Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-06-08T05:57:12.341Z Has data issue: false hasContentIssue false

Part I - The Comparative Approach

Published online by Cambridge University Press:  02 March 2020

Lance Workman
Affiliation:
University of South Wales
Will Reader
Affiliation:
Sheffield Hallam University
Jerome H. Barkow
Affiliation:
Dalhousie University, Nova Scotia
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Darwin, C. (1859). On The Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life. London: John Murray.Google Scholar
Darwin, C. (1872). The Expression of the Emotions in Man and Animals. London: HarperCollins.CrossRefGoogle Scholar
Descartes, R. (1641). Meditations on First Philosophy, trans. by J. Cottingham (1996). Cambridge, UK: Cambridge University Press.Google Scholar
Morgan, C. L. (1894). Introduction to Comparative Psychology. London: Walter Scott.CrossRefGoogle Scholar
Workman, L. (2013). Charles Darwin: Mindshaper. Basingstoke: Palgrave Macmillan.Google Scholar

References

Auersperg, A. M. I., Laumer, I. B., & Bugnyar, T. (2013). Goffin cockatoos wait for qualitative and quantitative gains but prefer “better” to “more”. The Royal Society: Biology Letters, 9, 20121092.Google Scholar
Bandura, A. (1971). Analysis of modeling processes. In Bandura, A, ed., Psychological Modeling. Chicago, IL: Aldine-Atherton, pp. 162.Google Scholar
Barner, D., & Bachrach, A. (2010). Inference and exact numerical representation in early language development. Cognitive Science, 60, 4062.Google Scholar
Bolhuis, J. J., & Everaert, M., eds. (2013). Birdsong, Speech, and Language. Cambridge, MA: MIT Press.Google Scholar
Boysen, S. T. (2006). The impact of symbolic representations on chimpanzee cognition. In Hurley, S & Nudds, M, eds., Rational Animals? Oxford: Oxford University Press, pp. 506511.Google Scholar
Boysen, S. T., & Berntson, G. G. (1989). Numerical competence in a chimpanzee (Pan troglodytes). Journal of Comparative Psychology, 103, 2331.Google Scholar
Boysen, S. T., & Berntson, G. G. (1995). Responses to quantity: Perceptual versus cognitive mechanisms in chimpanzees (Pan troglodytes). Journal of Experimental Psychology: Animal Behavior Processes, 21, 8286.Google ScholarPubMed
Boysen, S. T., & Hallberg, K. I. (2000). Primate numerical competence: Contributions toward understanding nonhuman cognition. Cognitive Science, 24, 423443.Google Scholar
Boysen, S. T., Berntson, G. G., Shreyer, T. A., & Quigley, K. S. (1993). Processing of ordinality and transitivity by chimpanzees (Pan troglodytes). Journal of Comparative Psychology, 107, 208215.Google Scholar
Bramlett, J. L., Perdue, B. M., Evans, T. A., & Beran, M. J. (2012). Capuchin monkeys (Cebus apella) let lesser rewards pass them by to get better rewards. Animal Cognition, 15, 963969.Google Scholar
Carey, S. (2009). The Origin of Concepts. New York: Oxford.Google Scholar
Chakraborty, M., Walløe, S., Nedergaard, S., et al. (2015). Core and shell song systems unique to the parrot brain. PLoS ONE, 10, e0118496.Google Scholar
Deruelle, C., Barbet, I., Dépy, D., & Fagot, J. (2000). Perception of partly occluded figures by baboons (Papio papio). Perception, 291, 14831497.Google Scholar
Dixon, L. S. (1977). The nature of control by spoken words over visual stimulus selection. Journal of the Experimental Analysis of Behavior, 27, 433442.Google Scholar
Drapier, M., Chauvin, C., Dufour, V., Uhlrich, P., & Thierry, B. (2005). Food exchange with humans in brown capuchin monkeys. Primates, 46, 241248.CrossRefGoogle ScholarPubMed
Dufour, V., Pelé, M., Sterck, E. H. M., & Thierry, B. (2007). Chimpanzee (Pan troglodytes) anticipation of food return: Coping with waiting time in an exchange task. Journal of Comparative Psychology, 121, 145155.Google Scholar
Dufour, V., Wascher, C. A. F., Braun, A., Miller, R., & Bugnyar, T. (2012). Corvids can decide if a future exchange is worth waiting for. Biology Letters, 8, 201204.Google Scholar
Emery, N. J., & Clayton, N. S. (2004). The mentality of crows: Convergent evolution of intelligence in corvids and apes. Science, 306, 19031907.Google Scholar
Fagot, J., Barbet, I., Parron, C., & Deruelle, C. (2006). Amodal completion by baboons (Papio papio): Contribution of background depth cues. Primates, 47, 145150.Google Scholar
Frank, M. C., Everett, D. L., Fedorenko, E., & Gibson, E. (2008). Number as a cognitive technology: Evidence from Pirahã language and cognition. Cognition, 108, 819824.Google Scholar
Fuson, K. (1988). Children’s Counting and Concepts of Number. New York: Springer-Verlag.CrossRefGoogle Scholar
Gallistel, C. R., & Gelman, R. (1992). Preverbal and verbal counting and computation. Cognition, 44, 4374.Google Scholar
Güntürkün, O., & Bugnyar, T. (2016). Cognition without cortex. Trends in Cognitive Sciences, 20, 291303.Google Scholar
Hedges, S. B., Parker, P. H., Sibley, C. G., & Kumar, S. (1996). Continental breakup and the ordinal diversification of birds and mammals. Nature, 381, 226229.Google Scholar
Hill, A., Collier-Baker, E., & Suddendorf, T. (2012). Inferential reasoning by exclusion in children. Journal of Comparative Psychology, 126, 243254.CrossRefGoogle ScholarPubMed
Hillemann, F., Bugnyar, T., Kotrschal, K., & Wascher, C. A. F. (2014). Waiting for better, not for more: Corvids respond to quality in two delay maintenance tasks. Animal Behaviour, 90, 110.CrossRefGoogle Scholar
Inoue, S., & Matsuzawa, T. (2009). Acquisition and memory of sequence order in young and adult chimpanzees (Pan troglodytes). Animal Cognition, 12(Suppl. 1), S59S69.Google Scholar
Kellman, P. J., & Spelke, E. S. (1983). Perception of partially occluded objects in infancy. Cognitive Psychology, 15, 483524.Google Scholar
Kidd, C., Palmeri, H., & Aslin, R. N. (2013). Rational snacking: Young children’s decision making on the marshmallow task is moderated by beliefs about environmental reliability. Cognition, 126, 109114.Google Scholar
Koepke, A., Gray, S. L., & Pepperberg, I. M. (2015). Delayed gratification: A Grey parrot (Psittacus erithacus) will wait for a better reward. Journal of Comparative Psychology, 129, 339346.CrossRefGoogle ScholarPubMed
Lea, S. E. G., Slater, A. M., & Ryan, C. M. E. (1996). Perception of object unity in chicks: A comparison with the human infant. Infant Behavior and Development, 19, 501504.Google Scholar
Livingstone, M. S., Pettine, W. W., Srihasam, K., et al. (2014). Symbol addition by monkeys provides evidence for normalized quantity coding. Proceedings of the National Academy of Sciences, 111, 68226827.Google Scholar
