Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-vpsfw Total loading time: 0 Render date: 2024-07-16T16:01:10.607Z Has data issue: false hasContentIssue false

3 - The Neurochemistry of Social Play Behaviour in Rats

from Part I - Evolution of Play

Published online by Cambridge University Press:  26 October 2018

Peter K. Smith
Affiliation:
Goldsmiths, University of London
Jaipaul L. Roopnarine
Affiliation:
Syracuse University, New York
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
The Cambridge Handbook of Play
Developmental and Disciplinary Perspectives
, pp. 30 - 48
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Achterberg, E. J. M., Trezza, V., Siviy, S. M., Schrama, L., Schoffelmeer, A. N. M., & Vanderschuren, L. J. M. J. (2014). Amphetamine and cocaine suppress social play behavior in rats through distinct mechanisms. Psychopharmacology, 231(8), 15031515.Google Scholar
Achterberg, E. J. M., Trezza, V., & Vanderschuren, L. J. M. J. (2012). Beta-adrenoreceptor stimulation mediates reconsolidation of social reward-related memories. PLoS One, 7(6), e39639.Google Scholar
Achterberg, E. J. M., van Kerkhof, L. W. M., Damsteegt, R., Trezza, V., & Vanderschuren, L. J. M. J. (2015). Methylphenidate and atomoxetine inhibit social play behavior through prefrontal and subcortical limbic mechanisms in rats. Journal of Neuroscience, 35(1), 161169.Google Scholar
Achterberg, E. J., van Kerkhof, L. W., Servadio, M., van Swieten, M. M., Houwing, D. J., Aalderink, M., Driel, N. V., Trezza, V., & Vanderschuren, L. J. M. J. (2016a). Contrasting roles of dopamine and noradrenaline in the motivational properties of social play behavior in rats. Neuropsychopharmacology, 41(3), 858868.Google Scholar
Achterberg, E. J. M., van Swieten, M. M. H., Driel, N. V., Trezza, V., & Vanderschuren, L. J. M. J. (2016b). Dissociating the role of endocannabinoids in the pleasurable and motivational properties of social play behaviour in rats. Pharmacologcial Research, 110, 151158.Google Scholar
Alessandri, S. M. (1992). Attention, play, and social behavior in ADHD preschoolers. Journal of Abnormal Child Psychology, 20(3), 289302.Google Scholar
Aston-Jones, G., & Cohen, J. D. (2005). An integrative theory of locus coeruleus-norepinephrine function: Adaptive gain and optimal performance. Annual Review of Neuroscience, 28, 403450.Google Scholar
Baarendse, P. J. J., Limpens, J. H. W., & Vanderschuren, L. J. M. J. (2014). Disrupted social development enhances the motivation for cocaine in rats. Psychopharmacology, 231(8), 16951704.Google Scholar
Bateson, P. (2015). Playfulness and creativity. Current Biology, 25(1), R12R16.Google Scholar
Beatty, W. W., Costello, K. B., & Berry, S. L. (1984). Suppression of play fighting by amphetamine: Effects of catecholamine antagonists, agonists and synthesis inhibitors. Pharmacology Biochemistry and Behavior, 20(5), 747755.Google Scholar
Berridge, C. W., & Waterhouse, B. D. (2003). The locus coeruleus-noradrenergic system: Modulation of behavioral state and state-dependent cognitive processes. Brain Research Reviews, 42(1), 3384.Google Scholar
Berridge, K. C. (2007). The debate over dopamine’s role in reward: The case for incentive salience. Psychopharmacology, 191(3), 391431.Google Scholar
Berridge, K. C., & Kringelbach, M. L. (2015). Pleasure systems in the brain. Neuron, 86(3), 646664.Google Scholar
Blanchard, R. J., & Blanchard, D. C. (1977). Aggressive behavior in the rat. Behavioral Biology, 21, 197224.Google Scholar
Bouret, S., & Richmond, B. J. (2015). Sensitivity of locus ceruleus neurons to reward value for goal-directed actions. Journal of Neuroscience, 35(9), 40054014.Google Scholar
