Skip to main content Accessibility help
×
  • Cited by 17
    • Show more authors
    • You may already have access via personal or institutional login
    • Select format
    • Publisher:
      Cambridge University Press
      Publication date:
      11 December 2020
      21 January 2021
      ISBN:
      9781108853972
      9781108810760
      Dimensions:
      Weight & Pages:
      Dimensions:
      (229 x 152 mm)
      Weight & Pages:
      0.08kg, 38 Pages
    • Series:
      Elements in Geochemical Tracers in Earth System Science
    You may already have access via personal or institutional login
  • Selected: Digital
    Add to cart View cart Buy from Cambridge.org
    Series:
    Elements in Geochemical Tracers in Earth System Science

    Book description

    Precise measurements of the calcium (Ca) isotopes have provided constraints on Ca cycling at global and local scales, and quantified rates of carbonate diagenesis in marine sedimentary systems. Key to applying Ca isotopes as a geochemical tracer of Ca cycling, carbonate (bio)mineralization, and diagenesis is an understanding of the impact of multiple factors potentially impacting Ca isotopes in the rock record. These factors include variations in stable isotopic fractionation factors, the influence of local-scale Ca cycling on Ca isotopic gradients in carbonate settings, carbonate dissolution and reprecipitation, and the relationship between the Ca isotopic composition of seawater and mineral phases that record the secular evolution of seawater chemistry.