Matsuzawa, T. (1985). Use of numbers by a chimpanzee. Nature, 315, 5759.Google Scholar
Mikolasch, S., Kotrschal, K., & Schloegl, C. (2011). African Grey parrots (Psittacus erithacus) use inference by exclusion to find hidden food. Biology Letters, 7, 875877.CrossRefGoogle ScholarPubMed
Mikolasch, S., Kotraschal, K., & Schloegl, C. (2012). The influence of local enhancement on choice performances in African Grey parrots (Psittacus erithacus) and jackdaws (Corvus monedula). Journal of Comparative Psychology, 126, 399406.CrossRefGoogle ScholarPubMed
Minini, L., & Jeffery, K. J. (2006). Do rats use shape to solve “shape discriminations”? Learning & Memory, 13, 287297.Google Scholar
Mischel, W. (1974). Processes in delay of gratification. In Berkowitz, L., ed., Advances in Experimental Social Psychology, Vol. 7. New York: Academic Press, pp. 249292.Google Scholar
Mischel, W., & Ebbesen, E. B. (1970). Attention in delay of gratification. Journal of Personality and Social Psychology, 16, 329337.CrossRefGoogle Scholar
Mischel, W., Shoda, Y., & Rodriguez, M. I. (1989). Delay of gratification in children. Science, 244, 933938.Google Scholar
Mix, K., Huttenlocher, J., & Levine, S. C. (2002). Quantitative Development in Infancy and Early Childhood. New York: Oxford University Press.CrossRefGoogle Scholar
Mody, S., & Carey, S. (2016). The emergence of reasoning by the disjunctive syllogism in early childhood. Cognition, 154, 4048.Google Scholar
Nagasaka, Y., & Wasserman, E. A. (2008). Amodal completion of moving objects by pigeons. Perception, 37, 557570.Google Scholar
Nagasaka, Y., Brooks, D. I., & Wasserman, E. A. (2010). Amodal completion in bonobos. Learning & Motivation, 41, 174186.Google Scholar
Nakamura, N., Watanabe, S., Betsuyaku, T., & Fujita, K. (2011). Do bantams (Gallus gallus domesticus) amodally complete partly occluded lines? An analysis of line classification performance. Journal of Comparative Psychology, 125, 411419.CrossRefGoogle ScholarPubMed
Nakayama, K., He, Z. J., & Shimojo, S. (1995). Visual surface representation: A critical link between lower-level and higher level vision. In Kosslyn, S. M & Osherson, D. N, eds., Invitation to Cognitive Science. Cambridge, MA: MIT Press, pp. 170.Google Scholar
Olkowicz, S., Kocourek, M., Lučan, R. K., et al. (2016). Birds have primate-like numbers of neurons in the forebrain. Proceedings of the National Academy of Sciences, 113, 72557260.Google Scholar
Patterson, D. K., & Pepperberg, I. M. (1998). A comparative study of human and Grey parrot phonation: II. Acoustic and articulatory correlates of stop consonants. Journal of the Acoustical Society of America, 103, 21972213.Google Scholar
Pepperberg, I. M. (1987). Evidence for conceptual quantitative abilities in the African Grey parrot: Labeling of cardinal sets. Ethology, 75, 3761.Google Scholar
Pepperberg, I. M. (1988). An interactive modeling technique for acquisition of communication skills: Separation of “labeling” and “requesting” in a psittacine subject. Applied Psycholinguistics, 9, 5976.Google Scholar
Pepperberg, I. M. (1994). Evidence for numerical competence in an African Grey parrot (Psittacus erithacus). Journal of Comparative Psychology, 108, 3644.Google Scholar
Pepperberg, I. M. (1999). The Alex Studies. Cambridge, MA: Harvard University Press.Google Scholar
Pepperberg, I. M. (2006a). Addition by a Grey parrot (Psittacus erithacus), including absence of quantity. Journal of Comparative Psychology, 120, 111.Google Scholar
Pepperberg, I. M. (2006b). Ordinality and inferential abilities of a Grey parrot (Psittacus erithacus). Journal of Comparative Psychology, 120, 205216.Google Scholar
Pepperberg, I. M. (2012a). Further evidence for addition and numerical competence by a Grey parrot (Psittacus erithacus). Animal Cognition, 15, 711717.Google Scholar
Pepperberg, I. M. (2012b). Symbolic communication in the Grey parrot. In Vonk, J. & Shackelford, T. K., eds., The Oxford Handbook of Comparative Evolutionary Psychology. New York: Oxford University Press, pp. 297319.Google Scholar
Pepperberg, I. M. (2013). Interspecies communication with Grey parrots: A tool for examining cognitive processing. In Witzany, G, ed., Biocommunication of Animals, New York: Springer, pp. 213232.Google Scholar
Pepperberg, I. M., & Brezinsky, M. V. (1991). Acquisition of a relative class concept by an African Grey parrot (Psittacus erithacus): Discriminations based on relative size. Journal of Comparative Psychology, 105, 286294.Google Scholar
Pepperberg, I. M., & Carey, S. (2012). Grey parrot number acquisition: The inference of cardinal value from ordinal position on the numeral list. Cognition, 125, 219232.Google Scholar
Pepperberg, I. M., & Gordon, J. D. (2005). Number comprehension by a Grey parrot (Psittacus erithacus), including a zero-like concept. Journal of Comparative Psychology, 119, 197209.Google Scholar
Pepperberg, I. M., & Nakayama, K. (2016). Robust representation of shape by a Grey parrot (Psittacus erithacus). Cognition, 153, 146160.Google Scholar
Pepperberg, I. M., & Shive, H. A. (2001). Simultaneous development of vocal and physical object combinations by a Grey parrot (Psittacus erithacus): Bottle caps, lids, and labels. Journal of Comparative Psychology, 115, 376384.Google Scholar
Pepperberg, I. M., & Wilcox, S. E. (2000). Evidence for a form of mutual exclusivity during label acquisition by Grey parrots (Psittacus erithacus)? Journal of Comparative Psychology, 114, 219231.CrossRefGoogle ScholarPubMed
Pepperberg, I. M., & Wilkes, S. R. (2004). Lack of referential vocal learning from LCD video by Grey parrots (Psittacus erithacus). Interaction Studies, 5, 7597.Google Scholar
Pepperberg, I. M., Willner, M. R., & Gravitz, L. B. (1997). Development of Piagetian object permanence in a Grey parrot (Psittacus erithacus). Journal of Comparative Psychology, 111, 6375.Google Scholar
Pepperberg, I. M., Koepke, A., Livingston, P., Girard, M., & Hartsfield, LA. (2013). Reasoning by inference: Further studies on exclusion in Grey parrots (Psittacus erithacus). Journal of Comparative Psychology, 127, 272281.Google Scholar
Pepperberg, I. M., Gray, S. L., Cornero, F. M., Mody, S., & Carey, S. (2019). Logical reasoning by a Grey parrot (Psittacus erithacus)? A case study of the disjunctive syllogism. Behaviour, 156, 409445.Google Scholar
Petrazzini, M. E. M., Agrillo, C., Izard, V., & Bisazza, A. (2015). Relative versus absolute numerical representation: Can guppies represent “fourness”? Animal Cognition, 18, 10071017.Google Scholar
Premack, D. (1983). The codes of man and beasts. Behavioral and Brain Sciences, 6, 125167.Google Scholar