Braun, K., & Bock, J. (2011). The experience-dependent maturation of prefronto-limbic circuits and the origin of developmental psychopathology: Implications for the pathogenesis and therapy of behavioural disorders. Developmental Medicine and Child Neurology, 53(Suppl 4), 1418.Google Scholar
Bredewold, R., Schiavo, J. K., van der Hart, M., Verreij, M., & Veenema, A. H. (2015). Dynamic changes in extracellular release of GABA and glutamate in the lateral septum during social play behavior in juvenile rats: Implications for sex-specific regulation of social play behavior. Neuroscience, 307, 117127.Google Scholar
Cacioppo, J. T., & Hawkley, L. C. (2009). Perceived social isolation and cognition. Trends in Cognitive Science, 13(10), 447454.CrossRefGoogle ScholarPubMed
Cheng, S. Y., & Delville, Y. (2009). Vasopressin facilitates play fighting in juvenile golden hamsters. Physiology and Behavior, 98(1–2), 242246.Google Scholar
Cools, R., & Robbins, T. W. (2004). Chemistry of the adaptive mind. Philosophical Transactions of the Royal Society A: Mathematical Physical and Engineering Sciences, 362(1825), 28712888.Google Scholar
Donaldson, Z. R., & Young, L. J. (2008). Oxytocin, vasopressin, and the neurogenetics of sociality. Science, 322(5903), 900904.Google Scholar
Economidou, D., Mattioli, L., Cifani, C., Perfumi, M., Massi, M., Cuomo, V., Trabace, L., & Ciccocioppo, R. (2006). Effect of the cannabinoid CB1 receptor antagonist SR-141716A on ethanol self-administration and ethanol-seeking behaviour in rats. Psychopharmacology (Berl), 183(4), 394403.CrossRefGoogle ScholarPubMed
Fattore, L., Melis, M., Fadda, P., Pistis, M., & Fratta, W. (2010). The endocannabinoid system and nondrug rewarding behaviours. Experimental Neurology, 224(1), 2336.Google Scholar
Floresco, S. B. (2015). The nucleus accumbens: An interface between cognition, emotion, and action. Annual Review of Psychology, 66, 2552.Google Scholar
Gamaleddin, I. H., Trigo, J. M., Gueye, A. B., Zvonok, A., Makriyannis, A., Goldberg, S. R., & Le Foll, B. (2015). Role of the endogenous cannabinoid system in nicotine addiction: Novel insights. Frontiers in Psychiatry, 6, 41.Google Scholar
Gardner, E. L. (2005). Endocannabinoid signaling system and brain reward: Emphasis on dopamine. Pharmacology Biochemistry and Behavior, 81(2), 263284.Google Scholar
Genn, R. F., Tucci, S., Marco, E. M., Viveros, M. P., & File, S. E. (2004). Unconditioned and conditioned anxiogenic effects of the cannabinoid receptor agonist CP 55,940 in the social interaction test. Pharmacology Biochemistry and Behavior, 77(3), 567573.CrossRefGoogle ScholarPubMed
Helgeland, M. I., & Torgersen, S. (2005). Stability and prediction of schizophrenia from adolescence to adulthood. European Child and Adolescent Psychiatry, 14(2), 8394.CrossRefGoogle ScholarPubMed
Homberg, J. R., Schiepers, O. J. G., Schoffelmeer, A. N. M., Cuppen, E., & Vanderschuren, L. J. M. J. (2007). Acute and constitutive increases in central serotonin levels reduce social play behaviour in peri-adolescent rats. Psychopharmacology, 195(2), 175182.Google Scholar
Jones, P., Rodgers, B., Murray, R., & Marmot, M. (1994). Child development risk factors for adult schizophrenia in the British 1946 birth cohort. Lancet, 344(8934), 13981402.Google Scholar
Jordan, R. (2003). Social play and autistic spectrum disorders: A perspective on theory, implications and educational approaches. Autism, 7(4), 347360.Google Scholar
Kelley, A. E. (2004). Ventral striatal control of appetitive motivation: Role in ingestive behavior and reward-related learning. Neuroscience & Biobehavioral Reviews, 27(8), 765776.CrossRefGoogle ScholarPubMed
Kendall, D. A., & Yudowski, G. A. (2016). Cannabinoid receptors in the central nervous system: Their signaling and roles in disease. Frontiers in Cellular Neuroscience, 10, 294.Google Scholar
