Skip to main content Accessibility help
×
Hostname: page-component-5c6d5d7d68-wp2c8 Total loading time: 0 Render date: 2024-08-27T19:31:34.786Z Has data issue: false hasContentIssue false

11 - Surface waves: finite-frequency theory

Published online by Cambridge University Press:  24 January 2011

Guust Nolet
Affiliation:
Princeton University, New Jersey
Get access

Summary

Because of the stronger heterogeneity near the surface of the Earth, surface waves are even more prone to the effects of scattering than the teleseismic P- and S- waves. Only at rather low frequencies is it safe to assume that scattering can be ignored, but this is of course also the frequency band where the approximations of ray theory become questionable. Detailed studies on the validity of asymptotic approximations by Park, Kennett and Nolet and Clévédé et al. show that the approximations of ‘ray theory’ for surface waves can be problematic even for rather smooth Earth models. Lateral heterogeneity poses even stronger problems for the inversion of group velocity, which is theoretically an interference phenomenon between neighbouring frequencies, as expressed by the differentiation with respect to frequency in (10.4). When the Earth is laterally heterogeneous, waves travelling different paths may equally well interfere and significantly perturb the time of arrival of the maximum energy at a particular frequency, robbing the group arrival time of its conventional interpretation.

Phase velocity measurements also display significant oscillations due to interference of multipathed arrivals. When using ray theory (Chapter 10) there is no other solution but to average over many observations (Pedersen,). First-order scattering should at least be able to model some of the multipathed energy, and this has led to efforts to extend finite-frequency theory to surface wave observations.

Type
Chapter
Information
A Breviary of Seismic Tomography
Imaging the Interior of the Earth and Sun
, pp. 208 - 218
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×