar
Wager, T. D., and Smith, E. E. (2003). Neuroimaging studies of working memory: a meta-analysis. Cogn. Affect. Behav. Neurosci., 3(4), 255274. doi:10.3758/CABN.3.4.255Google Scholar
Wakana, S., Jiang, H., Nagae-Poetscher, L. M., van Zijl, P. C., and Mori, S. (2004). Fiber tract-based atlas of human white matter anatomy. Radiology, 230(1), 7787. doi:10.1148/radiol.2301021640Google Scholar
Waytz, A., Zaki, J., and Mitchell, J. P. (2012). Response of dorsomedial prefrontal cortex predicts altruistic behavior. J. Neurosci., 32(22), 76467650. doi:10.1523/JNEUROSCI.6193–11.2012Google Scholar
Winterer, G., Musso, F., Beckmann, C., Mattay, V., Egan, M. F., Jones, D. W.,… Weinberger, D. R. (2006). Instability of prefrontal signal processing in schizophrenia. Am. J. Psychiatry, 163(11), 19601968. doi:10.1176/ajp.2006.163.11.1960Google Scholar
Yoshida, K., Saito, N., Iriki, A., and Isoda, M. (2011). Representation of others’ action by neurons in monkey medial frontal cortex. Curr. Biol., 21(3), 249253. doi:10.1016/j.cub.2011.01.004Google Scholar
Young, L., Bechara, A., Tranel, D., Damasio, H., Hauser, M., and Damasio, A. (2010). Damage to ventromedial prefrontal cortex impairs judgment of harmful intent. Neuron, 65(6), 845851. doi:10.1016/j.neuron.2010.03.003Google Scholar
Yuen, G. S., Gunning-Dixon, F. M., Hoptman, M. J., AbdelMalak, B., McGovern, A. R., Seirup, J. K., and Alexopoulos, G. S. (2014). The salience network in the apathy of late-life depression. Int. J. Geriatr. Psychiatry. 29(11), 11161124. doi:10.1002/gps.4171Google Scholar
Zhou, J., Greicius, M. D., Gennatas, E. D., Growdon, M. E., Jang, J. Y., Rabinovici, G. D.,… Seeley, W. W. (2010). Divergent network connectivity changes in behavioural variant frontotemporal dementia and Alzheimer’s disease. Brain, 133(Pt 5), 13521367. doi:10.1093/brain/awq075Google Scholar
Zhou, Y., Liang, M., Tian, L., Wang, K., Hao, Y., Liu, H.,… Jiang, T. (2007). Functional disintegration in paranoid schizophrenia using resting-state fMRI. Schizophr. Res., 97(1–3), 194205. doi:10.1016/j.schres.2007.05.029Google Scholar
Zikopoulos, B., and Barbas, H. (2010). Changes in prefrontal axons may disrupt the network in autism. J. Neurosci., 30(44), 1459514609. doi:10.1523/JNEUROSCI.2257–10.201Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Frontal Lobe
  • David L. Clark, Ohio State University, Nash N. Boutros, University of Missouri, Kansas City, Mario F. Mendez, University of California, Los Angeles
  • Book: The Brain and Behavior
  • Online publication: 22 February 2018
  • Chapter DOI: https://doi.org/10.1017/9781108164320.007
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Frontal Lobe
  • David L. Clark, Ohio State University, Nash N. Boutros, University of Missouri, Kansas City, Mario F. Mendez, University of California, Los Angeles
  • Book: The Brain and Behavior
  • Online publication: 22 February 2018
  • Chapter DOI: https://doi.org/10.1017/9781108164320.007
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Frontal Lobe
  • David L. Clark, Ohio State University, Nash N. Boutros, University of Missouri, Kansas City, Mario F. Mendez, University of California, Los Angeles
  • Book: The Brain and Behavior
  • Online publication: 22 February 2018
  • Chapter DOI: https://doi.org/10.1017/9781108164320.007
Available formats
×