Kiser, D., Steemers, B., Branchi, I., & Homberg, J. R. (2012). The reciprocal interaction between serotonin and social behaviour. Neuroscience & Biobehavioral Reviews, 36(2), 786798.Google Scholar
Knutson, B., Panksepp, J., & Pruitt, D. (1996). Effects of fluoxetine on play dominance in juvenile rats. Aggressive Behavior, 22, 297307.Google Scholar
Le Merrer, J., Becker, J. A., Befort, K., & Kieffer, B. L. (2009). Reward processing by the opioid system in the brain. Physiological Reviews, 89(4), 13791412.Google Scholar
Lesscher, H. M. B., Spoelder, M., Rotte, M. D., Janssen, M. J., Hesseling, P., Lozeman-van’t Klooster, J. G., Baars, A.M., & Vanderschuren, L. J. M. J. (2015). Early social isolation augments alcohol consumption in rats. Behavioral Pharmacology, 26(7), 673680.Google Scholar
Leussis, M. P., Lawson, K., Stone, K., & Andersen, S. L. (2008). The enduring effects of an adolescent social stressor on synaptic density, part II: Poststress reversal of synaptic loss in the cortex by adinazolam and MK-801. Synapse, 62(3), 185192.Google Scholar
Loureiro, M., Renard, J., Zunder, J., & Laviolette, S. R. (2015). Hippocampal cannabinoid transmission modulates dopamine neuron activity: Impact on rewarding memory formation and social interaction. Neuropsychopharmacology, 40(6), 14361447.Google Scholar
Lukkes, J. L., Mokin, M. V., Scholl, J. L., & Forster, G. L. (2009). Adult rats exposed to early-life social isolation exhibit increased anxiety and conditioned fear behavior, and altered hormonal stress responses. Hormonal Behavior, 55(1), 248256.Google Scholar
Madden, A. M., & Zup, S. L. (2014). Effects of developmental hyperserotonemia on juvenile play behavior, oxytocin and serotonin receptor expression in the hypothalamus are age and sex dependent. Physiology & Behavior, 128, 260269.Google Scholar
Manduca, A., Lassalle, O., Sepers, M., Campolongo, P., Cuomo, V., Marsicano, G., Kieffer, B., Vanderschuren, L. J. M. J., Trezza, V., & Manzoni, O. J. J. (2016a). Interacting cannabinoid and opioid receptors in the nucleus accumbens core control adolescent social play. Frontiers in Behavioral Neuroscience, 10, 211.Google Scholar
Manduca, A., Servadio, M., Damsteegt, R., Campolongo, P., Vanderschuren, L. J. M. J., & Trezza, V. (2016b). Dopaminergic neurotransmission in the nucleus accumbens modulates social play behavior in rats. Neuropsychopharmacology, 41(9), 22152223.Google Scholar
Marco, E. M., Rapino, C., Caprioli, A., Borsini, F., Maccarrone, M., & Laviola, G. (2011). Social encounter with a novel partner in adolescent rats: Activation of the central endocannabinoid system. Behavior and Brain Research, 220(1), 140145.Google Scholar
Mechoulam, R., Hanus, L. O., Pertwee, R., & Howlett, A. C. (2014). Early phytocannabinoid chemistry to endocannabinoids and beyond. Nature Reviews Neuroscience, 15(11), 757764.Google Scholar
Meyer-Lindenberg, A., Domes, G., Kirsch, P., & Heinrichs, M. (2011). Oxytocin and vasopressin in the human brain: Social neuropeptides for translational medicine. Nature Reviews Neuroscience, 12(9), 524538.Google Scholar
Møller, P., & Husby, R. (2000). The initial prodrome in schizophrenia: Searching for naturalistic core dimensions of experience and behavior. Schizophrenia Bulletin, 26(1), 217232.Google Scholar
Niesink, R. J., & Van Ree, J. M. (1989). Involvement of opioid and dopaminergic systems in isolation-induced pinning and social grooming of young rats. Neuropharmacology, 28(4), 411418.Google Scholar
Normansell, L., & Panksepp, J. (1985a). Effects of clonidine and yohimbine on the social play of juvenile rats. Pharmacology Biochemistry and Behavior, 22(5), 881883.Google Scholar
Normansell, L., & ,Panksepp, J. (1985b). Effects of quipazine and methysergide on play in juvenile rats. Pharmacology Biochemistry and Behavior, 22(5), 885887.Google Scholar