Premack, D. (1984). Possible general effects of language training on the chimpanzee. Human Development, 27, 268281.Google Scholar
Premack, D., & Premack, A. J. (1994). Levels of causal understanding in chimpanzees and children. Cognition, 50, 347362.Google Scholar
Regolin, L., & Vallortigara, G. (1995). Perception of partly occluded objects in young chicks. Perception and Psychophysics, 57, 971976.Google Scholar
Rozin, P. (1976). The evolution of intelligence and access to the cognitive unconscious. In Sprague, J. M. & Epstein, A. N., eds., Progress in Psychobiology and Physiological Psychology, Vol. 6. New York: Academic Press, pp. 245280.Google Scholar
Sarnecka, B. W., & Carey, S. (2008). How counting represents number: What children must learn and when they learn it. Cognition, 108, 662674.Google Scholar
Schloegl, C., Schmidt, J., Boeckle, M., Weiss, B. M., & Kotrschal, K. (2012). Grey parrots use inferential reasoning based on acoustic cues alone. Proceedings of the Royal Society B: Biological Sciences, 279, 41354142.Google Scholar
Steelandt, S., Thierry, B., Broihanne, M.-H., & Dufour, V. (2012). The ability of children to delay gratification in an exchange task. Cognition, 122, 416425.Google Scholar
Stephan, C., Wilkinson, A., & Huber, L. (2013). Pigeons discriminate objects on the basis of abstract familiarity. Animal Cognition, 16, 983992.CrossRefGoogle ScholarPubMed
Stephens, D. W., Kerr, B., & Fernández-Juricic, E. (2004). Impulsiveness without discounting: The ecological rationality hypothesis. Proceedings of the Royal Society B: Biological Sciences, 271, 24592465.Google Scholar
ten Cate, C., & Healy, S., eds. (2017). Avian Cognition. Cambridge, UK: Cambridge University Press.Google Scholar
Todt, D. (1975). Social learning of vocal patterns and modes of their application in Grey Parrots. Zeitschrift für Tierpsychologie, 39, 178188.Google Scholar
Toner, I. J., & Smith, R. A. (1977). Age and overt verbalization in delay-maintenance behavior in children. Journal of Experimental Child Psychology, 24, 123128.Google Scholar
Toner, I. J., Lewis, B. C., & Gribble, C. M. (1979). Evaluative verbalization and delay maintenance behavior in children. Journal of Experimental Child Psychology, 28, 205210.Google Scholar
Vick, S. J., Bovet, D., & Anderson, J. R. (2010). How do African Grey parrots (Psittacus erithacus) perform on a delay of gratification task? Animal Cognition, 13, 351358.Google Scholar
Vonk, J., & Beran, M. J. (2012). Bears “count” too: Quantity estimation and comparison in black bears (Ursus americanus). Animal Behaviour, 84, 231238.Google Scholar
Vonk, J., & Shackelford, T. K., eds. (2012). The Oxford Handbook of Comparative Evolutionary Psychology. New York: Oxford University Press.Google Scholar
Wasserman, E. A., & Zentall, T. R., eds. (2006). Comparative Cognition: Experimental Explorations of Animal Intelligence. New York: Oxford University Press.Google Scholar
Wynn, K. (1990). Children’s understanding of counting. Cognition, 36, 155193.Google Scholar
Wynn, K. (1992). Children’s acquisition of the number words and the counting system. Cognitive Psychology, 24, 220251.CrossRefGoogle Scholar

References

Anderson, J. R., & Gallup, G. G. (2011). Which primates recognize themselves in mirrors? PLoS Biology, 9(3), 24.CrossRefGoogle ScholarPubMed
Anderson, J. R., Gillies, A., & Lock, L. C. (2010). Pan thanatology. Current Biology, 20(8), 349351.Google Scholar
Archie, E. A., Moss, C. J., & Alberts, S. C. (2006). The ties that bind: Genetic relatedness predicts the fission and fusion of social groups in wild African elephants. Proceedings of the Royal Society, Series B, 273, 513522.Google ScholarPubMed
Arvidsson, J., Amundin, M., & Laska, M. (2012). Successful acquisition of an olfactory discrimination test by Asian elephants, Elephas maximus. Physiology and Behavior, 105(3), 809814.Google Scholar
Bates, L. A. (2018). Elephants – Studying cognition in the African savannah. In Bueno-Guerra, N. & Amici, F., eds., Field and Laboratory Methods in Animal Cognition, A Comparative Guide. Cambridge, UK: Cambridge University Press, pp. 177198.Google Scholar
Bates, L. A., & Byrne, R. W. (2015). Primate social cognition: What we have learned from nonhuman primates and other animals. In Mikulincer, M. & Shaver, P. R., APA Handbook Personality and Social Psychology, Vol. 1. Washington, DC: American Psychological Association, pp. 4778.Google Scholar
Bates, L. A., Sayialel, K. N., Njiraini, N. W., et al. (2007). Elephants classify human ethnic groups by odor and garment color. Current Biology, 17(22), 15.Google Scholar
Bates, L. A., Sayialel, K. N., Njiraini, N. W., et al. (2008a). African elephants have expectations about the locations of out-of-sight family members. Biology Letters, 4(1), 3436.Google Scholar
Bates, L. A., Lee, P. C., Njiraini, N., et al. (2008b). Do elephants show empathy? Journal of Consciousness Studies, 15(10–11), 204225.Google Scholar
Bates, L. A., Handford, R., Lee, P. C., et al. (2010). Why do African elephants (Loxodonta africana) simulate oestrus? An analysis of longitudinal data. PLoS ONE, 5(4), e10052.CrossRefGoogle ScholarPubMed
Blake, S., Bouché, P., Rasmussen, H., Orlando, A., & Douglas-Hamilton, I. (2003). The Last Sahelian Elephants: Ranging Behavior, Population Status and Recent History of the Desert Elephants of Mali. Nairobi: Save the Elephants.Google Scholar
Boesch, C., & Boesch, H. (1990). Tool use and tool making in wild chimpanzees. Folia Primatologica, 54, 8699.Google Scholar
Brownell, C. A., Zerwas, S., & Ramani, G. B. (2007). So big: The development of body self-awareness in toddlers. Child Development, 78(5), 14261440.CrossRefGoogle ScholarPubMed
Byrne, R. W., & Bates, L. A. (2010). Primate social cognition: Uniquely primate, uniquely social, or just unique? Neuron, 65(6), 815830.Google Scholar
Byrne, R. W., & Whiten, A. (1988). Machiavellian Intelligence: Social Expertise and the Evolution of Intellect in Monkeys, Apes and Humans. Oxford: Clarendon Press.Google Scholar
Byrne, R. W., Bates, L. A., & Moss, C. J. (2009). Elephant cognition in primate perspective. Comparative Cognition & Behavior Reviews, 4, 115.Google Scholar
Chevalier-Skolnikoff, S., & Liska, J. (1993). Tool use by wild and captive elephants. Animal Behaviour, 46, 209219.Google Scholar
Chiyo, P. I., Archie, E. A., Hollister-Smith, J. A., et al. (2011). Association patterns of African elephants in all-male groups: The role of age and genetic relatedness. Animal Behaviour, 81(6), 10931099.Google Scholar