    References

    Ahm, A.-S. C., Bjerrum, C. J., Blättler, C. L., Swart, P. K., and Higgins, J. A. 2018. Quantifying early marine diagenesis in shallow-water carbonate sediments. Geochim. Cosmochim. Acta 236, 140159.
    Ahm, A-S. C., Maloof, A. C., Macdonald, F. A., et al. 2019. An early diagenetic deglacial origin for basal Ediacaran cap dolostones. Earth Planet. Sci. Lett. 506C, 292307.
    Balter, V., Martin, J. E., Tacail, T., Suan, G., Renaud, S., and Girard, C. 2019. Calcium stable isotopes place Devonian conodonts as first level consumers. Geochem. Perspect. Lett. 10, 3639.
    Banerjee, A., and Chakrabarti, R. 2018. Large Ca stable isotopic (δ44/40Ca) variation in a hand-specimen sized spheroidally weathered diabase due to selective weathering of clinopyroxene and plagioclase. Chem. Geol. 483, 295303.
    Blättler, C. L., and Higgins, J. A. 2014. Calcium isotopes in evaporites record variations in Phanerozoic seawater SO4 and Ca. Geology 42, 711714.
    Blättler, C. L., and Higgins, J. A. 2017. Testing Urey’s carbonate-silicate cycle using the calcium isotopic composition of sedimentary carbonates. Earth Planet. Sci. Lett. 479, 241251.
    Blättler, C. L., Jenkyns, H. C., Reynard, L. M., and Henderson, G. M. 2011. Significant increases in global weathering during Oceanic Anoxic Events 1a and 2 indicated by calcium isotopes. Earth Planet. Sci. Lett. 309, 7788.
    Blättler, C. L., Henderson, G. M., and Jenkyns, H. C. 2012. Explaining the Phanerozoic Ca isotope history of seawater. Geology 40, 843846.
    Blättler, C. L., Miller, N. R., and Higgins, J. A. 2015. Mg and Ca isotope signatures of authigenic dolomite in siliceous deep-sea sediments. Earth Planet. Sci. Lett. 419, 3242.
    Blättler, C. L., Claire, M. W., Prave, A. R., et al. 2018. Two-billion-year-old evaporates capture Earth’s great oxidation. Science 360, 320323.
    Boulyga, S. F. 2010. Calcium isotope analysis by mass spectrometry. Mass Spectrometry Reviews 29, 685716.
    Bradbury, H. J., and Turchyn, A. V. 2018. Calcium isotope fractionation in sedimentary pore fluids from ODP Leg 175: Resolving carbonate recrystallization. Geochim. Cosmochim. Acta 236, 121139.
    Brazier, J.-M., Suan, G., Tacail, T., et al. 2015. Calcium isotope evidence for dramatic increase of continental weathering during the Toarcian oceanic anoxic event (Early Jurassic). Earth Planet. Sci. Lett. 411, 164176.
    Brazier, J.-M., Schmitt, A.-D., Gangloff, S., Chabaux, F., and Tertre, E. 2019. Calcium isotopic fractionation during adsorption and desorption onto common soil phyllosilicates. Geochim. Cosmochim. Acta 250, 324347.
    Broecker, W. S., and Peng, T.-H. 1982. Tracers in the Sea. Palisades, NY: Eldigio Press.
    Chang, V. T. C., Williams, R., Makishima, A., Belshaw, N. S., and O’Nions, R. K. 2004. Mg and Ca isotope fractionation during CaCO3 biomineralization. Biochem. Biophys. Res. Commun. 323, 7985.
    Chu, N.-C., Henderson, G. M., Belshaw, N. S., and Hedges, R. E. M. 2006. Establishing the potential of Ca isotopes as proxy for consumption of dairy products. Appl. Geochem. 21, 16561667.
    CIAAW. 2017. Isotopic compositions of the elements. Available at; www.ciaaw.org
    Clementz, M. T., Holden, P., and Koch, P. L. 2003. Are calcium isotopes a reliable monitor of trophic level in marine settings? Int. J. Osteoarchaeol. 13, 2936.
    De La Rocha, C. L., and DePaolo, D. J. 2000. Isotopic evidence for variations in the marine calcium cycle over the Cenozoic. Science 289, 11761178.
    DePaolo, D. J. 2004. Calcium isotopic variations produced by biological, kinetic, radiogenic and nucleosynthetic processes. Rev. Mineral. Geochem. 55, 255288.