Normansell, L., & Panksepp, J. (1990). Effects of morphine and naloxone on play-rewarded spatial discrimination in juvenile rats. Developmental Psychobiology, 23(1), 7583.Google Scholar
Olivier, J. D., Valles, A., van Heesch, F., Afrasiab-Middelman, A., Roelofs, J. J., Jonkers, M., … & Homberg, J. R. (2011). Fluoxetine administration to pregnant rats increases anxiety-related behavior in the offspring. Psychopharmacology (Berl), 217(3), 419432.Google Scholar
O’Shea, M., McGregor, I. S., & Mallet, P. E. (2006). Repeated cannabinoid exposure during perinatal, adolescent or early adult ages produces similar longlasting deficits in object recognition and reduced social interaction in rats. Journal of Psychopharmacology, 20(5), 611621.Google Scholar
Panksepp, J., Siviy, S., & Normansell, L. (1984). The psychobiology of play: Theoretical and methodological perspectives. Neuroscience & Biobehavioral Reviews, 8(4), 465492.Google Scholar
Pava, M. J., & Woodward, J. J. (2012). A review of the interactions between alcohol and the endocannabinoid system: Implications for alcohol dependence and future directions for research. Alcohol, 46(3), 185204.Google Scholar
Pellis, S. M. (1988). Agonistic versus amicable targets of attack and defense: Consequences for the origin, function and descriptive classification of play-fighting. Aggressive Behavior, 14, 85104.Google Scholar
Pellis, S. M., & Pellis, V. (2009). The playful brain: Venturing to the limits of neuroscience. Oxford: Oneworld Publications.Google Scholar
Pellis, S. M., & Pellis, V. C. (1987). Play-fighting differs from serious fighting in both target of attack and tactics of fighting in the laboratory rat Rattus norvegicus. Aggressive Behavior, 13, 227242.Google Scholar
Robbins, T. W., & Arnsten, A. F. (2009). The neuropsychopharmacology of fronto-executive function: Monoaminergic modulation. Annual Review of Neuroscience, 32, 267287.Google Scholar
Robbins, T. W., & Everitt, B. J. (2007). A role for mesencephalic dopamine in activation: Commentary on Berridge (2006). Psychopharmacology (Berlin), 191(3), 433437.Google Scholar
Roozendaal, B., & McGaugh, J. L. (2011). Memory modulation. Behavioral Neuroscience, 125(6), 797824.Google Scholar
Salamone, J. D., & Correa, M. (2012). The mysterious motivational functions of mesolimbic dopamine. Neuron, 76(3), 470485.Google Scholar
Schneider, M., & Koch, M. (2005). Deficient social and play behavior in juvenile and adult rats after neonatal cortical lesion: Effects of chronic pubertal cannabinoid treatment. Neuropsychopharmacology, 30(5), 944957.Google Scholar
Schneider, M., Schomig, E., & Leweke, F. M. (2008). Acute and chronic cannabinoid treatment differentially affects recognition memory and social behavior in pubertal and adult rats. Addiction Biology, 13(3–4), 345357.Google Scholar
Siviy, S. M. (2016). A brain motivated to play: Insights into the neurobiology of playfulness. Behaviour, 153, 819844.Google Scholar
Siviy, S. M., & Baliko, C. N. (2000). A further characterization of alpha-2 adrenoceptor involvement in the rough-and-tumble play of juvenile rats. Developmental Psychobiology, 37(1), 2534.Google Scholar
Siviy, S. M., Fleischhauer, A. E., Kerrigan, L. A., & Kuhlman, S. J. (1996). D2 dopamine receptor involvement in the rough-and-tumble play behavior of juvenile rats. Behavioral Neuroscience, 110(5), 11681176.CrossRefGoogle ScholarPubMed
Siviy, S. M., Fleischhauer, A. E., Kuhlman, S. J., & Atrens, D. M. (1994). Effects of alpha-2 adrenoceptor antagonists on rough-and-tumble play in juvenile rats: Evidence for a site of action independent of non-adrenoceptor imidazoline binding sites. Psychopharmacology (Berl), 113(3–4), 493499.Google Scholar