Cozzi, B., Spagnoli, S., & Bruno, L. (2001). An overview of the central nervous system of the elephant through a critical appraisal of the literature published in the XIX and XX centuries. Brain Research Bulletin, 54(2), 219227.Google Scholar
Dale, R., & Plotnik, J. M. (2017). Elephants know when their bodies are obstacles to success in a novel transfer task. Scientific Reports, 7, 46309.Google Scholar
de Silva, S., & Wittemyer, G. (2012). A comparison of social organization in Asian elephants and African savannah elephants. International Journal of Primatology, 33(5), 11251141.Google Scholar
Douglas-Hamilton, I., Bhalla, S., Wittemyer, G., & Vollrath, F. (2006). Behavioural reactions of elephants towards a dying and deceased matriarch. Applied Animal Behaviour Science, 100(1–2), 87102.Google Scholar
Dunbar, R. I. M. (1988). The social brain hypothesis. Evolutionary Anthropology, 6, 178190.Google Scholar
Fishlock, V., Caldwell, C., & Lee, P. C. (2016). Elephant resource-use traditions. Animal Cognition, 19(2), 429433.CrossRefGoogle ScholarPubMed
Foerder, P., Galloway, M., Barthel, T., Moore, D. E., & Reiss, D. (2011). Insightful problem solving in an Asian elephant. PLoS ONE, 6(8), e23251.Google Scholar
Foley, C., Pettorelli, N., & Foley, L. (2008). Severe drought and calf survival in elephants. Biology Letters, 4(5), 541544.Google Scholar
Gallup, G. G. (1970). Chimpanzees: Self-recognition. Science, 167, 8687.Google Scholar
Goldenberg, S. Z., Douglas-Hamilton, I., & Wittemyer, G. (2016). Vertical transmission of social roles drives resilience to poaching in elephant networks. Current Biology, 26(1), 7579.Google Scholar
Goodall, J. (1986). The Chimpanzees of Gombe. Cambridge, MA: Harvard University Press.Google Scholar
Greco, B. J., Brown, T. K., Andrews, J. R. M., Swaisgood, R. R., & Caine, N. G. (2013). Social learning in captive African elephants (Loxodonta africana africana). Animal Cognition, 16(3), 459469.Google Scholar
Hakeem, A. Y., Hof, P. R., Sherwood, C. C., et al. (2005). Brain of the African elephant (Loxodonta africana): Neuroanatomy from magnetic resonance images. The Anatomical Record Part A: Discoveries in Molecular, Cellular, and Evolutionary Biology, 287(1), 11171127.Google Scholar
Hart, B. L., & Hart, L. A. (1994). Fly switching by Asian elephants: Tool use to control parasites. Animal Behaviour, 48, 3545.Google Scholar
Hart, B., Hart, L. A., McCoy, M., & Sarath, C. (2001). Cognitive behaviour in Asian elephants: Use and modification of branches for fly switching. Animal Behaviour, 62, 839847.Google Scholar
Hart, B. L., Hart, L. A., & Pinter-Wollman, N. (2008). Large brains and cognition: Where do elephants fit in? Neuroscience and Biobehavioral Reviews, 32(1), 8698.Google Scholar
Hedges, S. B. (2001). Afrotheria: Plate tectonics meets genomics. Proceedings of the National Academy of Sciences, 98(1), 12.Google Scholar
Heyes, C. M. (1994). Reflections on self-recognition in primates. Animal Behaviour, 47, 909919.Google Scholar
Heyes, C. M., & Street, G. (1995). Self-recognition in primates: Further reflections create a hall of mirrors. Animal Behaviour, 50, 15331542.Google Scholar
Hunt, G. (1996). Manufacture and use of hook-tools by New Caledonian crows. Nature, 379, 249251.Google Scholar
Hunt, G. (2000). Human-like, population-level specialization in the manufacture of Pandanus tools by New Caledonian crows Corvus moneduloids. Proceedings of the Royal Society, Series B, 267, 403413.Google Scholar
Irie-Sugimoto, N., Kobayashi, T., Sato, T., & Hasegawa, T. (2009). Relative quantity judgment by Asian elephants (Elephas maximus). Animal Cognition, 12(1), 193199.Google Scholar
Jerison, H. (1973). Evolution of the Brain and Intelligence. New York: Academic Press.Google Scholar
Ketchaisri, O., Siripunkaw, C., & Plotnik, J. M. (2019). The use of a human’s location and social cues by Asian elephants in an object-choice task. Animal Cognition. doi:10.1007/s10071-019-01283-0.Google Scholar
Lahdenperä, M., Mar, K. U., & Lummaa, V. (2016). Nearby grandmother enhances calf survival and reproduction in Asian elephants. Scientific Reports, 6: 27213.Google Scholar
Lee, P. (1987). Allomothering among African elephants. Animal Behaviour, 35(1), 278291.Google Scholar
Lee, P. C., & Moss, C. J. (1999). The social context for learning and behavioural development among wild African elephants. In Box, H. & Gibson, K., eds., Mammalian Social Learning. Cambridge, UK: Cambridge University Press, pp. 102125.Google Scholar
Lee, P. C., & Moss, C. J. (2014). African elephant play, competence and social complexity. Animal Behavior and Cognition, 2(2), 144.Google Scholar
Lee, P. C., Poole, J. H., Njiraini, N., Sayialel, K. N., & Moss, C. J. (2011). Male social dynamics: Independence and beyond. In Moss, C. J., Croze, H., & Lee, P. C., eds., The Amboseli Elephants. Chicago, IL: Chicago University Press, pp. 260271.Google Scholar
Leggett, K. E. A. (2006). Home range and seasonal movement of elephants in the Kunene Region, northwestern Namibia. African Zoology, 41(1), 1736.Google Scholar
McComb, K., Moss, C., Sayialel, S., & Baker, L. (2000). Unusually extensive networks of vocal recognition in African elephants. Animal Behaviour, 59(6), 11031109.Google Scholar
McComb, K., Moss, C., Durant, S. M., Baker, L., & Sayialel, S. (2001). Matriarchs act as repositories of social knowledge in African elephants. Science, 292(5516), 491494.Google Scholar
McComb, K., Reby, D., Baker, L., Moss, C., & Sayialel, S. (2003). Long-distance communication of acoustic cues to social identity in African elephants. Animal Behaviour, 65(2), 317329.Google Scholar
McComb, K., Baker, L., & Moss, C. (2006). African elephants show high levels of interest in the skulls and ivory of their own species. Biology Letters, 2(1), 2628.CrossRefGoogle ScholarPubMed
McComb, K., Shannon, G., Durant, S. M., et al. (2011). Leadership in elephants: The adaptive value of age. Proceedings of the Royal Society B: Biological Sciences, 278(1722), 32703276.Google Scholar
McComb, K., Shannon, G., Sayialel, K. N., & Moss, C. (2014). Elephants can determine ethnicity, gender, and age from acoustic cues in human voices. Proceedings of the National Academy of Sciences, 111(14), 54335438.Google Scholar
Miller, A. K., Hensman, M. C., Hensman, S., et al. (2015). African elephants (Loxodonta africana) can detect TNT using olfaction: Implications for biosensor application. Applied Animal Behaviour Science, 171, 177183.Google Scholar
Mizuno, K., Irie, N., Hiraiwa-Hasegawa, M., & Kutsukake, N. (2016). Asian elephants acquire inaccessible food by blowing. Animal Cognition, 19(1), 215222.Google Scholar
