Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-19T09:13:34.439Z Has data issue: false hasContentIssue false

Part I - Burial Practices in the Central Sahara

Published online by Cambridge University Press:  21 June 2019

M. C. Gatto
Affiliation:
University of Leicester
D. J. Mattingly
Affiliation:
University of Leicester
N. Ray
Affiliation:
University of Oxford
M. Sterry
Affiliation:
University of Durham
Get access

Summary

Theprevious chapterintroduced the Garamantes, an ancient Saharan people, whose story can be traced archaeologically through the first millennium BC and first millennium AD (see also Figs 1.1and1.2 for location maps). This chapter presents evidence on the funerary practices of the Garamantian heartlands in the Wadi al-Ajal in the Libyan Fazzan (Central Sahara). The Wadi al-Ajal is a long and thin oasis depression running for c.150 km from al-Abyad (to the south-west of Fazzan’s modern capital at Sabha) to Ubari. Our work has been particularly focused on the area around Jarma (ancient Garama, the Garamantian capital about 40 km east of Ubari). The burials in these Garamantian heartlands differ in certain significant ways from those recorded by the Italian mission at Aghram Nadharif and Fewet, and an interesting aspect of the discussion we shall develop below seeks to explain this difference.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Ayoub, M. S. 1967a. Excavations in Germa between 1962 to 1966. Tripoli: Ministry of Education.Google Scholar
Ayoub, M. S. 1967b. The Royal cemetery at Germa. A preliminary report. Libya Antiqua 3–4: 213–19.Google Scholar
Barker, G. W. W., Gilbertson, D. D., Jones, G. D. B. and Mattingly, D. J. 1996a. Farming the Desert. The UNESCO Libyan Valleys Archaeological Survey. Volume 1 Synthesis. Principal Editor, Barker, G.). Paris, London: UNESCO, Society for Libyan Studies.Google Scholar
Barker, G. W. W., Gilbertson, D. D., Jones, G. D. B. and Mattingly, D. J. 1996b. Farming the Desert. The UNESCO Libyan Valleys Archaeological Survey. Volume 2, Gazetteer and Pottery. Principal Editor, Mattingly, D. J.. Paris, London: UNESCO, Society for Libyan Studies.Google Scholar
Bates, O. 1970. The Eastern Libyans. London: Frank Cass.Google Scholar
Bellair, P., Gobert, E. G., Jodot, P. and Pauphillet, D. 1953. Mission au Fezzan (1949). Institut des Hautes Études de Tunis, Publications scientifiques 1. Tunis: Institut des Hautes Études de Tunis.Google Scholar
Belmonte, J. A., Esteban, C., Perera Betancourt, M., and Marrero, R. 2002. Archaeoastronomy in the Sahara: the tombs of the Garamantes at Wadi al-Ajal, Fazzan, Libya. Archaeoastronomy 27 (JHA suppl. 33): S1S19.Google Scholar
Bokbot, Y. 1991. Habitats et monuments funéraires du Maroc protohistoriques. Unpublished PhD thesis, Université de Aix-en-Provence, Aix-en-Provence.Google Scholar
Bradley, R. 2012. The Idea of Order. The Circular Archetype in Prehistoric Europe. Oxford: Oxford University Press.Google Scholar
Brooks, N., Clarke, J., Crisp, J., Crivellaro, F., Jousse, H., Markiewicz, E., Nichol, M., Raffin, M., Robinson, R., Wasse, A. and Winton, V. 2006. Funerary sites in the ‘Free Zone’: report on the second and third seasons of fieldwork of the Western Sahara Project. Sahara 17: 7394.Google Scholar
Camps, G. 1961. Aux origines de la Berbérie. Monuments et rites funéraires protohistoriques. Paris: Arts et métiers graphiques.Google Scholar
Camps, G. 1997. Tin Hinan et sa légende. A propos du tumulus princier d’Abalessa (Ahaggar, Algérie). Bulletin archéologique du comité des travaux historiques et scientifiques ns 24: 173–95.Google Scholar
Caple, C. 2013. Red pigment deposit on a ceramic vessel. In Mattingly 2013a: 865–68.Google Scholar
Caputo, G. 1937. Archeologia. In Sahara Italiano 1937: 301–30.Google Scholar
Caputo, G. 1949. Scavi archeologici nel Sahara libico. Annali dell’Istituto Orientale di Napoli ns 3: 1333.Google Scholar
Caputo, G. 1951. Parte II. In Pace, , Sergi, and Caputo, 1951: 200442.Google Scholar
Castelli, R., Cremaschi, M., Gatto, M. C., Liverani, M. and Mori, L. 2005. A preliminary report of excavations in Fewet, Libyan Sahara. Journal of African Archaeology 3: 69102.Google Scholar
di Lernia, S. 2006. Building monuments, creating identity: cattle cult as a social response to rapid environmental change in the Holocene Sahara. Quaternary International 151.1: 5062.CrossRefGoogle Scholar
di Lernia, S. and Manzi, G. (eds). 2002. Sands, Stones and Bones. The Archaeology of Death in the Wadi Tanzzuft Valley (5000–2000 BP). AZA 3. Firenze: All’Insegna del Giglio.Google Scholar
Duday, H. 2009. The Archaeology of the Dead. Lectures in Archaeothanatology. Oxford: Oxbow.CrossRefGoogle Scholar
el-Rashedy, F. 1988. Garamantian burial customs: their relation to those of other peoples of North Africa. In Libya Antiqua. Report and papers of the symposium organized by UNESCO in Paris, 16 to 18 January 1984, Paris, 77105.Google Scholar
Fentress, E. and Wilson, A. 2016. The Saharan Berber diaspora and the southern frontiers of Byzantine North Africa. In Stevens, S. T. and Conant, J. P. (eds), North Africa under Byzantium and Early Islam, Dumbarton Oaks Byzantine Symposia and Colloquia 7, Washington, DC: Dumbarton Oaks Research Library and Collection, 4163.Google Scholar
Fontana, S. 1995. I manufatti romani dei corredi funerari del Fezzan. Testimonianza dei commerci e della cultura dei Garamanti (I–III sec. d.C.). In Trousset, P. (ed.), Productions et exportations Africaines. Actualités archéologiques en Afrique du nord Antique et Médiévale. Actes du VIe colloque international sur l’histoire et l’archéologie de l’Afrique du Nord (Paris), Paris: Edition du CTHS, 405–20.Google Scholar
Gauthier, Y., and Gauthier, C. 1999. Orientation et distribution de divers types de monuments lithiques du Messak et des régions voisines (Fezzan, Libye). Sahara 11: 87108.Google Scholar
Ghaki, M. 1997. Le nouveau monument mégalitihique de Makthar. Rapport préliminaire. Reppal 10: 6372.Google Scholar
Ghaki, M. 1999. La ceramique modelée du ‘nouveau megalithe’ de Mactar. Reppal 11: 95124.Google Scholar
Gliozzo, E., Mattingly, D. J., Cole, F., and Artioli, G. 2014. In the footsteps of Pliny: tracing the sources of Garamantian carnelian from Fazzan, south-west Libya. Journal of Archaeological Science 52: 218–41.Google Scholar
Krandel-Ben Younes, A. 2002. La presence punique en pays numide. Tunis: Institut National du Patrimoine.Google Scholar
Leitch, V., Duckworth, C., Cuénod, A., Mattingly, D. J., Sterry, M and Cole, F. 2017. Early Saharan trade: the inorganic evidence. In Mattingly, et al. 2017a, 287–340.Google Scholar
Liverani, M. (ed.). 2006. Aghram Nadharif. The Barkat Oasis (Sha’abiya of Ghat, Libyan Sahara) in Garamantian Times. AZA 5. Firenze: All’Insegna del Giglio.Google Scholar
MacDonald, K. C. 2011. A view from the south. Sub-Saharan evidence for contacts between North Africa, Mauritania and the Niger 1000 BC–AD 700. In Dowler, A. and Galvin, E. R. (eds), Money, Trade and Trade Routes in Pre-Islamic North Africa, London: British Museum Press, 7282.Google Scholar
Mattingly, D. J. (ed.). 2003. The Archaeology of Fazzan. Volume 1, Synthesis. London: Society for Libyan Studies, Department of Antiquities.CrossRefGoogle Scholar
Mattingly, D. J. (ed.). 2007a. The Archaeology of Fazzan. Volume 2, Site Gazetteer, Pottery and other Survey Finds. London: Society for Libyan Studies, Department of Antiquities.Google Scholar
Mattingly, D. J. 2007b. The African way of death: burial rituals beyond the Roman Empire. In Stone, D. L. and Stirling, L. M. (eds), Mortuary Landscapes of North Africa, Toronto: University of Toronto Press, 138–63.Google Scholar
Mattingly, D. J. (ed.). 2010. The Archaeology of Fazzan. Volume 3, Excavations Carried Out by C. M. Daniels. London: Society for Libyan Studies, Department of Antiquities.Google Scholar