Siviy, S. M., Line, B. S., & Darcy, E. A. (1995). Effects of MK-801 on rough-and-tumble play in juvenile rats. Physiology and Behavior, 57(5), 843847.Google Scholar
Siviy, S. M., & Panksepp, J. (2011). In search of the neurobiological substrates for social playfulness in mammalian brains. Neuroscience & Biobehavioral Reviews, 35(9), 18211830.Google Scholar
Spinka, M., Newberry, R. C., & Bekoff, M. (2001). Mammalian play: Training for the unexpected. Quarterly Review of Biology, 76(2), 141168.Google Scholar
Stoesz, B. M., Hare, J. F., & Snow, W. M. (2013). Neurophysiological mechanisms underlying affiliative social behavior: Insights from comparative research. Neuroscience & Biobehavioral Reviews, 37(2), 123132.Google Scholar
Tallett, A. J., Blundell, J. E., & Rodgers, R. J. (2007). Grooming, scratching and feeding: Role of response competition in acute anorectic response to rimonabant in male rats. Psychopharmacology (Berlin), 195(1), 2739.CrossRefGoogle ScholarPubMed
Thiel, K. J., Sanabria, F., & Neisewander, J. L. (2009). Synergistic interaction between nicotine and social rewards in adolescent male rats. Psychopharmacology (Berlin), 204(3), 391402.Google Scholar
Trezza, V., Baarendse, P. J. J., & Vanderschuren, L. J. M. J. (2009). Prosocial effects of nicotine and ethanol in adolescent rats through partially dissociable neurobehavioral mechanisms. Neuropsychopharmacology, 34(12), 25602573.Google Scholar
Trezza, V., Baarendse, P. J. J., & Vanderschuren, L. J. M. J. (2010). The pleasures of play: Pharmacological insights into social reward mechanisms. Trends in Pharmacological Science, 31(10), 463469.Google Scholar
Trezza, V., Campolongo, P., & Vanderschuren, L. J. M. J. (2011a). Evaluating the rewarding nature of social interactions in laboratory animals. Developmental Cognitive Neuroscience, 1(4), 444458.Google Scholar
Trezza, V., Damsteegt, R., Achterberg, E. J. M., & Vanderschuren, L. J. M. J. (2011b). Nucleus accumbens mu-opioid receptors mediate social reward. Journal of Neuroscience, 31(17), 63626370.Google Scholar
Trezza, V., Damsteegt, R., Manduca, A., Petrosino, S., Van Kerkhof, L. W. M., Pasterkamp, R. J., Zhou, Y., Campolongo, P., Cuomo, V., Di Marzo, V., & Vanderschuren, L. J. M. J. (2012). Endocannabinoids in amygdala and nucleus accumbens mediate social play reward in adolescent rats. Journal of Neuroscience, 32(43), 1489914908.CrossRefGoogle ScholarPubMed
Trezza, V., & Vanderschuren, L. J. M. J. (2008a). Bidirectional cannabinoid modulation of social behavior in adolescent rats. Psychopharmacology (Berlin), 197(2), 217227.Google Scholar
Trezza, V., & Vanderschuren, L. J. M. J. (2008b). Cannabinoid and opioid modulation of social play behavior in adolescent rats: Differential behavioral mechanisms. European Neuropsychopharmacology, 18(7), 519530.Google Scholar
Trezza, V., & Vanderschuren, L. J. M. J. (2009). Divergent effects of anandamide transporter inhibitors with different target selectivity on social play behavior in adolescent rats. Journal of Pharmacology and Experimental Therapeutics, 328(1), 343350.Google Scholar
van Ree, J. M., Gerrits, M. A. F. M., & Vanderschuren, L. J. M. J. (1999). Opioids, reward and addiction: An encounter of biology, psychology, and medicine. Pharmacological Review, 51(2), 341396.Google Scholar
van Ree, J. M., Niesink, R. J. M., & Nir, I. (1984). Delta 1-tetrahydrocannabinol but not cannabidiol reduces contact and aggressive behavior of rats tested in dyadic encounters. Psychopharmacology (Berlin), 84(4), 561565.Google Scholar
Vanderschuren, L. J. M. J., Achterberg, E. J. M., & Trezza, V. (2016). The neurobiology of social play and its rewarding value in rats. Neuroscience & Biobehavioral Reviews, 70, 86105.Google Scholar