    Dickson, J. A. D. 2002. Fossil echinoderms as monitor of the Mg/Ca ratio of Phanerozoic oceans. Science 298, 12221224.
    Druhan, J. L., Lammers, L., and Fantle, M. S. 2020. On the utility of quantitative modeling to the interpretation of Ca isotopes. Chem. Geol. 537, 119469.
    Elderfield, H., and Schultz, A. 1996. Mid-ocean ridge hydrothermal fluxes and the chemical composition of the ocean. Annu. Rev. Earth Planet. Sci. 24, 191224.
    Erhardt, A. M., Turchyn, A. V., Bradbury, H. J., and Dickson, J. A. D. 2020. The calcium isotopic composition of carbonate hardground cements: A new record of changes in ocean chemistry? Chem. Geol. 540, 119490.
    Fantle, M. S. 2010. Evaluating the Ca isotope proxy. Am. J. Sci. 310, 194230.
    Fantle, M. S. 2015. Calcium isotopic evidence for rapid recrystallization of bulk marine carbonates and implications for geochemical proxies. Geochim. Cosmochim. Acta 148, 378401.
    Fantle, M. S., and DePaolo, D. J. 2005. Variations in the marine Ca cycle over the past 20 million years. Earth Planet. Sci. Lett. 237, 102117.
    Fantle, M. S., and DePaolo, D. J. 2007. Ca isotopes in carbonate sediment and pore fluid from ODP Site 807A: The Ca2+(aq)-calcite equilibrium fractionation factor and calcite recrystallization rates in Pleistocene sediments. Geochim. Cosmochim. Acta 71, 25242546.
    Fantle, M. S., and Higgins, J. 2014. The effects of diagenesis and dolomitization on Ca and Mg isotopes in marine platform carbonates: Implications for the geochemical cycles of Ca and Mg. Geochim. Cosmochim. Acta 142, 458481.
    Fantle, M. S., and Ridgwell, A. 2020. Towards an understanding of the Ca isotopic signal related to ocean acidification and alkalinity overshoots in the rock record. Chem. Geol. 547, 119672. DOI:10.1016/j.chemgeo.2020.119672.
    Fantle, M. S., and Tipper, E. T. 2014. Calcium isotopes in the global biogeochemical Ca cycle: Implications for development of a Ca isotope proxy. Earth Sci. Rev. 129, 148177.
    Fantle, M. S., Maher, K. M., and DePaolo, D. J. 2010. Isotopic approaches for quantifying the rates of marine burial diagenesis. Rev. Geophys. 48, RG3002, DOI:10.1029/2009RG000306.
    Fantle, M. S., Barnes, B. D., and Lau, K. V. 2020. The role of diagenesis in shaping the geochemistry of the marine carbonate record. Annu. Rev. Earth Planet. Sci. 48. DOI:10.1146/annurev-earth-073019-060021.
    Farkaš, J., Böhm, F., Wallmann, K., et al. 2007. Calcium isotope record of Phanerozoic oceans: Implications for chemical evolution of seawater and its causative mechanisms. Geochim. Cosmochim. Acta 71, 51175134.
    Farkaš, J., Fryda, J., and Holmden, C. 2016. Calcium isotope constraints on the marine carbon cycle and CaCO3 deposition during the late Silurian (Ludfordian) positive δ13C excursion. Earth Planet. Sci. Lett. 451, 3140.
    Fietzke, J., Eisenhauer, A., Gussone, N., et al. 2004. Direct measurement of 44Ca/40Ca ratios by MC-ICP-MS using the cool plasma technique. Chem. Geol. 206, 1120.
    Gordon, G. W., Monge, J., Channon, M. B., et al. 2014. Predicting multiple myeloma disease activity by analyzing natural calcium isotopic composition. Leukemia 28, 21122115.
    Griffith, E. M., and Fantle, M. S. 2020. Introduction to calcium isotope geochemistry: Past lessons and future directions. Chem. Geol. 528, 119271.
    Griffith, E. M., Paytan, A., Caldeira, K., Bullen, T. D., and Thomas, E. 2008a. A dynamic marine calcium cycle during the past 28 million years. Science 322, 16711674
    Griffith, E. M., Paytan, A., Kozdan, R., Eisenhauer, A., and Ravelo, A. C. 2008b. Influences on the fractionation of calcium isotopes in planktonic foraminifera. Earth Planet. Sci. Lett 268, 124136.