Mattingly, D. J. (ed.). 2013a. The Archaeology of Fazzan. Volume 4, Survey and Excavations at Old Jarma (Ancient Garama) Carried Out by C. M. Daniels (1962–69) and the Fazzan Project (1997–2001). London: Society for Libyan Studies, Department of Antiquities.Google Scholar
Mattingly, D. J. 2013b. To south and north: Saharan trade in antiquity. In Eckardt, H. and Rippon, S. (eds), Living and Working in the Roman World, Portsmouth (RI): JRA Suppl., 169–90.Google Scholar
Mattingly, D. J. and Edwards, D. 2003. Religious and funerary structures. In Mattingly, 2003: 177234.Google Scholar
Mattingly, D. J., Lahr, M. M., Armitage, S., Barton, H., Dore, J., Drake, N., Foley, R., Merlo, S., Salem, M., Stock, J. and White, K. 2007. Desert Migrations: people, environment and culture in the Libyan Sahara. Libyan Studies 38: 115–56.Google Scholar
Mattingly, D. J., Dore, J. and Lahr, M. M., with contributions by Ahmed, M., Cole, F., Crisp, J., Rodriguez Gonzales, M., Hobson, M., Ismayer, M., Leitch, V., Moussa, F., Nikita, E., Reeds, I., Savage, T. and Sterry, M. 2008. DMP II: 2008 fieldwork on burials and identity in the Wadi al-Ajal. Libyan Studies 39: 223–62.Google Scholar
Mattingly, D. J., Lahr, M. M. and Wilson, A., with contributions by Abduli, H., Ahmed, M., Baker, S., Cole, F., Rodriguez Gonzales, M., Hobson, M., Leitch, V., Moussa, F., Nikita, E., Radini, A., Reeds, I., Savage, T. and Sterry, M. 2009. DMP V: investigations in 2009 of cemeteries and related sites on the west side of the Taqallit promontory. Libyan Studies 40: 95131.Google Scholar
Mattingly, D. J., Aburgheba, H., Ahmed, M., Ali Ahmed Esmaia, M., Fenwick, C., Gonzalez Rodriguez, M., Hobson, M., Khalaf, N., Lahr, M., Leitch, V., Moussa, F., Nikita, E., Parker, D., Radini, A., Ray, N., Savage, T., Sterry, M. and Schörle, K. 2010a. DMP IX: summary report on the fourth season of excavations of the Burials and Identity team. Libyan Studies 41: 89104.CrossRefGoogle Scholar
Mattingly, D. J., al-Aghab, S., Ahmed, A., Moussa, F., and Wilson, A. 2010b. DMP X: Survey and landscape conservation issues around the Tāqallit headland. Libyan Studies 41: 105–32.Google Scholar
Mattingly, D. J., Abduli, H., Ahmed, M., Cole, F., Fenwick, C., Fothergill, B. T., Gonzalez Rodriguez, M., Hobson, M., Khalaf, N., Lahr, M. M., Moussa, F., Nikita, E., Nikolaus, J., Radini, A., Ray, N., Savage, T., Sterry, M. and Wilson, A. 2011. DMP XII: excavations and survey of the so-called Garamantian Royal Cemetery (GSC030–031). Libyan Studies 42: 89102.Google Scholar
Mattingly, D. J., Leitch, V., Duckworth, C. N., Cuénod, A., Sterry, M. and Cole, F. (eds). 2017a. Trade in the Ancient Sahara and Beyond. Trans-Saharan Archaeology Volume I. Series Editor D. J. Mattingly. Cambridge: Cambridge University Press, Society for Libyan Studies.Google Scholar
Mattingly, D. J., Bokbot, Y., Sterry, M., Cuénod, A., Fenwick, C., Gatto, M. C., Ray, N., Rayne, L., Janin, K., Lamb, A., Mugnai, N. and Nikolaus, J. 2017b. Long-term history in a Moroccan oasis zone: the Middle Draa Project 2015. Journal of African Archaeology 15: 141–72.Google Scholar
Morel, J. P. 2003. De quelques survivances protohostoriques dans la Carthage Punique. In Khanoussi, M. (ed.), Actes du VIIIe colloque international sur l’histoire et archéologie de l’Afrique du nord. Tunis: Institut National du Patrimoine, 99114.Google Scholar
Mori, L. (ed.). 2013. Life and Death of a Rural Village in Garamantian Times. Archaeological Investigation in the Oasis of Fewet (Libyan Sahara). AZA 6. Firenze: All’Insegna del Giglio.Google Scholar
Nikita, E. 2010. The Garamantes of Fazzan: Bioarchaeological evaluation of desert-induced stress and Late Holocene human migration through the Sahara. Unpublished PhD thesis, University of Cambridge, UK.Google Scholar
Nikita, E., Crivellaro, F., Stock, J., Foley, R. and Lahr, M. M. 2010. Human skeletal remains. In Mattingly 2010: 375408.Google Scholar
Nikita, E., Siew, Y. Y. Stock, J., Mattingly, D. J. and Lahr, M. M. 2011. Activity patterns in the Sahara Desert: an interpretation based on cross-sectional geometric properties. American Journal of Physical Anthropology 146: 423–34.Google Scholar
Nikita, E., Mattingly, D. J. and Lahr, M. M. 2012a. Sahara: barrier or corridor? Nonmetric cranial traits and biological affinities of North African Late Holocene populations. American Journal of Physical Anthropology 147: 280–92.Google Scholar
Nikita, E., Mattingly, D. J. and Lahr, M. M. 2012b. Three-dimensional cranial shape analyses and gene flow in North Africa during the Middle to Late Holocene. Journal of Anthropological Archaeology 31: 564–72.Google Scholar
Nikita, E., Mattingly, D. J. and Lahr, M. M. 2013. Evidence of trephinations among the Gramantes, a Late Holocene Saharan population. International Journal of Osteoarchaeology 23: 370–77.Google Scholar
Pace, B., Sergi, S. and Caputo, G. 1951. Scavi sahariani. Monumenti Antichi 41: 150549.Google Scholar
Reygasse, M. 1950. Monuments funéraires préislamiques de l’Afrique du Nord. Paris: Arts et Métiers Graphiques.Google Scholar
Sterry, M. and Mattingly, D. J., with contributions by Ahmed, M., Savage, T., White, K. and Wilson, A. 2011. DMP XIII: reconnaissance survey of archaeological sites in the Murzuq area. Libyan Studies 42: 103–16.Google Scholar
Sterry, M. and Mattingly, D. J. 2013. Desert Migrations Project XVII: further AMS dates for historic settlements from Fazzan, South-West Libya. Libyan Studies 44: 127–40.Google Scholar

References

Alhaique, F. and di Lernia, S. 2005. Rituali funerari dei Garamanti nello Wadi Tanzzuft (Sahara libico). Atti del 4°Convegno nazionale di Archeozoologia, Pordenone 13–15 Novembre 2003. Quaderni del Museo archeologico del Friuli occidentale 6: 237–41.Google Scholar
Bellair, P., Gobert, E. G., Jodot, P. and Pauphillet, D. 1953. Mission au Fezzân. Tunis: Imprimerie Officielle de la Tunisie.Google Scholar
Biagetti, S. and di Lernia, S. 2008. Combining intensive field survey and digital technologies. New data on the Garamantian castles of Wadi Awiss (Acacus Mountain, Libyan Sahara). Journal of African Archaeology 6: 5785.Google Scholar
Bruni, S. and Guglielmi, V. 2006. Gas Chromatography – Mass Spectrometry (GC-MS) analysis of residues from volcanic stone objects. In Liverani 2006: 293–94.Google Scholar
Castelli, R. and Liverani, M. 2006. Cemeteries around the Barkat Oasis. In Liverani 2006: 2528.Google Scholar
di Lernia, S. and Manzi, G. (eds). 2002. Sand, Stones, and Bones. The Archaeology of Death in the Wadi Tanzzuft Valley. AZA 3. Firenze: All’Insegna del Giglio.Google Scholar
di Lernia, S., Merighi, F., Ricci, F. and Sivilli, S. 2002. From regions to sites: the excavations. In di Lernia and Manzi 2002: 69156.Google Scholar
Dowler, A. and Galvin, E. R. (eds). 2011. Money, Trade and Trade Routes in Pre-Islamic North Africa. London: British Museum Press.Google Scholar
Fentress, E. 2011. Slavers on chariots. In Dowler and Galvin 2011: 6471.Google Scholar
Fontana, S. 1995. I manufatti romani dei corredi funerari del Fezzan. Testimonianza dei commerci e della cultura dei Garamanti (I-III sec. d.C.). In Productions et exportations Africaines. Actualités archéologiques en Afrique du nord Antique et Médiévale, Paris: Edition du CTHS, 405–20.Google Scholar
Francis, E. D. 1992. The impact of non-Indo-European languages on Greek and Mycenaean. In Polomé, E. C. and Winter, W. (eds), Reconstructing Languages and Cultures, Trends in Linguistics, Studies and Monographs 58, Berlin, New York: Mouton de Gruyter, 469506.Google Scholar
Garcea, E. A. A. 2001. Uan Tabu in the Settlement History of the Libyan Sahara. AZA 2. Firenze: All’Insegna del Giglio.Google Scholar
Gatto, M. C. 2014. Cultural entanglement at the dawn of the Eygptian history: a view from the First Cataract region. Origini 36: 93123.Google Scholar