Vanderschuren, L. J. M. J., Niesink, R. J. M., Spruijt, B. M., & Van Ree, J. M. (1995a). Effects of morphine on different aspects of social play in juvenile rats. Psychopharmacology, 117(2), 225231.Google Scholar
Vanderschuren, L. J. M. J., Niesink, R. J. M., Spruijt, B. M., & Van Ree, J. M. (1995b). Mu- and kappa-opioid receptor-mediated opioid effects on social play in juvenile rats. European Journal of Pharmacology, 276(3), 257266.Google Scholar
Vanderschuren, L. J. M. J., Niesink, R. J. M., & Van Ree, J. M. (1997). The neurobiology of social play behavior in rats. Neuroscience & Biobehavioral Reviews, 21(3), 309326.Google Scholar
Vanderschuren, L. J. M. J., Spruijt, B. M., Hol, T., Niesink, R. J. M., & Van Ree, J. M. (1995c). Sequential analysis of social play behavior in juvenile rats: Effects of morphine. Behavioural Brain Research, 72(1–2), 8995.Google Scholar
Vanderschuren, L. J. M. J., & Trezza, V. (2014). What the laboratory rat has taught us about social play behavior: Role in behavioral development and neural mechanisms. Current Topics in Behavioral Neuroscience, 16, 189212.Google Scholar
Vanderschuren, L. J. M. J., Trezza, V., Griffioen-Roose, S., Schiepers, O. J. G., Van Leeuwen, N., De Vries, T. J., & Schoffelmeer, A. N. M. (2008). Methylphenidate disrupts social play behavior in adolescent rats. Neuropsychopharmacology, 33(12), 29462956.Google Scholar
Varlinskaya, E. I., & Spear, L. P. (2002). Acute effects of ethanol on social behavior of adolescent and adult rats: Role of familiarity of the test situation. Alcohol Clin Exp Res, 26(10), 15021511.Google Scholar
Varlinskaya, E. I., & Spear, L. P. (2006). Differences in the social consequences of ethanol emerge during the course of adolescence in rats: Social facilitation, social inhibition, and anxiolysis. Developmental Psychobiology, 48(2), 146161.Google Scholar
Varlinskaya, E. I., & Spear, L. P. (2009). Ethanol-induced social facilitation in adolescent rats: Role of endogenous activity at mu opioid receptors. Alcoholism: Clinical and Experimental Research, 33(6), 9911000.Google Scholar
Varlinskaya, E. I., Spear, L. P., & Spear, N. E. (2001). Acute effects of ethanol on behavior of adolescent rats: Role of social context. Alcoholism: Clinical and Experimental Research, 25(3), 377385.Google Scholar
Veenema, A. H., Bredewold, R., & De Vries, G. J. (2013). Sex-specific modulation of juvenile social play by vasopressin. Psychoneuroendocrinology, 38(11), 25542561.Google Scholar
Ventura, R., Alcaro, A., & Puglisi-Allegra, S. (2005). Prefrontal cortical norepinephrine release is critical for morphine-induced reward, reinstatement and dopamine release in the nucleus accumbens. Cerebral Cortex, 15(12), 18771886.Google Scholar
Viveros, M. P., Marco, E. M., Llorente, R., & Lopez-Gallardo, M. (2007). Endocannabinoid system and synaptic plasticity: Implications for emotional responses. Neural Plasticity, 2007, 52908.Google Scholar
Whitaker, L. R., Degoulet, M., & Morikawa, H. (2013). Social deprivation enhances VTA synaptic plasticity and drug-induced contextual learning. Neuron, 77(2), 335345.Google Scholar
Wilson, L. I., Bierley, R. A., & Beatty, W. W. (1986). Cholinergic agonists suppress play fighting in juvenile rats. Pharmacology Biochemistry and Behavior, 24(5), 11571159.Google Scholar
Wright, I. K., Upton, N., & Marsden, C. A. (1991). Resocialisation of isolation-reared rats does not alter their anxiogenic profile on the elevated X-maze model of anxiety. Physiology and Behavior, 50(6), 11291132.Google Scholar
Zanettini, C., Panlilio, L. V., Alicki, M., Goldberg, S. R., Haller, J., & Yasar, S. (2011). Effects of endocannabinoid system modulation on cognitive and emotional behavior. Frontiers in Behavioral Neuroscience, 5, 57.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×