    Griffith, E. M., Paytan, A., Eisenhauer, A., Bullen, T. D., and Thomas, E. 2011. Seawater calcium isotope ratios across the Eocene-Oligocene Transition. Geology 39, 683686.
    Griffith, E. M., Fantle, M. S., Eisenhauer, A., Paytan, A., and Bullen, T. D. 2015. Effects of ocean acidification on the marine calcium isotope record at the Paleocene-Eocene Boundary. Earth Planet. Sci. Lett 419, 8192.
    Griffith, E. M., Schmitt, A.-D., Andrews, M. G., and Fantle, M. S. 2020. Elucidating modern geochemical cycles at local, regional, and global scales using calcium isotopes. Chem. Geol. 534, 119445.
    Gussone, N., and Filipsson, H. L. 2010. Calcium isotope ratios in calcitic tests of benthic foraminifers. Earth Planet. Sci. Lett. 290, 108117.
    Gussone, N., and Heuser, A. 2016. Biominerals and biomaterial. In Gussone, N., Schmitt, A.-D., Heuser, A., Wombacher, F., Dietzel, M., Tipper, E., and Schiller, M. (eds.), Calcium Stable Isotope Geochemistry, pp. 111144. New York: Springer Science+Business Media.
    Gussone, N., Eisenhauer, A., Heuser, A., et al. 2003. Model for kinetic effects on calcium isotope fractionation (δ44Ca) in inorganic aragonite and cultured planktonic foraminifera. Geochim. Cosmochim. Acta 67, 13751382.
    Gussone, N., Eisenhauer, A., Tiedemann, R., et al. 2004. Reconstruction of Caribbean Sea surface temperature and salinity fluctuations in response to the Pliocene closure of the Central American Gateway and radiative forcing, using δ44/40Ca, δ18O and Mg/Ca ratios. Earth Planet. Sci. Lett. 227, 201214.
    Gussone, N., Böhm, F., Eisenhauer, A., et al. 2005. Calcium isotope fractionation in calcite and aragonite. Geochim. Cosmochim. Acta 69, 44854494.
    Gussone, N., Hönisch, B., Heuser, A., Eisenhauer, A., Spindler, M., and Hemleben, C. 2009. A critical evaluation of calcium isotope ratios in tests of planktonic foraminifers. Geochim. Cosmochim. Acta 73, 72417255.
    Gussone, N., Schmitt, A.-D., Heuser, A., et al. 2016. Calcium Stable Isotope Geochemistry. Advances in Isotope Geochemistry. New York: Springer Science+Business Media.
    Gutjahr, M., Ridgwell, A., Sexton, P. F., et al. 2017. Very large release of mostly volcanic carbon during the Palaeocene-Eocene Thermal Maximum. Nature 548, 573577.
    Hardie, L. A. 1996. Secular variation in seawater chemistry: An explanation for the coupled secular variation in the mineralogies of marine limestones and potash evaporites over the past 600 m.y. Geology 24, 279283.
    Hassler, A., Martin, J. E., Amiot, R., et al. 2018. Calcium isotopes offer clues on resource partitioning among Cretaceous predatory dinosaurs. Proc. R. Soc. B: Biol. Sci. 285, doi.org/10.1098/rspb.2018.0197.
    Harouaka, K., Eisenhauer, A., and Fantle, M. S. 2014. Experimental investigation of Ca isotopic fractionation during abiotic gypsum precipitation. Geochim. Cosmochim. Acta 129, 157176.
    Hensley, T. M. 2006. Calcium isotopic variation in marine evaporites and carbon-ates: Applications to Late Miocene Mediterranean brine chemistry and late Cenozoic calcium cycling in the oceans. PhD thesis, University of California, San Diego.
    Heuser, A., and Eisenhauer, A. 2010. A pilot study on the use of natural calcium isotope (44Ca/40Ca) fractionation in urine as a proxy for the human body calcium balance. Bone 46, 889896.
    Heuser, A., Eisenhauer, A., Böhm, F., et al. 2005. Calcium isotope (δ44/40Ca) variations of Neogene planktonic foraminifera. Paleoceanography 20, PA2013.
    Heuser, A., Tütken, T., Gussone, N., and Galer, S. J. G. 2011. Calcium isotopes in fossil bones and teeth: Diagenetic versus biogenic origin. Geochim. Cosmochim. Acta 75, 34193433.