Moore, C., Mealiea, J., Garon, N., & Povinelli, D. J. (2007). The development of body self-awareness. Infancy, 11, 157174.Google Scholar
Moss, C. J., & Lee, P. C. (2011). Female social dynamics: Fidelity and flexibility. In Moss, C. J., Croze, H., & Lee, P. C., eds., The Amboseli Elephants. Chicago, IL: Chicago University Press, pp. 205223.Google Scholar
Moss, C. J., & Poole, J. H. (1983). Relationships and social structure of African elephants. In Hinde, R., ed., Primate Social Relationships: An Integrated Approach. Oxford: Blackwells, pp. 314325.Google Scholar
Murphy, W. J., Eizirik, E., O’Brien, S., et al. (2001). Resolution of the early placental mammal radiation using Bayesian phylogenetics. Science, 294, 23482351.Google Scholar
Nissani, M. (2006). Do Asian elephants (Elephas maximus) apply causal reasoning to tool-use tasks? Journal of Experimental Psychology. Animal Behavior Processes, 32(1), 91–6.Google Scholar
O’Connell-Rodwell, C. E., Wood, J. D., Kinzley, C., et al. (2011). Male African elephants (Loxodonta africana) queue when the stakes are high. Ethology Ecology & Evolution, 23, 388397.Google Scholar
Perdue, B. M., Talbot, C. F., Stone, A. M., & Beran, M. J. (2012). Putting the elephant back in the herd: Elephant relative quantity judgments match those of other species. Animal Cognition, 15(5), 955961.Google Scholar
Plotnik, J. M., & de Waal, F. B. M. (2014). Asian elephants (Elephas maximus) reassure others in distress. PeerJ, 2, e278.CrossRefGoogle ScholarPubMed
Plotnik, J. M., de Waal, F. B. M., & Reiss, D. (2006). Self-recognition in an Asian elephant. Proceedings of the National Academy of Sciences, 103(45), 1705317057.Google Scholar
Plotnik, J. M., de Waal, F. B. M., Moore, D., & Reiss, D. (2010). Self-recognition in the Asian elephant and future directions for cognitive research with elephants in zoological settings. Zoo Biology, 29(2), 179191.Google Scholar
Plotnik, J. M., Lair, R., Suphachoksahakun, W., & de Waal, F. B. M. (2011). Elephants know when they need a helping trunk in a cooperative task. Proceedings of the National Academy of Sciences, 108(12), 51165121.CrossRefGoogle Scholar
Plotnik, J. M., Pokorny, J. J., Keratimanochaya, T., et al. (2013). Visual cues given by humans are not sufficient for Asian elephants (Elephas maximus) to find hidden food. PLoS ONE, 8(4), e61174.Google Scholar
Plotnik, J. M., Shaw, R. C., Brubaker, D. L., Tiller, L. N., & Clayton, N. S. (2014). Thinking with their trunks: Elephants use smell but not sound to locate food and exclude nonrewarding alternatives. Animal Behaviour, 88, 9198.Google Scholar
Polansky, L., Kilian, W., & Wittemyer, G. (2015). Elucidating the significance of spatial memory on movement decisions by African savannah elephants using state-space models. Proceedings of the Royal Society B: Biological Sciences, 282(1805), 20143042.Google Scholar
Poole, J. H. (1987). Rutting behaviour in African elephants: The phenomenon of musth. Behaviour, 102, 283316.Google Scholar
Poole, J. H. (1989a). Announcing intent: The aggressive state of musth in African elephants. Animal Behaviour, 37, 140152.Google Scholar
Poole, J. H. (1989b). Mate guarding, reproductive success and female choice in African elephants. Animal Behaviour, 37, 842849.Google Scholar
Poole, J. H., & Moss, C. J. (1981). Musth in the African elephant Loxodonta africana. Nature, 292, 830831.Google Scholar
Poole, J. H., Tyack, P. L., Stoeger-Horwath, A. S., & Watwood, S. (2005). Elephants are capable of vocal learning. Nature, 434, 455456.Google Scholar
Povinelli, D. J. (1989). Failure to find self-recognition in Asian elephants (Elephas maximus) in contrast to their use of mirror cues to discover hidden food. Journal of Comparative Psychology, 103(2), 122131.Google Scholar
Prior, H., Schwarz, A., & Gunturkun, O. (2008). Mirror-induced behavior in the magpie (Pica pica): Evidence of self-recognition. PLoS Biology, 6(8), e202.Google Scholar
Reiss, D., & Marino, L. (2001). Mirror self-recognition in the bottlenose dolphin: A case of cognitive convergence. Proceedings of the National Academy of Sciences, 98(10), 59375942.CrossRefGoogle ScholarPubMed
Rensch, B. (1957). The intelligence of elephants. Scientific American, 196(2), 4449.Google Scholar
Sanz, C., Call, J., & Morgan, D. (2009). Design complexity in termite-fishing tools of chimpanzees (Pan troglodytes). Biology Letters, 5(3), 293296.Google Scholar
Shoshani, J., Kupsky, W. J., & Marchant, G. H. (2006). Elephant brain. Part I: Gross morphology, functions, comparative anatomy, and evolution. Brain Research Bulletin, 70(2), 124157.Google Scholar
Smet, A. F., & Byrne, R. W. (2013). African elephants can use human pointing cues to find hidden food. Current Biology, 23(20), 20332037.Google Scholar
Smet, A. F., & Byrne, R. W. (2014a). African elephants (Loxodonta africana) recognize visual attention from face and body orientation. Biology Letters, 10, 20140428.Google Scholar
Smet, A. F., & Byrne, R. W. (2014b). Interpretation of human pointing by African elephants: Generalisation and rationality. Animal Cognition, 17(6), 13651374.Google Scholar
Soltis, J., King, L. E., Douglas-Hamilton, I., Vollrath, F., & Savage, A. (2014). African elephant alarm calls distinguish between threats from humans and bees. PLoS ONE, 9(2), e89403.Google Scholar
Stoeger, A. S., & Baotic, A. (2017). Male African elephants discriminate and prefer vocalizations of unfamiliar females. Scientific Reports, 7, 110.Google Scholar
Stoeger, A. S., Mietchen, D., Oh, S., et al. (2012). An Asian elephant imitates human speech. Current Biology, 22(22), 21442148.Google Scholar
Thuppil, V., & Coss, R. G. (2013). Wild Asian elephants distinguish aggressive tiger and leopard growls according to perceived danger. Biology Letters, 9(5), 20130518.Google Scholar
Tomasello, M. (2014). The ultra-social animal. European Journal of Social Psychology, 44(3), 187194.Google Scholar
Wittemyer, G., Douglas-Hamilton, I., & Getz, W. M. (2005). The socioecology of elephants: Analysis of the processes creating multitiered social structures. Animal Behaviour, 69(6), 13571371.Google Scholar
Wittemyer, G., Okello, J. B. A., Rasmussen, H. B., et al. (2009). Where sociality and relatedness diverge: The genetic basis for hierarchical social organization in African elephants. Proceedings of the Royal Society, Series B, 276(1672), 35133521.Google Scholar

References

Abramson, J. Z., Hernández-Lloreda, M. V., García, L., et al. (2018). Imitation of novel conspecific and human speech sounds in the killer whale (Orcinus orca). Proceedings of the Royal Society B: Biological Sciences, 285, 20172171.Google Scholar