Hauser, G. and De Stefano, G. F. 1989. Epigenetic Variants of the Human Skull. Stuttgart: Schweizerbart.Google Scholar
Hodder, I. 2011. Human-thing entanglement: towards an integrated archaeological perspective. Journal of the Royal Anthropological Institute 17.1: 154–77.Google Scholar
Hodder, I. 2012. Entangled: An Archaeology of the Relationships between Humans and Things. Malden, Oxford, West Sussex: Wiley-Blackwell.Google Scholar
Hodder, I. 2016. Studies in Human-Things Entanglement. Stanford: Open Access. Available on: https://www.academia.edu/23001428/STUDIES_IN_HUMAN-THING_ENTANGLEMENT_Ian_Hodder.Google Scholar
Honeychurch, B. 2014. Alternative complexities: the archaeology of pastoral nomadic states. Journal of Archaeological Research 22.4: 277326.Google Scholar
Jones, S. 1997. The Archaeology of Ethnicity: Constructing Identities in the Past and Present. London, New York: Routledge.Google Scholar
Leschi, L. 1945. La Mission Scientifique au Fezzân. Archéologie. Travaux de l’Institut de Recherches Sahariennes 3: 183–86.Google Scholar
Lightfoot, K. G. and Martinez, A. 1995. Frontiers and boundaries in archaeological perspective. Annual Review of Anthropology 24: 471–92.Google Scholar
Liverani, M. 2000. The Libyan caravan road in Herodotus IV.181–185. Journal of the Economic and Social History of the Orient 43: 496520.Google Scholar
Liverani, M. (ed.). 2006. Aghram Nadharif. The Barkat oasis. (Sha’abiya of Ghat, Libyan Sahara) in Garamantian Times. Arid Zone Archaeology Monographs 5. Firenze: All’Insegna del Giglio.Google Scholar
Liverani, M., Barbato, L., Castelli, R., Cancellieri, E. and Putzolu, C. 2013. The survey of Fewet necropolis. In Mori 2013a: 199224.Google Scholar
Lucy, S. 2005. Ethnic and cultural identities. In Diaz-Andreu, M. S., Lucy, S., Babic, S. and Edwards, D. N. (eds), The Archaeology of Identity: Approaches to Gender, Age, Status, Ethnicity and Religion, London, New York: Routledge, 86109.Google Scholar
MacDonald, K. C. 2013. Complex societies, urbanism, and trade in the Western Sahel. In Mitchell, P. and Lane, P. (eds), The Oxford Handbook of African Archaeology, Oxford: Oxford University Press, 829–44.Google Scholar
Maspero, A., Bruni, S., Cattaneo, C. and Lovisolo, A. 2002. Textiles and leather: raw materials and manufacture. In di Lernia and Manzi 2002: 157–67.Google Scholar
Mattingly, D. J. (ed.). 2003. The Archaeology of Fazzān. Volume 1: Synthesis. London: Society for Libyan Studies, Department of Antiquity.Google Scholar
Mattingly, D. J. (ed.). 2007. The Archaeology of Fazzān. Volume 2, Gazetteer, Pottery and other finds. London: Society for Libyan Studies, Department of Antiquity.Google Scholar
Mattingly, D. J. (ed.). 2010. The Archaeology of Fazzān. Volume 3, Excavations of C. M. Daniels. London: Society for Libyan Studies, Department of Antiquity.Google Scholar
Mattingly, D. J. 2011. The Garamantes of Fazzān: an early Libyan state with Trans-Saharan connections. In Dowler and Galvin 2011: 4960.Google Scholar
Mattingly, D. J. (ed.). 2013. The Archaeology of Fazzān. Volume 4 Survey and Excavations at Old Jarma (ancient Garama) Carried Out by C. M. Daniels (1962–69) and the Fazzan Project. London: Society for Libyan Studies, Department of Antiquity.Google Scholar
Mattingly, D. J. and MacDonald, K. 2013. Early African cities. In Clark, P. (ed.), The Oxford Handbook of the City in History, Oxford: Oxford University Press, 6682.Google Scholar
Mattingly, D. J. and Sterry, M. 2013. The first towns in the central Sahara. Antiquity 87.336: 303–18.Google Scholar
Mattingly, D. J. and Wilson, A. 2010. Concluding thoughts: Made in Fazzan? In Mattingly 2010: 523–30.Google Scholar
Merlo, S., Hakenbeck, S. and Balbo, A. L. 2013. Desert Migrations Project XVIII: The archaeology of the northern Fazzan: a preliminary report. Libyan Studies 44: 141–62.Google Scholar
Mori, L. 2006a. The ground stone tools. In Liverani 2006: 259–84.Google Scholar
Mori, L. 2006b. The loom weights. In Liverani 2006: 319–22.Google Scholar
Mori, L. 2006c. The vesicular basalt lamps. In Liverani 2006: 285–92.Google Scholar
Mori, L. (ed.). 2013a. Life and Death of a Rural Village in Garamantian Times. Archaeological Investigation in the Oasis of Fewet (Libyan Sahara). AZA 6. Firenze: All’Insegna del Giglio.Google Scholar
Mori, L. 2013b. Fortified citadels and castles in Garamantian times: the evidence from southern Fazzan (Libyan Sahara). In F. Jesse and C. Vogel (eds), The Power of Walls. Fortifications in Ancient North-Eastern Africa, Proceedings of the International Workshop Held at the University of Cologne 4th−7th August 2011, Colloquium Africanum 5, Köln: Heinrich Barth Insitutte, 195215.Google Scholar
Mori, L. 2013c. The survey in the Tan Ataram area. In Mori 2013a: 7178.Google Scholar
Mori, L. and Ricci, F. with contributions by Cancellieri, E., Gatto, M. C. and Lemorini, C. 2013. The excavation of the Fewet necropolis. In Mori 2013a: 253318.Google Scholar
Mori, L., Gatto, M. C., Ricci, F. and Zerboni, A. 2013. Life and death at Fewet. In Mori 2013a: 375–87.Google Scholar
Osborne, R. 2008. Introduction: for tradition as an analytical category. World Archaeology 40.3: 281–94.Google Scholar
Pace, B., Sergi, S. and Caputo, G. 1951. Scavi sahariani. Ricerche nell’Uadi el-Agial e nell’Oasi di Gat. Monumenti Antichi 41: 150549.Google Scholar
Parton, H. 2007. Stone artefacts. In Mattingly 2007: 493–99.Google Scholar
Ricci, F., Tafuri, M. A., Di Vincenzo, F. and Manzi, G. 2013. The human skeletal sample from Fewet. In Mori 2013a: 319–62.Google Scholar
Sterry, M. and Mattingly, D. J., with contributions by Ahmed, M., Savage, T., White, K. and Wilson, A. 2011. Reconnaissance survey of archaeological sites in the Murzuq area. Libyan Studies 42: 103–16.Google Scholar
Stockhammer, P. W. 2012. Conceptualizing cultural hybridization: A transdisciplinary approach. In Stockhammer, P. W. (ed.), Transcultural Research. Heidelberg Studies on Asia and Europe in a Global Context, Papers of the Conference, Heidelberg, 21–22 September 2009, Berlin und Heidelberg: Springer Verlag, 4358.Google Scholar
Stockhammer, P. W. 2013. From hybridity to entanglement, from essentialism to practice. Archaeological Review from Cambridge 28.1:1128.Google Scholar
Smith, S. T. 2003. Wretched Kush: Ethnic Identities and Boundaries in Egypt’s Nubian Empire. London, New York: Routledge.Google Scholar
Tafuri, M. A., Pelosi, A., Ricci, F. Manzi, G., and Castorina, F. 2013. The preliminary isotope investigation. In Mori 2013a: 363–68.Google Scholar
van Pelt, W. P. 2013. Introduction. Archaeological Review from Cambridge 28.1: 110.Google Scholar
Wilson, A. 2012. Saharan trade: short-, medium- and long-distance trade networks in the Roman period. Azania: Archaeological Research in Africa 47.4: 409–49.Google Scholar
Yahiaoui, R., Dautria, J. M., Alard, O., Bosch, D., Azzouni-Sekkal, A. and Bodinier, J. L. 2014. A volcanic district between the Hoggar uplift and the Tenere Rifts: volcanology, geochemistry and age of the In-Ezzane lavas (Algerian Sahara). Journal of African Earth Sciences 92: 1420.Google Scholar
Zerboni, A. and Vignola, P. 2013. Green stone beads from the excavation in Fewet. In Mori 2013a: 157–67.Google Scholar

References

Bentley, R. A., Price, T. D., Luning, J., Gronenborn, D., Wohl, J. and Fullagar, P. D. 2002. Prehistoric migration in Europe: Strontium isotope analysis of Early Neolithic skeletons. Current Anthropology 43: 799804.Google Scholar
Boutton, T. W., Lynott, M. J. and Bumsted, M. P. 1991. Stable carbon isotopes and the study of prehistoric human diet. Critical Reviews in Food Science and Nutrition 30: 373–85.Google Scholar
Brett, M. and Fentress, E. 1996. The Berbers. Oxford: Blackwell.Google Scholar
Brothwell, D. 1981. Digging Up Bones. New York: Cornell University Press.Google Scholar
Buikstra, J. E. and Ubelaker, D. H. 1994. Standards for Data Collection from Human Skeletal Remains. Fayetteville: Arkansas Archaeological Survey Report 44.Google Scholar