    Heuser, A., Eisenhauser, A., Scholz-Ahrens, K. E., and Schrezenmeir, J. 2016a. Biological fractionation of stable Ca isotopes in Göttingen minipigs as a physiological model for Ca homeostasis in humans. Isot. Environ. Health. Stud. 52, 633648.
    Heuser, A., Schmitt, A.-D., Gussone, N., and Wombacher, F. 2016b. Analytical methods. In Gussone, N., Schmitt, A.-D., Heuser, A., Wombacher, F., Deitzel, M., Tipper, E., and Schiller, M., Calcium Stable Isotope Geochemistry, 2373. New York: Springer Science+Business Media.
    Higgins, J. A., Blättler, C. L., Lundstrom, E. A., et al. 2018. Mineralogy, early marine diagenesis, and the chemistry of shallow-water carbonate sediments. Geochim. Cosmochim. Acta 220, 512534.
    Hinojosa, J. L., Brown, S. T., Chen, J., DePaolo, D. J., Paytan, A., Shen, S., and Payne, J. L. 2012. Evidence for end-Permian ocean acidification from calcium isotopes in biogenic apatite. Geology 40, 743746.
    Hippler, D., Eisenhauer, A., and Nägler, T. F. 2006. Tropical Atlantic SST history inferred from Ca isotope thermometry over the last 140 ka. Geochim. Cosmochim. Acta 70, 90100.
    Hippler, D., Witbaard, R., van Aken, H. M., Buhl, D., and Immenhauser, A. 2013. Exploring the calcium isotopes signature of Arctica islandica as an environmental proxy using laboratory- and field-cultured specimens. Palaeogeogr. Palaeoclimatol. Palaeoecol. 373, 7587.
    Holmden, C., Papanastassiou, D. A., Blanchon, P., and Evans, S. 2012. δ44/40Ca variability in shallow water carbonates and the impact of submarine groundwater discharge on Ca-cycling in marine environments. Geochim. Cosmochim. Acta 83, 179194.
    Horita, J., Zimmermann, H., and Holland, H. D. 2002. Chemical evolution of seawater during the Phanerozoic: Implications from the record of marine evaporites. Geochim. Cosmochim. Acta 66, 37333756.
    Huber, C., Druhan, J. L., and Fantle, M. S. 2017. Perspectives on geochemical proxies: The impact of model and parameter selection on the quantification of carbonate recrystallization rates. Geochim. Cosmochim. Acta 217, 171192.
    Husson, J. M., Higgins, J. A., Maloof, A. C., and Schoene, B. 2015. Ca and Mg isotope constraints on the origin of Earth’s deepest d13C excursion. Geochim. Cosmochim. Acta 160, 243266.
    IAEA. Livechart – Table of Nuclides. Available at: www.nds.iaea.org/relnsd/vcharthtml/VChartHTML.html
    Jacobson, A. D., Andrews, M. G., Lehn, G. O., and Holmden, C. 2015. Silicate versus carbonate weathering in Iceland: New insights from Ca isotopes. Earth Planet. Sci. Lett. 416, 132142.
    Jost, A. B., Bachan, A., van de Schootbrugge, B., Brown, S. T., DePaolo, D., and Payne, J. L. 2017. Additive effects of acidification and mineralogy on calcium isotopes in Triassic/Jurassic boundary limestones. Geochem. Geophys. Geosyst. 18, 113124.
    Kasemann, S. A., Schmidt, D. N., Pearson, P. N., and Hawkesworth, C. J. 2008. Biological and ecological insights into Ca isotopes in planktic foraminifers as a paleotemperature proxy. Earth Planet. Sci. Lett. 271, 292302.
    Kiessling, W., Flugel, E., and Golonka, J. 2003, Patterns of Phanerozoic carbonate platform sedimentation. Lethaia 36, 195225.
    Kisakürek, B., Eisenhauer, A., Böhm, F., Hathorne, E. C., and Erez, J. 2011. Controls on calcium isotope fractionation in cultured planktic foraminifera, Globigerinoides ruber and Globigerinella siphonifera. Geochim. Cosmochim. Acta 75, 427443.
    Komar, N., and Zeebe, R. E. 2011. Oceanic calcium changes from enhanced weathering during the Paleocene-Eocene thermal maximum: No effect on calcium-based proxies. Paleoceanography 26, PA3211.