Allen, J., Weinrich, M., Hoppitt, W., & Rendell, L. (2013). Network-based diffusion analysis reveals cultural transmission of lobtail feeding in humpback whales. Science, 340, 485488.Google Scholar
Antunes, R., Schulz, T., Gero, S., et al. (2011). Individually distinctive acoustic features in sperm whale codas. Animal Behaviour, 81, 723730.Google Scholar
Berta, A., & Sumich, J. L. (2006). Marine Mammals: Evolutionary Biology, 2nd ed. Burlington, MA: Academic Press.Google Scholar
Bigg, M. A., Olesiuk, P. F., Ellis, G. M., Ford, J. K. B., & Balcomb, K. C. B. III (1990). Organization and genealogy of resident killer whales (Orcinus orca) in the coastal waters of British Columbia and Washington State. Reports of the International Whaling Commission, 12, 383405.Google Scholar
Bruck, J. N. (2013). Decades-long social memory in bottlenose dolphins. Proceedings of the Royal Society B: Biological Sciences, 280, 20131726.Google Scholar
Caldwell, M. C., & Caldwell, D. K. (1965). Individualized whistle contours in bottlenosed dolphins (Tursiops truncatus). Nature, 207, 434435.Google Scholar
Cato, D. H. (1991). Songs of humpback whales: The Australian perspective. Memoirs of the Queensland Museum, 30, 277290.Google Scholar
Christal, J., Whitehead, H., & Lettevall, E. (1998). Sperm whale social units: Variation and change. Canadian Journal of Zoology, 76, 14311440.Google Scholar
Clapham, P. (2000). The humpback whale: Seasonal feeding and breeding in a baleen whale. In Mann, J., Connor, R. C, Tyack, P. L, & Whitehead, H, eds., Cetacean Societies: Field Studies of Dolphins and Whales. Chicago, IL: University of Chicago Press, pp. 173196.Google Scholar
Connor, R. C., & Krützen, M. (2015). Male dolphin alliances in Shark Bay: Changing perspectives in a 30-year study. Animal Behaviour, 103, 223235.Google Scholar
Connor, R. C., Smolker, R. A., & Richards, A. F. (1992). Two levels of alliance formation among male bottlenose dolphins (Tursiops sp.). Proceedings of the National Academy of Sciences, 89, 987990.Google Scholar
Connor, R. C., Wells, R. S., Mann, J., & Read, A. J. (2000). The bottlenose dolphin: Social relationships in a fission-fusion society. In Mann, J., Connor, R. C, Tyack, P. L, & Whitehead, H, eds., Cetacean Societies: Field Studies of Dolphins and Whales. Chicago, IL: University of Chicago Press, pp. 91126.Google Scholar
Crance, J. L., Bowles, A. E., & Garver, A. (2014). Evidence for vocal learning in juvenile male killer whales, Orcinus orca, from an adventitious cross-socializing experiment. Journal of Experimental Biology, 217, 12291237.Google Scholar
Dalebout, M. L., Mead, J. G., Baker, C. S., Baker, A. N., & Helden, A. L. (2002). A new species of beaked whale Mesoplodon perrini sp. n. (Cetacea: Ziphiidae) discovered through phylogenetic analyses of mitochondrial DNA sequences. Marine Mammal Science, 18, 577608.Google Scholar
Darling, J. D., Jones, M. E., & Nicklin, C. P. (2006). Humpback whale songs: Do they organize males during the breeding season? Behaviour, 143, 10511101.Google Scholar
Deecke, V. B., Ford, J. K. B., & Spong, P. (2000). Dialect change in resident killer whales: Implications for vocal learning and cultural transmission. Animal Behaviour, 40, 629638.Google Scholar
Deecke, V. B., Ford, J. K. B., & Slater, P. J. B. (2005). The vocal behaviour of mammal-eating killer whales: Communicating with costly calls. Animal Behaviour, 69, 395405.Google Scholar
Favaro, L., Neves, S., Furlati, S., et al. (2016). Evidence suggests vocal production learning in a cross-fostered Risso’s dolphin (Grampus griseus). Animal Cognition, 19, 847853.Google Scholar
Filatova, O. A., & Miller, P. J. O. (2015). An agent-based model of dialect evolution in killer whales. Journal of Theoretical Biology, 373, 8291.Google Scholar
Filatova, O. A., Samarra, F. I. P., Deecke, V. B., et al. (2015). Cultural evolution of killer whale calls: Background, mechanisms and consequences. Behaviour, 152, 20012038.Google Scholar
Foote, A. D., Griffin, R. M., Howitt, D., et al. (2006). Killer whales are capable of vocal learning. Biology Letters, 2, 509512.Google Scholar
Foote, A. D., Newton, J., Piertney, S. B., Willerslev, E., & Gilbert, M. T. P. (2009). Ecological, morphological and genetic divergence of sympatric North Atlantic killer whale populations. Molecular Ecology, 18, 52075217.Google Scholar
Foote, A. D., Vijay, N., Ávila-Arcos, M. C., et al. (2016). Genome–culture coevolution promotes rapid divergence of killer whale ecotypes. Nature Communications, 7, 11693.Google Scholar
Ford, J. K. B. (1991). Vocal traditions among resident killer whales (Orcinus orca) in coastal waters of British Columbia. Canadian Journal of Zoology, 69, 14541483.Google Scholar
Ford, J. K. B., Ellis, G. M., Barrett-Lennard, L. G., et al. (1998). Dietary specialization in two sympatric populations of killer whales (Orcinus orca) in coastal British Columbia and adjacent waters. Canadian Journal of Zoology, 76, 14561471.Google Scholar
Fragaszy, D., & Perry, S. (2003). Towards a biology of traditions. In Fragaszy, D, & Perry, S, eds., The Biology of Traditions: Models and Evidence. Cambridge, UK: Cambridge University Press, pp. 132.Google Scholar
Frère, C. H., Krutzen, M., Mann, J., et al. (2010). Social and genetic interactions drive fitness variation in a free-living dolphin population. Proceedings of the National Academy of Sciences, 107, 1994919954.Google Scholar
Frumhoff, P. (1983). Aberrant songs of humpback whales (Megaptera novaeangliae): Clues to the structure of humpback songs. In Payne, R., ed., Communication and Behavior of Whales. Boulder, CO: Westview Press, pp. 81127.Google Scholar
Galef, B. G. (2009). Culture in animals? In Laland, K. N. & Galef, B. G., eds., The Question of Animal Culture. Cambridge, MA: Harvard University Press, pp. 222246.Google Scholar
Garland, E. C., Goldizen, A. W. W., Rekdahl, M. L. L., et al. (2011). Dynamic horizontal cultural transmission of humpback whale song at the ocean basin scale. Current Biology, 21, 687691.Google Scholar
Garland, E. C., Lilley, M. S., Goldizen, A. W., et al. (2012). Improved versions of the Levenshtein distance method for comparing sequence information in animals’ vocalisations: Tests using humpback whale song. Behaviour, 149, 14131441.Google Scholar
Garland, E. C., Gedamke, J., Rekdahl, M. L., et al. (2013a). Humpback whale song on the southern ocean feeding grounds: Implications for cultural transmission. PLoS ONE, 8, e79422.Google Scholar