Buzon, M. R. and Bowen, G. J. 2010. Oxygen isotope analysis of migration in the Nile Valley. Archaeometry 52: 855–68.Google Scholar
Camps, G. 1980. Berbères. Aux marges de l’histoire. Toulouse: Editions des Hespérides.Google Scholar
Chamberlain, A. 2000. Minor concerns. A demographic perspective on children in past societies. In Sofaer Derevenski, J. (ed.), Children and Material Culture, London: Routledge, 206–12.Google Scholar
Chamla, M. C. 1968. Les populations anciennes du Sahara et des régions limitrophes. Etude des restes osseux humains néolithique et protohistoriques. Mémoire Centre Recherche Anthropologique Préhistorique Ethnologique. Paris: Arts et Métiers.Google Scholar
Chenery, C., Müldner, G., Evans, J. A., Eckardt, H. and Lewis, M. 2010. Strontium and stable isotope evidence for diet and mobility in Roman Gloucester, UK. Journal of Archaeological Science 37: 150–63.Google Scholar
Chisholm, B. S. 1989. Variation in diet reconstructions based on stable isotopic evidence. In Price, T. D. (ed.), The Chemistry of Prehistoric Human Bone, Cambridge: Cambridge University Press, 1037.Google Scholar
Coplen, T. B., Kendall, C. and Hopple, J. 1983. Comparison of stable isotope reference samples. Nature 302: 236–38.Google Scholar
Daux, V., Lécuyer, C., Héran, M. A., Amiot, R., Simon, L., Fourel, F., Martineau, F., Lynnerup, N., Reychler, H. and Escarguel, G. 2008. Oxygen isotope fractionation between human phosphate and water revisited. Journal of Human Evolution 55.6: 1138–47.Google Scholar
Diaz, A. L., O’Connell, T. C., Maher, L. A. and Stock, J. T. 2012. Subsistence and mobility strategies in the Epipalaeolithic: a stable isotope analysis of human and faunal remains at ‘Uyun al-Hammam, northern Jordan. Journal of Archaeological Science 39.7: 1984–92.Google Scholar
Eckardt, H., Booth, P., Chenery, C., Müldner, G., Evans, J. A. and Lamb, A. 2009. Isotope evidence for mobility at the late Roman cemetery at Lankhills, Winchester. Journal of Archaeological Science 36: 2816–25.Google Scholar
Gat, J. R. 1996. Oxygen and Hydrogen isotopes in the hydrologic cycle. Annual Review of Earth and Planetary Sciences 24: 225–62.Google Scholar
Harvati, K. and Weaver, T. D. 2006. Human cranial anatomy and the differential preservation of population history and climate signatures. The Anatomical Record Part A 288: 1225–33.Google Scholar
Hennessy, R. J. and Stringer, C. B. 2002. Geometric morphometric study of the regional variation of modern human craniofacial form. American Journal of Physical Anthropology 117: 3748.Google Scholar
Hewlett, B. S. 1991. Demography and childcare in pre-industrial societies. Journal of Anthropological Research 47: 137.CrossRefGoogle Scholar
Houghton, P. 1996. The People of the Great Ocean: Aspects of Human Biology in the Early Pacific. New York: Cambridge University Press.Google Scholar
Howells, W. W. 1973. Cranial Variation in Man. A Study by Multivariate Analysis of Patterns of Difference among Recent Human Populations. Cambridge, Mass.: Harvard University, Papers of the Peabody Museum 67.Google Scholar
Howells, W. W. 1989. Skull Shapes and the Map: Craniometric Analyses in the Dispersion of Modern Homo. Cambridge, Mass.: Harvard University, Papers of the Peabody Museum 79.Google Scholar
Iacumin, P., Bocherens, H., Mariotti, A. and Longinelli, A. 1996. Oxygen isotope analyses of co-existing carbonate and phosphate in biogenic apatite: a way to monitor diagenetic alteration of bone phosphate? Earth and Planetary Science Letters 142: 16.Google Scholar
Kellner, C. M. and Schoeninger, M. J. 2007. A simple carbon isotope model for reconstructing prehistoric human diet. American Journal of Physical Anthropology 133: 1112–27.Google Scholar
Krogman, W. M. and İșcan, M. Y., M. Y. 1986. The Human Skeleton in Forensic Medicine. Springfield: Charles C. Thomas.Google Scholar
Lahr, M. M. 1992. The Origins of Modern Humans: A Test of the Multiregional Hypothesis. Cambridge: Cambridge University Press.Google Scholar
Lahr, M. M. 1996. The Evolution of Modern Human Cranial Diversity: A Study in Cranial Variation. Cambridge: Cambridge University Press.Google Scholar
Lahr, M. M. 2010. Saharan corridors and their role in the evolutionary geography of ‘Out of Africa I’. In Fleagal, J. G., Shea, J. J., Grine, F. E., Baden, A. L. & Leakey, R. E. (eds), Out of Africa I. The First Hominin Colonization of Eurasia, New York, Springer, 2746.Google Scholar
Lahr, M. M. and Foley, R. A. 1998. Towards a theory of modern human origins: geography, demography and diversity in recent human evolution. Yearbook of Physical Anthropology 41: 137–76.Google Scholar
Lahr, M. M. and Foley, R. A. 2001. Genes, fossils and behaviour: when and where do they fit? In Donnelly, P. and Foley, R. A (eds), Genes, Fossils and Behaviour, Brussels: NATO, 1348.Google Scholar
Lahr, M. M. and Wright, R. V. S. 1996. The question of robusticity and the relationship between cranial size and shape in Homo sapiens. Journal of Human Evolution 31: 157–91.Google Scholar
Lee-Thorp, J. A. 2008. On isotopes and old bones. Archaeometry 50: 925–50.Google Scholar
Leschi, L. 1945. La mission scientifique du Fezzân. Archéologie. Travaux de l’Institut de Recherches Sahariennes 3: 183–86.Google Scholar
Levinson, A. A., Luz, B. and Kolodny, Y. 1987. Variations in Oxygen isotopic compositions of human teeth and urinary stones. Applied Geochemistry 2: 367–71.Google Scholar
Lewis, M. E. and Gowland, R. 2007. Brief and precarious lives: infant mortality in contrasting sites from Medieval and Post-Medieval England (AD 850–1859). American Journal of Physical Anthropology 134: 117–29.Google Scholar
Lieberman, D. E., Ross, C. R. and Ravosa, M. 2000a. The primate cranial base: ontogeny, function, and integration. Yearbook of Physical Anthropology 43: 117–69.Google Scholar
Lieberman, D. E., Mowbray, K. M. and Pearson, O. M. 2000b. Basicranial influences on overall cranial shape. Journal of Human Evolution 38: 291315.Google Scholar
Lightfoot, E, Slaus, M. and O’Connell, T. C. 2014. Water consumption in Iron Age, Roman and Early Medieval Croatia. American Journal of Physical Anthropology 154.4: 535–43.Google Scholar
Lightfoot, E. and O’Connell, T. C. 2016. On the use of biomineral oxygen isotope data to identify human migrants in the archaeological record: intra-sample variation, statistical methods and geographical considerations. PLoS ONE 11.4: e0153850.Google Scholar
Longinelli, A. 1984. Oxygen isotopes in mammal bone phosphate – a new tool for paleohydrological and paleoclimatological research. Geochimica et Cosmochimica Acta 48.2: 385–90.Google Scholar
Luz, B., Kolodny, Y. and Horowitz, M. 1984. Fractionation of oxygen isotopes between mammalian bone-phosphate and environmental drinking water. Geochimica et Cosmochimica Acta 48: 1689–93.Google Scholar
MacPhee, R. D. E. and Cartmill, M. 1986. Basicranial structures and primate systematics. In Swindler, D. R. and Erwin, J. (eds), Comparative Primate Biology, Systematics, Evolution and Anatomy, Volume 1, New York: Alan R. Liss Inc., 219–75.Google Scholar
Manzi, G. and Ricci, F. 2003. Population of the Roman era in the central Sahara: skeletal samples from the Fezzan (south-western Libya) in a diachronic perspective. In Liverani, M. (ed), Arid lands in Roman times, Papers from the International Conference (Rome, 9th–10th July 2001), AZA 4, Firenze: All’Insegna del Giglio, 1522.Google Scholar
Mattingly, D. J. (ed.). 2010. The Archaeology of Fazzan, Volume 3. Excavations of C. M. Daniels. London: Society for Libyan Studies, Department of Antiquities.Google Scholar
Mattingly, D. J. (ed.). 2013. The Archaeology of Fazzan. Volume 4, Survey and Excavations at Old Jarma (Ancient Garama) Carried Out by C. M. Daniels (1962–69) and the Fazzan Project (1997–2001). London: Society for Libyan Studies, Department of Antiquities.Google Scholar