    Komar, N., and Zeebe, R. E. 2016. Calcium and calcium isotope changes during carbon cycle perturbations at the end-Permian. Paleoceanography 31, 115130.
    Kozdon, R., Eisenhauer, A., Weinelt, M., Meland, M. Y., and Nürnberg, D. 2009. Reassessing Mg/Ca temperature calibrations of Neogloboquadrina pachyderma (sinistral) using paired δ44/40Ca and Mg/Ca measurements. Geochem. Geophys. Geosyst. 10 (2008GC002169).
    Langer, G., Gussone, N., Nehrke, G., Riebesell, U., Eisenhauer, A., and Thoms, S. 2007. Calcium isotopic fractionation during coccolith formation in Emiliania huxleyi: Independence of growth and calcification. Geochem. Geophys. Geosyst. 8 (2006GC001422).
    Lau, K. V., Maher, K., Brown, S. T., et al. 2017. The influence of seawater carbonate chemistry, mineralogy, and diagenesis on calcium isotope variations in Lower-Middle Triassic carbonate rocks. Chem. Geol. 471, 1337.
    Lehn, G. O., Jacobson, A. D., and Holmden, C. 2013. Precise analysis of Ca isotope ratios (δ40/44Ca) using an optimized 43Ca–42Ca double-spike MC-TIMS method. Int. J. Mass Spectrom. Doi.org/10.1016/j.ijms.2013.06.013.
    Lemarchand, D., Wasserburg, G. J., and Papanstassiou, D. A. 2004. Rate-controlled calcium isotope fractionation in synthetic calcite. Geochim. Cosmochim. Acta 68, 46654678.
    Linzmeier, B. J., Jacobson, A. D., Sageman, B. B., et al. 2020. Calcium isotope evidence for environmental variability before and across the Cretaceous-Paleogene mass extinction. Geology 48, 3438.
    Lord, N. S., Ridgwell, A., Thorne, M. C., and Lunt, D. J. 2016. An impulse response function for the ‘long tail’ of excess atmospheric CO2 in an Earth system model. Global Biogeochem. Cycles 30, 217.
    Lowenstein, T. K., Timofeeff, M. N., Brennan, S. T., Hardie, L. A., and Demicco, R. V. 2001. Oscillations in Phanerozoic seawater chemistry: Evidence from fluid inclusions. Science 294, 10861088.
    Martin, J. E., Tacail, T., Adnet, S., Girard, C., and Balter, V. 2015. Calcium isotopes reveal the trophic position of extant and fossil elasmobranchs. Chem. Geol. 415, 118125.
    Martin, J. E., Vincent, P., Tacail, T., et al. 2017. Calcium isotopic evidence for vulnerable marine ecosystem structure prior to the K/Pg extinction. Curr. Biol. 27, 16411644.
    Martin, J. E., Tacail, T., Cerling, T. E., and Balter, V. 2018. Calcium isotopes in enamel of modern and Plio-Pleistocene East African mammals. Earth Plant. Sci. Lett. 503, 227235.
    Millero, F. J. 1996. Chemical Oceanography., Boca Raton, FL: CRC Press.
    Morgan, J. L. L., Skulan, J. L., Gordon, G. W., Romaniello, S. J., Smith, S. M., and Anbar, A. D. 2012. Rapidly assessing changes in bone mineral balance using natural stable calcium isotopes. Proc. Natl. Acad. Sci. USA 109, 99899994.
    Nägler, T., Eisenhauer, A., Muller, A., Hemleben, C., and Kramers, J. 2000. The δ44Ca- temperature calibration on fossil and cultured Globigerinoides sacculifer: New tool for reconstruction of past sea surface temperatures. Geochem. Geophys. Geosyst. 1 (2000GC000091).
    Payne, J. L., and Clapham, M. E. 2012. End-Permian mass extinction in the oceans: An ancient analog for the 21st century? Annu Rev. Earth Planet. Sci. 40, 89111.
    Payne, J. L., Turchyn, A. V., Paytan, A., et al. 2010. Calcium isotope constraints on the end-Permian mass extinction. Proc. Natl. Acad. USA 107, 85438548.
    Pogge, Von Strandmann, P., Burton, K., Snaebjornsdottir, S., et al .2019. Rapid CO2 mineralisation into calcite at the CarbFix storage site quantified using calcium isotopes. Nat. Commun. 10, 1983.