Garland, E. C., Noad, M. J., Goldizen, A. W., et al. (2013b). Quantifying humpback whale song sequences to understand the dynamics of song exchange at the ocean basin scale. Journal of the Acoustical Society of America, 133, 560569.Google Scholar
Garland, E. C., Goldizen, A. W., Lilley, M. S., et al. (2015). Population structure of humpback whales in the western and central South Pacific Ocean as determined by vocal exchange among populations. Conservation Biology, 29, 11981207.Google Scholar
Gero, S., Bøttcher, A., Whitehead, H., & Madsen, P. T. (2016a). Socially segregated, sympatric sperm whale clans in the Atlantic Ocean. Royal Society Open Science, 3, 160061.Google Scholar
Gero, S., Whitehead, H., & Rendell, L. (2016b). Individual, unit and vocal clan level identity cues in sperm whale codas. Royal Society Open Science, 3, 150372.Google Scholar
Glockner, D. A. (1983). Determining the sex of humpback whales (Megaptera novaeangliae) in their natural environment. In Payne, R., ed., Communication and Behavior of Whales. Boulder, CO: Westview Press, pp. 447464.Google Scholar
Hain, J. H. W., Carter, G. R., Kraus, S. D., Mayo, C. A., & Winn, H. E. (1982). Feeding behavior of the humpback whale, Megaptera novaeangliae, in the Western North Atlantic. Fishery Bulletin, 80, 259268.Google Scholar
Herman, L. M., & Tavolga, W. N. (1980). The communication systems of cetaceans. In Herman, L. M., ed., Cetacean Behaviour: Mechanisms and Functions. New York: Wiley-Interscience, pp. 149209.Google Scholar
Janik, V. M. (2000). Whistle matching in wild bottlenose dolphins (Tursiops truncatus). Science, 289, 13551357.Google Scholar
Janik, V. M. (2009). Acoustic communication in delphinids. Advances in the Study of Behavior, 40, 123157.Google Scholar
Janik, V. M. (2014). Cetacean vocal learning and communication. Current Opinion in Neurobiology, 28, 6065.Google Scholar
Janik, V. M., & Slater, P. J. B. (1997). Vocal learning in mammals. Advances in the Study of Behavior, 26, 5999.Google Scholar
Janik, V. M., & Slater, P. J. B. (1998). Context-specific use suggests that bottlenose dolphin signature whistles are cohesion calls. Animal Behaviour, 56, 829838.Google Scholar
Janik, V. M., & Slater, P. J. B. (2000). The different roles of social learning in vocal communication. Animal Behaviour, 60, 111.Google Scholar
Janik, V. M., Sayigh, L. S., & Wells, R. S. (2006). Signature whistle shape conveys identity information to bottlenose dolphins. Proceedings of the National Academy of Sciences, 103, 82938297.Google Scholar
King, S. L., & Janik, V. M. (2013). Bottlenose dolphins can use learned vocal labels to address each other. Proceedings of the National Academy of Sciences, 110, 1321613221.Google Scholar
King, S. L., Sayigh, L. S., Wells, R. S., Fellner, W., & Janik, V. M. (2013). Vocal copying of individually distinctive signature whistles in bottlenose dolphins. Proceedings of the Royal Society B: Biological Sciences, 280, 20130053.Google Scholar
King, S. L., Harley, H. E., & Janik, V. M. (2014). The role of signature whistle matching in bottlenose dolphins, Tursiops truncatus. Animal Behaviour, 96, 7986.Google Scholar
King, S. L., Guarino, E., Keaton, L., Erb, L., & Jaakkola, K. (2016). Maternal signature whistle use aids mother–calf reunions in a bottlenose dolphin, Tursiops truncatus. Behavioural Processes, 126, 6470.Google Scholar
King, S. L., Friedman, W. R., Allen, S. J., et al. (2018). Bottlenose dolphins retain individual vocal labels in multi-level alliances. Current Biology, 28, 19931999.e3.Google Scholar
Kopps, A. M., Ackermann, C. Y., Sherwin, W. B., et al. (2014). Cultural transmission of tool use combined with habitat specializations leads to fine-scale genetic structure in bottlenose dolphins. Proceedings of the Royal Society B: Biological Sciences, 281, 20133245.Google Scholar
Krützen, M., Mann, J., Heithaus, M. R., et al. (2005). Cultural transmission of tool use in bottlenose dolphins. Proceedings of the National Academy of Sciences, 102, 89398943.Google Scholar
Krützen, M., Kreicker, S., Macleod, C. D., et al. (2014). Cultural transmission of tool use by Indo-Pacific bottlenose dolphins (Tursiops sp.) provides access to a novel foraging niche. Proceedings of the Royal Society B: Biological Sciences, 281, 20140374.Google Scholar
Laland, K. N. (1992). A theoretical investigation of the role of social transmission in evolution. Ethology and Sociobiology, 13, 87113.Google Scholar
Laland, K. N., & Galef, B. G. (2009). The Question of Animal Culture. Cambridge, MA: Harvard University Press.Google Scholar
Laland, K. N., & Janik, V. M. (2006). The animal cultures debate. Trends in Ecology & Evolution, 21, 542547.Google Scholar
Laland, K. N., Kendal, J. R., & Kendal, R. L. (2009). Animal culture: Problems and solutions. In Laland, K. N. & Galef, B. G., eds., The Question of Animal Culture. Cambridge, MA: Harvard University Press, pp. 174197.Google Scholar
LeDuc, R. G., Robertson, K. M., & Pitman, R. L. (2008). Mitochondrial sequence divergence among Antarctic killer whale ecotypes is consistent with multiple species. Biology Letters, 4, 426429.Google Scholar
Mann, J., & Sargeant, B. (2003). Like mother, like calf: The ontogeny of foraging traditions in wild Indian Ocean bottlenose dolphins (Tursiops sp.). In Fragaszy, D & Perry, S, eds., The Biology of Traditions: Models and Evidence. Cambridge, UK: Cambridge University Press, pp. 236266.Google Scholar
Miller, P. J. O., & Bain, D. E. (2000). Within-pod variation in the sound production of a pod of killer whales, Orcinus orca. Animal Behaviour, 60, 617628.Google Scholar
Morin, P. A., Scott Baker, C., Brewer, R. S., et al. (2017). Genetic structure of the beaked whale genus Berardius in the North Pacific, with genetic evidence for a new species. Marine Mammal Science, 33, 96111.Google Scholar
Noad, M. J., Cato, D. H., Bryden, M. M., et al. (2000). Cultural revolution in whale songs. Nature, 408, 537.Google Scholar
Oliveira, C., Wahlberg, M., Silva, M. A., et al. (2016). Sperm whale codas may encode individuality as well as clan identity. Journal of the Acoustical Society of America, 139, 28602869.Google Scholar
Payne, K., & Payne, R. (1985). Large scale changes over 19 years in songs of humpback whales in Bermuda. Zeitschrift für Tierpsychologie, 68, 89114.Google Scholar
Payne, K., Tyack, P. L., & Payne, R. (1983). Progressive changes in the songs of humpback whales (Megaptera novaeangliae): A detailed analysis of two seasons in Hawaii. In Payne, R., ed., Communication and Behavior of Whales. Boulder, CO: Westview Press, pp. 957.Google Scholar