Mattingly, D. J. and Sterry, M. 2013. The first towns in the Central Sahara. Antiquity 87.366: 503–18.Google Scholar
Mattingly, D. J., Dore, J. and Lahr, M. 2008. DMP II: 2008 fieldwork on burials and identity in the Wadi al-Ajal. Libyan Studies 39: 223–62.Google Scholar
Mattingly, D. J., Lahr, M. and Wilson, A. 2009. DMP V: investigations in 2009 of cemeteries and related sites on the west side of the Tāqallit promontory. Libyan Studies 40: 95131.Google Scholar
Mattingly, D. J., Abduli, H., Ahmed, M., Cole, F., Fenwick, C., Fothergill, B. T., Gonzalez Rodriguez, M., Hobson, M., Khalaf, N., Lahr, M., Moussa, F., Nikita, E., Nikolaus, J., Radini, A., Ray, N., Savage, T., Sterry, M. and Wilson, A. 2011. DMP XII: excavations and survey of the so-called Garamantian Royal Cemetery (GSC030–031). Libyan Studies 42: 89102.Google Scholar
Mitchell, P. D. and Millard, A. R. 2009. Migration to the Medieval Middle East with the Crusades. American Journal of Physical Anthropology 140: 518–25.Google Scholar
Moore, W. J. and Lavelle, C. L. B. 1974. Growth of the Facial Skeleton in the Hominoidea. London: Academic Press.Google Scholar
Nikita, E. 2010. The Garamantes of Fazzān: Bioarchaeological evaluation of desert-induced stress and Late Holocene human migration through the Sahara. Unpublished PhD thesis, University of Cambridge, Cambridge.Google Scholar
Nikita, E., Crivellaro, F., Stock, J., Foley, R. and Lahr, M. M. 2010. Human skeletal remains. In Mattingly 2010: 375408.Google Scholar
Nikita, E., Siew, Y. Y. Stock, J., Mattingly, D. and Lahr, M. M. 2011. Activity patterns in the Sahara Desert: an interpretation based on cross-sectional geometric properties. American Journal of Physical Anthropology 146: 423–34.Google Scholar
Nikita, E., Mattingly, D. and Lahr, M. M. 2012a. Sahara: barrier or corridor? Nonmetric cranial traits and biological affinities of North African Late Holocene populations. American Journal of Physical Anthropology 147: 280–92.Google Scholar
Nikita, E., Mattingly, D. and Lahr, M. M. 2012b. Three-dimensional cranial shape analyses and gene flow in North Africa during the Middle to Late Holocene. Journal of Anthropological Archaeology 31: 564–72.Google Scholar
Nikita, E., Mattingly, D. and Lahr, M. M. 2013. Evidence of trephinations among the Gramantes, a Late Holocene Saharan population. International Journal of Osteoarchaeology 23: 370–77.Google Scholar
O’Higgins, P. 2000. The study of morphological variation in the hominid fossil record: biology, landmarks and geometry. Journal of Anatomy 197: 103–20.Google Scholar
Olson, T. R. 1981. Basicranial morphology of the extant hominoids and Pliocene hominids: the new material from the Hadar Formation, Ethiopia and its significance in early human evolution and taxonomy. In Stringer, C. B. (ed.), Aspects of Human Evolution, London: Taylor & Francis, 99128.Google Scholar
Pace, B., Sergi, S. and Caputo, G. 1951. Scavi sahariani. Monumenti Antichi 41: 150549.Google Scholar
Parenti, R. 1945. Contributo alla conoscenza della craniologia del Fezzan. Archivio per l’antropologia e l’etnologia 75: 5116.Google Scholar
Perry, M. A., Coleman, D. S., Dettman, D. L. and al-Shiyab, A. H. 2009. An isotopic perspective on the transport of Byzantine mining camp labourers into south-western Jordan. American Journal of Physical Anthropology 140: 429–41.Google Scholar
Price, T. D., Knipper, C., Grupe, G. and Smrcka, M. V. 2004. Strontium isotopes and prehistoric human migration: the Bell Beaker period in Central Europe. European Journal of Archaeology 8: 940.Google Scholar
Prowse, T. L., Schwarcz, H. P., Garnsey, P., Knyf, M., Macchiarelli, R. and Bondioli, L. 2007. Isotopic evidence for age-related immigration to Imperial Rome. American Journal of Physical Anthropology 132: 510–19.Google Scholar
Relethford, J. H. 1994. Craniometric variation among modern human populations. American Journal of Physical Anthropology 95: 5362.Google Scholar
Ricci, F., Manzi, G., Fornai, C., Vecchi, F. and Passarello, P. 2002. The human skeletal remains: inventory and inferences. In di Lernia, S. and Manzi, G. (eds), Sand, Stones and Bones. The Archaeology of Death in the Wadi Tanezzuft Valley (5000–2000 BP), AZA 3, Firenze: All’Insegna del Giglio, 217–50.Google Scholar
Ricci, F., Fornai, C., Tiesler Blos, V., Rickards, O., di Lernia, S. and Manzi, G. 2008. Evidence of artificial cranial deformation from the later prehistory of the Acacus Mountains (south-western Libya, Central Sahara). International Journal of Osteoarchaeology 18: 372–91.CrossRefGoogle Scholar
Ricci, F., Tafuri, M. A., Di Vincenzo, F. and Manzi, G. 2013. The human skeletal sample from Fewet. In Mori, L. (ed.), Life and Death of a Rural Village in Garamantian Times. The Archaeological Investigation in the Oasis of Fewet (Libyan Sahara), AZA Monograph 6, Firenze: All’Insegna del Giglio, 319–62.Google Scholar
Richards, M., Harvali, K., Grimes, V., Smith, C., Smith, T., Hublin, J. J., Karkanas, P. and Panagopoulos, E. 2008. Strontium isotope evidence of Neanderthal mobility at the site of Lakonis, Greece using laser ablation PIMMS. Journal of Archaeological Science 35: 1251–56.Google Scholar
Roseman, C. C. 2004. Detecting interregionally diversifying natural selection on modern human cranial form by using matched molecular and morphometric data. Proceedings of the National Academy of Sciences USA 101: 12824–29.Google Scholar
Schwartz, J. H. 1995. Skeleton Keys. An Introduction to Human Skeletal Morphology, Development and Analysis. Oxford: Oxford University Press.Google Scholar
Sergi, S. 1951. I resti scheletrici delle antiche popolazioni del Fezzan ed il tipo dei Garamanti. In Pace et al. 1951: 443542.Google Scholar
Smith, H. F. 2009. Which cranial regions reflect molecular distances reliably in humans? Evidence from three-dimensional morphology. American Journal of Human Biology 21: 3647.Google Scholar
Smith, H. F., Terhune, C. E. and Lockwood, C. A. 2007. Genetic, geographic, and environmental correlates of human temporal bone variation. American Journal of Physical Anthropology 134: 312–22.CrossRefGoogle ScholarPubMed
Spencer, M. A. and Demes, B. 1993. Biomechanical analysis of masticatory system configuration in Neanderthals and Inuits. American Journal of Physical Anthropology 91: 120.Google Scholar
Spencer, M. A. and Ungar, P. S. 2000. Craniofacial morphology, diet and incisor use in three Native American populations. International Journal of Osteoarchaeology 10: 229–41.Google Scholar
Ubelaker, D. H. 1997. Human Skeletal Remains: Excavation, Analysis, Interpretation. 3rd Edition. Washington, DC: Taraxacum.Google Scholar
von Cramon-Taubadel, N. 2009. Congruence of individual cranial bone morphology and neutral molecular affinity patterns in modern humans. American Journal of Physical Anthropology 140: 205–15.Google Scholar
Waldron, T. 2001. Shadows in the Soil: Human Bones in Archaeology. Stroud: Tempus.Google Scholar
White, C., Longstaffe, F. J. and Law, K. R. 2004. Exploring the effects of environment, physiology and diet on oxygen isotope ratios in ancient Nubian bones and teeth. Journal of Archaeological Science 31.2: 233–50.Google Scholar

References

Acsàdi, G. and Nemeskèri, J. 1970. History of Human Life Span and Mortality. Budapest: Akàdemiai Kiadò.Google Scholar
Alhaique, F. 2013. The faunal remains. In Mori 2013a: 191–98.Google Scholar
Allen, J. A. 1877. The influence of physical conditions on the genesis of the species. Radical Review 1: 108–40.Google Scholar
Ammerman, A. J. and Cavalli-Sforza, L. L. 1984. The Neolithic Transition and the Genetics of Populations in Europe. Princeton, New York: Princeton University Press.Google Scholar
Anderson, J. E. 1968. Late Palaeolithic skeletal remains from Nubia. In Wendorf, F. (ed.), The Prehistory of Nubia 2, Dallas: Southern Methodist University Press, 9961040.Google Scholar