    Porter, S. M. 2007. Seawater chemistry and early carbonate biomineralization. Science 316, 1302.
    Rangarajan, R., Mondal, S., Thankachan, P., Chakrabarti, R., and Kurpad, A. V. 2018. Assessing bone mineral changes in response to vitamin D supplementation using natural variability in stable isotopes of calcium in urine. Sci. Rep. 8, 16751.
    Reynard, L. M., Henderson, G. M., and Hedges, R. E. M. 2010. Calcium isotope ratios in animal and human bone. Geochim. Cosmochim. Acta 74, 37253750.
    Ridgwell, A., Hargreaves, J. C., Edwards, N. R., et al. 2007. Marine geochemical data assimilation in an efficient Earth System Model of global biogeochemical cycling. Biogeosciences 4, 87104.
    Russell, W. A., Papanastassiou, D. A., and Tombrello, T. A. 1978. Ca isotope fractionation on the Earth and other solar system materials. Geochim. Cosmochim. Acta 42, 10751090.
    Ryu, J.-S., Jacobson, A. D., Holmden, C., Lundstrom, C. C., and Zhang, Z. 2011. The major ion, δ44/40Ca, δ44/42Ca, and δ26/24Mg, geochemistry of granite weathering at pH = 1 and T = 25°C: power-law processes and the relative reactivity of minerals. Geochim. Cosmochim. Acta 75, 60046026.
    Sandberg, P. A. 1983. An oscillating trend in Phanerozoic nonskeletal carbonate mineralogy. Nature 305, 1922.
    Santamaria-Fernandez, R., and Wolff, J.-C. 2010. Applications of laser ablation multicollector inductively coupled plasma mass spectrometry for the measurement of calcium and lead isotope ratios in packaging for discriminatory purposes. Rapid Comm. Mass. Spectrom. 24, 19931999.
    Schmitt, A.-D., Chabaux, F., and Stille, P. 2003a. The calcium riverine and hydrothermal isotopic fluxes and the oceanic calcium mass balance. Earth Planet. Sci. Lett. 6731, 116.
    Schmitt, A.-D., Stille, P., and Vennemann, T. 2003b. Variations of the 44Ca /40Ca ratio in seawater during the past 24 million years: Evidence from δ44Ca and δ18O values of Miocene phosphates. Geochim. Cosmochim. Acta 67, 26072614.
    Shao, Y. X., Farkaš, J., Holmden, C., et al. 2018. Calcium and strontium isotope systematics in the lagoon-estuarine environments of South Australia: Implications for water source mixing, carbonate fluxes and fish migration. Geochim. Cosmochim. Acta 239, 90108.
    Silva-Tamayo, J. C., Lau, K. V., Jost, A. B., et al. 2018. Global perturbation of the marine calcium cycle during the Permian-Triassic transition. GSA Bull. 130, 13231338.
    Sime, N. G., De La Rocha, C. L., and Galy, A. 2005. Negligible temperature dependence of calcium isotope fractionation in twelve species of planktonic foraminfera. Earth Planet. Sci. Lett. 232, 5166.
    Sime, N. G., De La Rocha, C. L., Tipper, E. T., Tripati, A., Galy, A., and Bickle, M. J. 2007. Interpreting the Ca isotope record of marine biogenic carbonates. Geochim. Cosmochim. Acta 71, 39793989.
    Skulan, J., and DePaolo, D. J. 1999. Calcium isotope fractionation between soft and mineralized tissues as a monitor of calcium use in vertebrates. Proc. Natl. Acad. Sci. USA 96, 1370913713.
    Skulan, J., DePaolo, D. J., and Owens, T. L. 1997. Biological control of calcium isotope abundances in the global calcium cycle. Geochim. Cosmochim. Acta 61, 25052510.
    Skulan, J., Bullen, T., Anbar, A. D., 2007. Natural calcium isotopic composition of urine as a marker of bone mineral balance. Clin. Chem. 53, 11551158.
    Soudry, D., Segal, I., Nathan, Y., et al. 2004. 44Ca /42Ca and 143Nd /144Nd isotope variations in Cretaceous-Eocene Tethyan francolites and their bearings on phosphogenesis in the southern Tethys. Geology 32, 389392.