Payne, R., & Guinee, L. N. (1983). Humpback whale, Megaptera novaeangliae, songs as an indicator of “stocks”. In Payne, R., ed., Communication and Behavior of Whales. Boulder, CO: Westview Press, pp. 333358.Google Scholar
Payne, R. S., & McVay, S. (1971). Songs of humpback whales. Science, 173, 587597.Google Scholar
Rendell, L. E., & Whitehead, H. (2001). Culture in whales and dolphins. Behavioral and Brain Sciences, 24, 309382.Google Scholar
Rendell, L. E., & Whitehead, H. (2003). Vocal clans in sperm whales (Physeter macrocephalus). Proceedings of the Royal Society B: Biological Science, 270, 225231.Google Scholar
Rendell, L., Mesnick, S. L., Dalebout, M. L., Burtenshaw, J., & Whitehead, H. (2012). Can genetic differences explain vocal dialect variation in sperm whales, Physeter macrocephalus? Behavior Genetics, 42, 332343.Google Scholar
Richards, D. G., Wolz, J. P., & Herman, L. M. (1984). Vocal mimicry of computer-generated sounds and vocal labelling of objects by bottlenose dolphins (Tursiops truncatus): Evidence for vocal learning. Journal of Comparative Psychology, 98, 1028.Google Scholar
Ridgway, S., Carder, D., Jeffries, M., & Todd, M. (2012). Spontaneous human speech mimicry by a cetacean. Current Biology, 22, R860R861.Google Scholar
Riesch, R., Barrett-Lennard, L. G., Ellis, G. M., Ford, J. K. B., & Deecke, V. B. (2012). Cultural traditions and the evolution of reproductive isolation: Ecological speciation in killer whales? Biological Journal of the Linnean Society, 106, 117.Google Scholar
Rutz, C., Bluff, L. A., Reed, N., et al. (2010). The ecological significance of tool use in New Caledonian crows. Science, 329, 15231526.Google Scholar
Sargeant, B. L., & Mann, J. (2009). From social learning to culture: Intrapopulation variation in bottlenose dolphins. In Laland, K. N. & Galef, B. G., eds., The Question of Animal Culture. Cambridge, MA: Harvard University Press, pp. 152173.Google Scholar
Sayigh, L. S., Tyack, P. L., Wells, R. S., & Scott, M. D. (1990). Signature whistles of free-ranging bottlenose dolphins Tursiops truncatus: Stability and mother–offspring comparisons. Behavioral Ecology and Sociobiology, 26, 247260.Google Scholar
Sayigh, L. S., Tyack, P. L., Wells, R. S., Scott, M. D., & Irvine, A. B. (1995). Sex difference in signature whistle production of free-ranging bottlenose dolphins, Tursiops truncatus. Behavioral Ecology and Sociobiology, 36, 171177.Google Scholar
Schulz, T. M., Whitehead, H., Gero, S., & Rendell, L. (2011). Individual vocal production in a sperm whale (Physeter macrocephalus) social unit. Marine Mammal Science, 27, 149166.Google Scholar
Smith, J. N., Goldizen, A. W., Dunlop, R. A., & Noad, M. J. (2008). Songs of male humpback whales, Megaptera novaeangliae, are involved in intersexual interactions. Animal Behaviour, 76, 467477.Google Scholar
Stimpert, A. K., Wiley, D. N., Au, W. W. L., Johnson, M. P., & Arsenault, R. (2007). “Megapclicks”: Acoustic click trains and buzzes produced during night-time foraging of humpback whales (Megaptera novaeangliae). Biology Letters, 3, 467470.Google Scholar
Thewissen, J. G. M., Cooper, L. N., Clementz, M. T., Bajpai, S., & Tiwari, B. N. (2007). Whales originated from aquatic artiodactyls in the Eocene epoch of India. Nature, 450, 11901194.Google Scholar
Tomasello, M. (2009). The question of chimpanzee culture, plus postscript (chimpanzee culture, 2009). In Laland, K. N. & Galef, B. G., eds., The Question of Animal Culture. Cambridge, MA: Harvard University Press, pp. 198221.Google Scholar
Watkins, W. A., & Schevill, W. E. (1977). Sperm whale codas. Journal of the Acoustical Society of America, 62, 14861490.Google Scholar
Watwood, S. L., Tyack, P. L., & Wells, R. S. (2004). Whistle sharing in paired male bottlenose dolphins, Tursiops truncatus. Behavioral Ecology and Sociobiology, 55, 531543.Google Scholar
Whitehead, H. (1998). Cultural selection and genetic diversity in matrilineal whales. Science, 282, 17081711.Google Scholar
Whitehead, H. (2003). Sperm Whales: Social Evolution in the Ocean. Chicago, IL: University of Chicago Press.Google Scholar
Whitehead, H. (2005). Genetic diversity in the matrilineal whales: Models of cultural hitchhiking and group-specific non-heritable demographic variation. Marine Mammal Science, 21, 5879.Google Scholar
Whitehead, H. (2009). How might we study culture: A perspective from the ocean. In Laland, K. N. & Galef, B. G., eds., The Question of Animal Culture. Cambridge, MA: Harvard University Press, pp. 125151.Google Scholar
Whitehead, H., & Rendell, L. (2014). The Cultural Lives of Whales and Dolphins. Chicago, IL: University of Chicago Press.Google Scholar
Whitehead, H., & Weilgart, L. (1991). Patterns of visually observable behaviour and vocalizations in groups of female sperm whales. Behaviour, 118, 275296.Google Scholar
Whitehead, H., & Weilgart, L. (2000). The sperm whale: Social females and roving males. In Mann, J., Connor, R. C, Tyack, P. L, & Whitehead, H, eds., Cetacean Societies: Field Studies of Dolphins and Whales. Chicago, IL: University of Chicago Press, pp. 154172.Google Scholar
Whitehead, H., Dillon, M., Dufault, S., Weilgart, L., & Wright, J. (1998). Non-geographically based population structure of South Pacific sperm whales: Dialects, fluke-markings and genetics. Journal of Animal Ecology, 67, 253262.Google Scholar
Whitehead, H., Antunes, R., Gero, S., et al. (2012). Multilevel societies of female sperm whales (Physeter macrocephalus) in the Atlantic and Pacific: Why are they so different? International Journal of Primatology, 33, 11421164.Google Scholar
Whiten, A. (2009). The identification and differentiation of culture in chimpanzees and other animals: From natural history to diffusion experiments. In Laland, K. N. & Galef, B. G., eds., The Question of Animal Culture. Cambridge, MA: Harvard University Press, pp. 99124.Google Scholar
Whiten, A. (2015). Experimental studies illuminate the cultural transmission of percussive technologies in Homo and Pan. Philosophical Transactions of the Royal Society of London B: Biological Science, 370, 169177.Google Scholar
Winn, H. E., & Winn, L. K. (1978). The song of the humpback whale Megaptera novaeangliae in the West Indies. Marine Biology, 47, 97114.Google Scholar
Wrangham, R. W. (2009). Catching Fire: How Cooking Made Us Human. London: Profile Books Ltd.Google Scholar
Yurk, H., Barrett-Lennard, L., Ford, J. K. B., & Matkin, C. O. (2002). Cultural transmission within maternal lineages: Vocal clans in resident killer whales in southern Alaska. Animal Behaviour, 63, 11031119.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×