Armelagos, G. J. and Rose, J. C. 1972. Factors contributing to antemortem tooth loss in population from prehistoric Nubia. American Journal of Physical Anthropology 37: 428.Google Scholar
Arrighetti, B., Reale, B., Ricci, F. and Borgognini Tarli, S. 2002. Skeletal markers of stress at Site 96/129. In di Lernia, and Manzi 2002: 261–68.Google Scholar
Auerbach, B. M. and Ruff, C. B. 2006. Limb bone bilateral asymmetry: variability and commonality among modern humans. Journal of Human Evolution 50: 203–18.Google Scholar
Barbujani, G., Pilastro, A., De Domenico, S. and Renfrew, C. 1994. Genetic variation in North Africa and Eurasia: Neolithic demic diffusion vs. Paleolithic colonisation. American Journal of Physical Anthropology 95: 137–54.Google Scholar
Belcastro, M. G., Mariotti, V., Facchini, F. and Bonfiglioli, B. 2004. Proposal of a data collection form to record dento-alveolar features. Application to two Roman skeletal samples from Italy. Collegium Antropologicum 28.1: 161–77.Google Scholar
Benagiano, A. 1977. Patologia Odontostomatologica. Roma: Utet.Google Scholar
Benuš, R., Obertová, Z. and Masnicová, S. 2010. Demographic, temporal and environmental effects on the frequency of cribra orbitalia in three early medieval populations from western Slovakia. Journal of Comparative Human Biology 61: 178–90.Google Scholar
Berry, A. C. and Berry, R. J. 1967. Epigenetic variation in the human cranium. Journal of Anatomy 101: 361–79.Google Scholar
Biasutti, R. (ed.). 1967. Le Razze e i Popoli della Terra 2 (3), Africa. Torino: Unione Tipografico/Editrice Torinese.Google Scholar
Bocquet, J. P. and Masset, C. 1977. Estimateurs en paléodemographie. L’Homme 17: 6590.Google Scholar
Bogin, B., Varela Silva, M. I. and Rios, L. 2007. Life history trade-offs in human growth: adaptation or pathology? American Journal of Human Biology 19: 631–42.Google Scholar
Borgognini Tarli, S. and Pacciani, E. 1993. I resti umani nello scavo archeologico. Metodiche di recupero e studio. Roma: Bulzoni editore.Google Scholar
Buzon, M. R. 2006. Health of the non-elites at Tombos: Nutritional and disease stress in New Kingdom Nubia. American Journal of Physical Anthropology 130: 2637.Google Scholar
Calcagno, J. M. 1986. Dental reduction in post-Pleistocene Nubia. American Journal of Physical Anthropology 70: 349–63.Google Scholar
Carli-Thiele, P. and Schultz, M. 1997. Microscopic differential diagnosis of so called cribra orbitalia, a contribution to the etiology of orbital porotic hyperostosis. American Journal of Physical Anthropology 24: 88.Google Scholar
Camps, G. 1979. Manuel de recherche préhistorique. Paris: Doin.Google Scholar
Canci, A. and Minozzi, S. 2005. Archeologia dei resti umani. Dallo scavo al laboratorio. Roma: Carocci editore.Google Scholar
Chamla, M. C. 1968. Les populations anciennes du Sahara et des régions limitrophes. Etude des restes osseux humains néolithique et protohistoriques. Mémoire Centre Recherche Anthropologique Préhistorique Ethnologique. Paris: Arts et Métiers.Google Scholar
Chamla, M. C. 1970. Les hommes épipaléolithiques de Columnata (Algérie occidentale), Etude anthropologique. Mémoire Centre Recherche Anthropologique Préhistorique Ethnologique. Paris: Arts et Métiers.Google Scholar
Clarke, N. G., Carey, S. E., Srikandi, W., Hirsch, R. S. and Leppard, P. I. 1986. Periodontal diseases in ancient populations. American Journal of Physical Anthropology 71: 173–83.Google Scholar
Colaruotolo, P. 2007. Dalle ossa allo stile di vita. Indicatori di stress funzionale nello scheletro post-craniale di due popolazioni del Fezzan dal periodo pastorale (Takarkori, 7000–4000 anni b.p.) all’epoca protostorica dei Garamanti dello Wadi el-Agiàl. Unpublished MA Degree Thesis, Sapienza Università di Roma.Google Scholar
Corruccini, R. S., Handler, J. S. and Jacobi, K. B. 1985. Chronological distribution of enamel hypoplasia and weaning in Carribean slave population. Human Biology 57: 699711.Google Scholar
Cremaschi, M. and di Lernia, S. 2001. Environment and settlements in the Mid-Holocene paleo-oasis of Wadi Tanezzuft (Libyan Sahara). Antiquity 75: 815–25.Google Scholar
Dal Poz, M., Ricci, F., Reale, B., Malvone, M., Salvadei, L. and Manzi, G. 2001. Paleobiologia della popolazione altomedioevale di San Lorenzo di Quingentole, Mantova. Cranio e scheletro postcraniale. In Manicardi, A. (ed.), San Lorenzo di Quingentole. Archeologia, storia ed antropologia, Documenti di Archeologia 25, Mantova: SAP, 151–98.Google Scholar
Daniels, C. M. 1989. Excavation and fieldwork amongst the Garamantes. Libyan Studies 20: 4561.Google Scholar
di Lernia, S. 1999. Discussing pastoralism. The case of the Acacus and surroundings (Libyan Sahara). Sahara 11: 720.Google Scholar
di Lernia, S. and Manzi, G. 1998. Funerary practices and anthropological features at 8000–5000 bp. Some evidence from central-southern Acacus (Libyan Sahara). In Cremaschi, M. and di Lernia, S. (eds), Wadi Teshuinat. Palaeoenvironment and Prehistory in Southwestern Fezzan (Libyan Sahara), CNR Quaderni di Geodinamica Alpina e Quaternaria, Milano 7, Firenze: Edizioni all’Insegna del Giglio, 217–42.Google Scholar
di Lernia, S. and Tafuri, M. A. 2013. Persistent deathplaces and mobile landmarks: The Holocene mortuary and isotopic record from Wadi Takarkori (SW Libya). Journal of Anthropological Archaeology 32.1: 115.Google Scholar
di Lernia, S. and Manzi, G. (eds). 2002. Sand, Stones, and Bones. The Archaeology of Death in the Wadi Tanezzuft Valley (5000–2000 BP). AZA 3. Firenze: Edizioni all’Insegna del Giglio.Google Scholar
Destro-Bisol, G., Donati, F., Coia, V., Boschi, I., Verginelli, F., Caglia, A., Tofanelli, S., Spedini, G. and Capelli, C. 2004. Variation of female and male lineages in sub-Saharan populations: the importance of sociocultural factors. Molecular Biology and Evolution 21: 1673–82.Google Scholar
Dutour, O. 1989. Hommes fossiles du Sahara. Peuplements holocènes du Mali septentrional. Paris: Editions du CNRS.Google Scholar
Eshed, V., Ghoper, A., Galili, E. and Hershkovitz, I. 2004. Musculoskeletal stress markers in Natufian hunter-gatherers and Neolithic farmers in the Levant: the upper limb. American Journal of Physical Anthropology 123: 303–15.Google Scholar
Fazekas, I. G and Kósa, F. 1978. Forensic Fetal Osteology. Budapest: Akadémiai Kiadó.Google Scholar
Ferembach, D., Schwidetzky, I. and Stloukal, M. 1979. Raccomandazioni per la determinazione dell’età e del sesso sullo scheletro. Rivista di Antropologia 60: 551.Google Scholar
Formicola, V. and Giannecchini, M. 1999. Evolutionary trends of stature in Upper Paleolithic and Mesolithic Europe. Human Evolution 36: 319–33.Google Scholar
France, D. L. and Horn, A. D. 1988. Lab Manual and Workbook for Physical Anthropology. St. Paul, New York, Los Angeles, San Francisco: West Publishing Company.Google Scholar
Goose, D. H. 1963. Dental measurement: an assessment of its value anthropological studies. In Brothwell, D. R. (ed.), Dental Anthropology, London: Pergamon, 125–48.Google Scholar
Hall, R. L. 1982. Sexual dimorphism for size in seven nineteenth century northwest coast populations. Human Biology 50: 159–71.Google Scholar
Hammer, Ø., Harper, D. A. T. and Ryan, P. D. 2001. PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4.1: 19.Google Scholar
Hanihara, T., Ishida, H. and Dodo, Y. 2003. Characterization of biological diversity through analysis of discrete cranial traits. American Journal of Physical Anthropology 121: 241–51.Google Scholar
Hauser, G. and De Dtefano, G. F. 1989. Epigenetic Variants of the Human Skull. Stuttgart: Schweizerbart.Google Scholar
Hengen, O. P. 1971. Cribra orbitalia, pathogenesis and probable etiology. Homo 22: 5775.Google Scholar
Henschen, F. 1961. Cribra cranii, a skull condition said to be of racial or geographical nature. Pathological Microbiology 21: 724–29.Google Scholar