    Soudry, D., Glenn, C. R., Nathan, Y., Segal, I., and VonderHaar, D. L. 2006. Evolution of Tethyan phosphogenesis along the northern edges of the Arabian-African shield during the Cretaceous-Eocene as deduced from temporal variations of Ca and Nd isotopes and rates of P accumulation. Earth Sci. Rev. 78, 2757.
    Sun, X., Higgins, J., and Turchyn, A. V. 2016. Diffusive cation fluxes in deep-sea sediments and insights into the global geochemical cycles of calcium, magnesium, sodium and potassium. Mar. Geol. 373, 6477.
    Tacail, T., Télouk, P., and Balter, V. 2016. Precise analysis of calcium stable isotope variations in biological apatites using laser ablation MC-ICPMS. J. Anal. At. Spectrom. 31, 152162.
    Tacail, T., Thivichon-Prince, B., Martin, J. E., Charles, C., Viriot, L., and Balter, V. 2017. Assessing human weaning practices with calcium isotopes in tooth enamel. Proc. Natl. Acad. Sci. USA 114, 62686273.
    Tacail, T., Martin, J. E., Arnaud-Godet, F., et al. 2019. Calcium isotopic patterns in enamel reflect different nursing behaviors among South African early hominins. Sci. Adv. 5, eaax3250.
    Tanaka, Y.-K., Yajima, N., Higuchi, Y., Yamato, H., and Hirata, T. 2017. Calcium isotope signature: New proxy for net change in bone volume for chronic kidney disease and diabetic rats. Metallomics 9, 17451755.
    Tipper, E. T., Gaillardet, J., Galy, A., and Louvat, P. 2010. Calcium isotope ratios in the world’s largest rivers: A constraint on the maximum imbalance of oceanic calcium fluxes. Global Biogeochem. Cy. 24, GB3019, 13p. doi:10.1029/2009GB003574.
    Tostevin, R., Bradbury, H. J., Shields, G. A., et al. 2019. Calcium isotopes as a record of the marine calcium cycle versus carbonate diagenesis during the late Ediacaran. Chem. Geol. 529, 119319.
    Turchyn, A. V., and DePaolo, D. J. 2011. Calcium isotope evidence for suppression of carbonate dissolution in carbonate-bearing organic-rich sediments. Geochim. Cosmochim. Acta 75, 70817098.
    Urey, H. 1952. The Planets: Their Origin and Development. New Haven, CT: Yale University Press.
    Veizer, J., Ala, D., Azmy, K., et al. 1999. 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater. Chem. Geol. 161, 5988.
    Wang, J., Jacobson, A. D., Zhang, H., et al. 2019. Coupled δ44/40Ca, δ88/86Sr, and 87Sr/86Sr geochemistry across the end-Permian mass extinction event. Geochim. Cosmochim. Acta 262, 143165.
    Wang, M., Audi, G., Kondev, F. G., Huan, W. J., Naimi, S., and Xu, X. 2017. The AME2016 atomic mass evaluation. Chinese Phys. C 41, 030003.
    Zhang, W., Hu, Z., Liu, Y., Feng, L., and Jiang, H. 2019. In situ calcium isotopic ratio determination in calcium carbonate materials and calcium phosphate materials using laser ablation-multiple collector-inductively coupled plasma mass spectrometry. Chem. Geol. 522, 1625.
    Zhu, P., and Macdougall, J. D. 1998. Calcium isotopes in the marine environment and the oceanic calcium cycle. Geochim. Cosmochim. Acta 62, 16911698.

    Metrics

    Altmetric attention score

    Full text views

    Total number of HTML views: 0
    Total number of PDF views: 0 *
    Loading metrics...

    Book summary page views

    Total views: 0 *
    Loading metrics...

    * Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

    Usage data cannot currently be displayed.

    Accessibility standard: Unknown

    Why this information is here

    This section outlines the accessibility features of this content - including support for screen readers, full keyboard navigation and high-contrast display options. This may not be relevant for you.

    Accessibility Information

    Accessibility compliance for the PDF of this book is currently unknown and may be updated in the future.