Herhkovitz, I., Rothschilds, B. M., Latimer, B., Dutour, O., Leonetti, G., Greenwald, C. M., Rothschilds, C. and Jellema, L. M. 1997. Recognition of sickle cell anemia in skeletal remains of children. American Journal of Physical Anthropology 104: 213–26.Google Scholar
Hillson, S. W. 1996. Dental Anthropology. Cambridge: Cambridge University Press.Google Scholar
Holland, T. D. and O’Brien, M. J. 1997. Parasites, porotic hyperostosis, and the implications of changing perspectives. American Antiquity 62.2: 183–93.Google Scholar
Irish, J. D. 1998. Ancestral dental traits in recent Sub-Saharan Africans and the origins of modern humans. Journal of Human Evolution 34: 8198.Google Scholar
Kelley, M. A. and Larsen, C. S. 1991. Advances in Dental Anthropology. New York: Wiley-Liss.Google Scholar
Kellock, W. L. and Parsons, P. A. 1970. Variation of minor non-metrical cranial variants in Australian aborigines. American Journal of Physical Anthropology 32: 409–22.Google Scholar
Krogman, W. M. and Iscan, Y. M. (eds). 1986. The Human Skeleton in Forensic Medicine. Springfield: C.C. Thomas.Google Scholar
Leschi, L. 1945. La Mission scientifique du Fezzân. Archéologie. Travaux de l’Institut de Recherches Sahariennes 3: 183–86.Google Scholar
Liverani, M. (ed.). 2003. Arid Lands in Roman Times. Papers from the International Conference (Rome, July, 9th–10th 2001). AZA 4. Firenze: All’Insegna del Giglio.Google Scholar
Liverani, M. (ed.). 2006. Aghram Nadharif. The Barkat Oasis (Sha’abiya of Ghat, Libyan Sahara) in Garamantian Times. AZA 5. Firenze: All’Insegna del Giglio.Google Scholar
Liverani, M. 2007. Cronologia e periodizzazione dei Garamanti. Acquisizioni e prospettive. Athenaeum 95: 633–62.Google Scholar
Liverani, M., Barbato, L., Castelli, R., Cancellieri, E. and Putzolu, C. 2013. The survey of the Fewet necropolis, in Mori 2013a: 199252.Google Scholar
Lovejoy, C. O. 1985. Dental wear in the Libben population: its functional pattern and role in the determination of adult skeletal age at death. American Journal of Physical Anthropology 68: 4756.Google Scholar
Manouvrier, L. 1893. La determination de la taille d’apres le grands os des membres. Bulletin et Mémoires de la Société d’Anthropologie de Paris 4: 347.Google Scholar
Manzi, G. 2003. ‘Epigenetic’ cranial traits, Neanderthals and the origin of Homo sapiens. Rivista di antropologia 81: 5768.Google Scholar
Manzi, G. and Passerello, P. 1999. Human remains, deciduous and permanent teeth. In di Lernia, S. (ed.), The Uan Afuda Cave. Hunter-Gatherer Societies of Central Sahara, AZA 1, Firenze: All’Insegna del Giglio, 203–07.Google Scholar
Manzi, G. and Ricci, F. 2003. Population of the Roman Era in the central Sahara: skeletal samples from the Fezzan (south-western Libya) in a diachronic perspective. In Liverani 2003: 1522.Google Scholar
Manzi, G. and Vienna, A. 1997. Cranial non-metric traits as indicators of hypostosis or hyperostosis. Rivista di Antropologia 75: 4161.Google Scholar
Manzi, G., Vienna, A. and Hauser, G. 1996. Developmental stress and cranial hypostosis by epigenetic trait occurrence and distribution: an exploratory study on the Italian Neanderthals. Journal of Human Evolution 30: 511–27.Google Scholar
Martin, R. and Saller, K. 1957. Lehrbuch der Anthropologie Band I e Band II. Stuttgart: Fischer.Google Scholar
Mattingly, D. J. 2003. Religious and funerary structures. In Mattingly, D. J. (ed.), The Archaeology of Fazzan, Volume 1: Synthesis, London: Society for Libyan Studies, Department of Antiquities, 177234.Google Scholar
Mattingly, D. J. 2007. The African way of death: burial rituals beyond the Roman Empire. In Stone and Stirling 2007: 138–63.Google Scholar
Mattingly, D. J. (ed.). 2010. The Archaeology of Fazzan. Volume 3, Excavations carried out by Daniels, C. M.. London: Society for Libyan Studies, Department of Antiquities.Google Scholar
Meindl, R. S. and Lovejoy, C. O. 1985. Ectocranial suture closure: a revised method for the determination of skeletal age at death based on lateral-anterior sutures. American Journal of Physical Anthropology 68: 4756.Google Scholar
Mercuri, A. M., Bosi, G. and Buldrini, F. 2013. Seeds, fruits and charcoal from the Fewet compound. In Mori 2013a: 177–90.Google Scholar
Mittler, D. M. and Van Gerven, D. P. 1994. Developmental, diachronic, and demographic analysis of cribra orbitalia in the Medieval Christian populations of Kulubnarti. American Journal of Physical Anthropology 93: 287–97.Google Scholar
Mori, L. (ed.). 2013a. Life and Death of a Rural Village in Garamantian Times. Archaeological Investigations in the Oasis of Fewet (Libyan Sahara). AZA 6. Firenze: All’Insegna del Giglio.Google Scholar
Mori, L. 2013b. The survey in the Tan Ataram area. In Mori 2013a: 7178.Google Scholar
Mori, L. and Ricci, F. 2013. The excavation of the Fewet necropolis. In Mori 2013a: 253318.Google Scholar
Mori, L., Gatto, M. C. and Ottomano, C. 2013a. Excavations and soundings at Tan Afella. In Mori 2013a: 3370.Google Scholar
Mori, L., Gatto, M. C., Ricci, F. and Zerboni, A. 2013b. Life and death at Fewet. In Mori 2013a: 375–87.Google Scholar
Nikita, E., Crivellaro, F., Stock, J., Foley, R. and Lahr, M. M. 2010. Human skeletal remains. In Mattingly, D. J. (ed.), The Archaeology of Fazzan, Volume 3, Excavation of C. M. Daniels, London: Society for Libyan Studies, Department of Antiquities, 375408.Google Scholar
Nikita, E., Siew, Y. Y., Stock, J., Mattingly, D. J. and Mirazon Lahr, M. M. 2011. Activity patterns in the Sahara desert: an interpretation based on cross-sectional geometric properties. American Journal of Physical Anthropology 146: 423–34.Google Scholar
Nikita, E., Mattingly, D. J. and Lahr, M. M. 2012. Sahara: barrier or corridor? Nonmetric cranial traits and biological affinities of North African Late Holocene populations. American Journal of Physical Anthropology 147: 280–92.Google Scholar
Ortner, D. 2003. Identification of Pathological Conditions in Human Skeletal Remains. New York: Academic Press.Google Scholar
Ortner, D. J., Butler, W., Cafarella, J. and Milligan, L. 2001. Evidence of probable scurvy in subadults from archaeological sites in North America. American Journal of Physical Anthropology 114: 343–51.Google Scholar
Ossenberg, N. S. 1970. The influence of artificial cranial deformation on discontinuous morphological traits. American Journal of Physical Anthropology 33: 357–72.Google Scholar
Pace, B., Sergi, S. and Caputo, G. 1951. Scavi Sahariani. Ricerche nell’Uadi el-Agial e nell’Oasi di Gat. Monumenti antichi 41: 150549.Google Scholar
Paris, F. 1984. La région d’In Gall-Tegidda-n-Tesemt (Niger, programme archéologique d’urgence 1977–1981). III : Les sépultures du Néolithique final à l’Islam. Études nigériennes 50. Niamey: Inst. de Rech. en Sci. Hum.Google Scholar
Pearson, O. M., Cordero, R. B. and Busby, A. M. 2006. How different were Neanderthals’ habitual activities? A comparative analysis with diverse groups of recent humans. In Harvati, K. and Harrison, T. (eds), Neanderthals Revisited: New Approaches and Perspectives, New York: Springer, 135–56.Google Scholar
Pitre, M. C., Stark, R. J., Gatto, M. C. 2016. First probable case of scurvy in ancient Egypt at Nag el-Qarmila, Aswan. International Journal of Paleopathology 13: 1119.Google Scholar
Pomeroy, E. and Zakrzewski, S. R. 2009. Sexual dimorphism in diaphyseal cross-sectional shape in the Medieval Muslim population of Ecija, Spain, and Anglo-Saxon Great Chesterford, UK. International Journal of Osteoarchaeology 19: 5065.Google Scholar
Puccioni, N. 1967. I nomadi del Sahara. In Biasutti, R. (ed.), Le razze e i popoli della Terra 2 (3), Unione Torino: Tipografico/Editrice Torinese, 154–82.Google Scholar
Raxter, M. H. 2011. Egyptian Body Size: A Regional and Worldwide Comparison. PhD Dissertation, University of South Florida, http://scholarcommons.usf.edu/etd/3305.Google Scholar
Ricci, F., Manzi, G., Fornai, C., Vecchi, F. and Passarello, P. 2002. The human skeletal remains: inventory and inferences. In di Lernia, and Manzi 2002: 217–50.Google Scholar
Ricci, F., Fornai, C., Tiesler Blos, V., Rickards, O., di Lernia, S. and Manzi, G. 2008. Evidence of artificial cranial deformation from the later prehistory of the Acacus Mts. (South-Western Libya, Central Sahara). International Journal of Osteoarchaeology 18: 372–91.Google Scholar
Ricci, F., Tafuri, M. A., Di Vincenzo, F. and Manzi, G. 2013. The human skeletal sample from Fewet. In Mori 2013a: 319–62.Google Scholar
Ricci, R., Mancinelli, D., Vargiu, R., Cucina, A., Santandrea, E., Capelli, A. and Catalano, P. 1997. Pattern of porotic hyperostosis and quality of life in a II century A.D. farm near Rome. Rivista di Antropologia 75: 112.Google Scholar
Robledo, B., Trancho, G. J. and Brothwell, D. 1995. Cribra orbitalia: health indicator in the late roman population of Cannington (Sommerset, Great Britain). Journal of Paleopathology 7: 185–93.Google Scholar
Ruff, C. B. 1987. Sexual dimorphism in human lower limb bone structure: relationship to subsistence strategy and sexual division of labor. Journal of Human Evolution 16: 391416.Google Scholar
Ruff, C. B. and Hayes, W. C. 1983. Cross-sectional geometry of Pecos Pueblo femora and tibiae – a biomechanical investigation: I. Method and general patterns of variation. American Journal of Physical Anthropology 60: 359–81.Google Scholar
Salvadei, L., Ricci, F. and Manzi, G. 2001. Porotic hyperostosis as a marker of health and nutritional conditions during childhood: studies at the transition between Imperial Rome and the Early Middle Ages. American Journal of Physical Anthropology 13: 709–17.Google Scholar
Schultz, A. H. 1937. Proportion, variability and asymmetries of the long bone of the limbs and the clavicles in man and apes. Journal of Anatomy 9: 281328.Google Scholar
Schultz, M. 1993. Vestiges of non-specific inflammations of the skull in prehistoric and historic populations. A contribution to palaeopathology. In Kaufmann, B. (ed.), Anthropologische Beitrage 4A/B, Aesch: Anthropologisches Forschungsinstitut Aesch and Anthropologische Gesellschaft in Basel, 184.Google Scholar
Seielstad, M. T., Minch, E. and Cavalli-Sforza, L. L. 1998. Genetic evidence for a higher female migration rate in humans. Nature Genetics 20: 278–80.Google Scholar
Sergi, S. 1951. I resti scheletrici delle antiche popolazioni del Fezzan ed il tipo dei Garamanti. In Pace, Sergi, and Caputo 1951, 443542.Google Scholar
Shaw, C. N. and Stock, J. T. 2009. Intensity, repetitiveness, and directionality of habitual adolescent mobility patterns influence the tibial diaphysis morphology in athletes. American Journal of Physical Anthropology 140: 149–59.Google Scholar
Sjøvold, T. 1984. A report on the heritability of some cranial measurements and non-metric traits. In van Vark, G. N., and Howells, W. W. (eds), Multivariate statistics in physical anthropology, Dordrecht: D. Reidel, 223–46.Google Scholar
Sparacello, V. and Marchi, D. 2008. Mobility and subsistence economy: a diachronic comparison between two groups settled in the same geographic area (Liguria, Italy). American Journal of Physical Anthropology 136: 485–95.Google Scholar
Sperduti, A., Manzi, G., Salvadei, L. and Passarello, P. 1995. I Longobardi di La Selvicciola (Ischia di Castro, Viterbo). Morfologia e morfometria scheletrica. Rivista di Antropologia 73: 265–79.Google Scholar
Starling, A. 2005. Dental Indicators of Health and Stress in Ancient Egypt and Nubia. Unpublished MPhil thesis, University of Cambridge, UK.Google Scholar
Stloukal, M. and Hanakova, H. 1978. Die Länge der Langsknochen altslawischer Bevölkerungen unter besonderer Berücksichtigung von Wachstumsfragen. Homo 29: 5369.Google Scholar
Stock, J. and Pfeiffer, S. 2001. Linking structural variability in long bone diaphysis to habitual behaviors: Foragers from the Southern African Later Stone Age and the Andaman Islands. American Journal of Physical Anthropology 115: 337–48.Google Scholar
Stock, J., O’Neill, M. C., Ruff, C. B., Zabecki, M., Shackelford, L. and Rose, J. C. 2011. Body size, skeletal biomechanics and habitual activity from the Late Palaeolithic to the Mid-Dynastic Nile Valley. In Pinhasi, R. and Stock, J. (eds), Human Bioarchaeology of the Transition to Agriculture, London: Wiley, 347–67.Google Scholar
Stone, D. L. and Stirling, L. M. (eds). 2007. Mortuary Landscapes of North Africa. Toronto: University of Toronto Press.Google Scholar
Stuart-Macadam, P. 1985. Porotic hyperostosis: representative of a childhood condition. American Journal of Physical Anthropology 66: 391–98.Google Scholar
Stuart-Macadam, P. 1987. Porotic hyperostosis: new evidence to support the anemia theory. American Journal of Physical Anthropology 74: 521–26.Google Scholar
Suckling, G. W. 1989. Developmental defects of enamel. Historical and present-day perspectives on their pathogenesis. Advances in Dental Research 3.2: 8794.Google Scholar
Sullivan, A. 2005. Prevalence and etiology of acquired anemia in Medieval York, England. American Journal of Physical Anthropology 128: 252–72.Google Scholar
Tafuri, M. A., Bentley, R. A., Manzi, G. and di Lernia, S. 2006. Mobility and kinship in the prehistoric Sahara: Strontium isotope analysis of Holocene human skeletons from the Acacus Mountains (south-western Libya). Journal of Anthropological Archaeology 25: 390402.Google Scholar
Tafuri, M. A., Pelosi, A., Ricci, F., Manzi, G. and Castorina, F. 2013. The preliminary isotope investigation. In Mori 2013a, 363–67.Google Scholar
Tilkens, M. J., Wall-Scheffler, C., Weaver, T. D. and Steudel-Numbers, K. 2007. The effects of body proportions on thermoregulation: an experimental assessment of Allen’s rule. Journal of Human Evolution 53.3: 286–91.Google Scholar
Todd, T. W. 1920. Age changes in the pubic bone: I. The male White pubis. American Journal of Physical Anthropology 3: 285334.Google Scholar
Ubelaker, D. V. 1989. Human Skeletal Remains. Excavation, Analysis, Interpretation. Washington, D.C.: Taraxacum.Google Scholar
van der Veen, M. 1992. Garamantian agriculture: the plant remains from Zinchecra, Fezzan. Libyan Studies 23: 739.Google Scholar
van der Veen, M. 1995. Ancient agriculture in Libya: a review of the evidence. Acta Palaeobotanica 35.1: 8598.Google Scholar
Vercellotti, G., Stout, S. D., Boano, R. and Sciulli, P. W. 2011. Intrapopulation variation in stature and body proportions: social status and sex differences in an Italian medieval population (Trino Vercellese, VC). American Journal of Physical Anthropology 145: 203–14.Google Scholar
Walker, P. L., Bathurst, R. R., Richman, R., Gjerdrum, T. and Andrushko, V. A. 2009. The causes of porotic hyperostosis and cribra orbitalia: A reappraisal of the iron-deficiency anemia hypothesis. American Journal of Physical Anthropology 139: 109–25.Google Scholar
Wapler, U., Crubézy, E. and Schultz, M. 2004. Is cribra orbitalia synonymous with anemia? Analysis and interpretation of cranial pathology in Sudan. American Journal of Physical Anthropology 123: 333–39.Google Scholar
Weiss, E. 2003. Effects of rowing on humeral strength. American Journal of Physical Anthropology 121: 293302.Google Scholar
Wescott, D. J. 2006. Effect of mobility on femur midshaft external shape and robusticity. American Journal of Physical Anthropology 130: 201–13.Google Scholar
Wijsman, E. M. and Neves, W. A. 1986. The use of nonmetric variation in estimating human population admixture: a test case with Brazilian blacks, whites and mulattos. American Journal of Physical Anthropology 70: 395405.Google Scholar
Zakrzewski, S. R. 2003. Variation in ancient Egyptian stature and body proportion. American Journal of Physical Anthropology 121: 219–29.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×