Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-23T03:36:10.977Z Has data issue: false hasContentIssue false

Part V - Ongoing and Future Research Directions

Published online by Cambridge University Press:  13 July 2020

Steve Sussman
Affiliation:
University of Southern California
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Andrews, C., Abraham, A., Grogan, C. M., et al. (2015). Despite resources from the ACA, Most states do little to help addiction treatment programs implement health care reform. Health Affairs (Millwood), 5, 828835.CrossRefGoogle Scholar
Barh, D., García-Solano, M. E., Tiwari, S., et al. (2017). BARHL1 is downregulated in Alzheimer’s disease and may regulate cognitive functions through ESR1 and multiple pathways. Genes (Basel), 10, 245.Google Scholar
Baron, D., Blum, K., Chen, A., Gold, M. & Badgaiyan, R. D. (2018). Conceptualizing addiction from an osteopathic perspective:Dopamine homeostasis. Journal of the American Osteopathic Association, 118, 115118.Google Scholar
Barratt, D. T., Coller, J. K. & Somogyi, A. A. (2006). Association between the DRD2 A1 allele and response to methadone and buprenorphine maintenance treatments. American Journal of Medical Genetics Part B Neuropsychiatric Genetics, 141, 323331.Google Scholar
Berridge, K. C. & Robinson, T. E. (2016). Liking, wanting, and the incentive-sensitization theory of addiction. American Psychologist Journal, 71, 670679.CrossRefGoogle ScholarPubMed
Bershad, A. K., Miller, M. A., Norman, G. J. & de Wit, H. (2018). Effects of opioid- and non-opioid analgesics on responses to psychosocial stress in humans. Hormones and Behavior, 102, 4147.Google Scholar
Blum, K. (2017). Reward Deficiency Syndrome. The Sage Encyclopedia of Abnormal Clinical Psychology, Wenzel, A. (Ed.). Pennsylvania: Sage Publications.Google Scholar
Blum, K. & Baron, D. (2019). Opioid substitution therapy: Achieving harm reduction while searching for a prophylactic solution. Current Pharmaceutical Biotechnology, 20, 180182.CrossRefGoogle ScholarPubMed
Blum, K., Badgaiyan, R. D., Braverman, E. R., et al. (2016a). Hypothesizing that, a pro-dopamine regulator (KB220Z) should optimize, but not hyper-activate the activity of Trace Amine-Associated Receptor 1 (TAAR-1) and induce anti-craving of psychostimulants in the long-term. Journal of Reward Deficiency Syndrome Addiction Science, 2, 1421.Google Scholar
Blum, K., Chen, A. L., Chen, T. J., et al. (2008a). Activation instead of blocking mesolimbic dopaminergic reward circuitry is a preferred modality in the long-term treatment of reward deficiency syndrome (RDS): A commentary. Theoretical Biology Medical Modelling, 12(5), 24.Google Scholar
Blum, K., Chen, T. J., Meshkin, B., et al. (2007a) Genotrim, a DNA-customized nutrigenomic product, targets genetic factors of obesity: Hypothesizing a dopamine-glucose correlation demonstrating reward deficiency syndrome (RDS). Medical Hypotheses, 68, 844852.CrossRefGoogle ScholarPubMed
Blum, K., Chen, A. L., Oscar-Berman, M., et al. (2011). Generational association studies of dopaminergic genes in reward deficiency syndrome (RDS) subjects: Selecting appropriate phenotypes for reward dependence behaviors. International Journal of Environmental Research and Public Health, 8, 44254459.CrossRefGoogle ScholarPubMed
Blum, K., Chen, A. L. C., Thanos, P. K., et al. (2018a). Genetic addiction risk score (GARS) ™, a predictor of vulnerability to opioid dependence. Frontiers in Bioscience (Elite Edition), 10, 175196.Google Scholar
Blum, K., Chen, T. J., Meshkin, B., et al. (2007b). Genotrim, a DNA-customized nutrigenomic product, targets genetic factors of obesity: Hypothesizing a dopamine-glucose correlation demonstrating reward deficiency syndrome (RDS). Medical Hypotheses, 68, 844852.Google Scholar
Blum, K., Chen, T. J., Morse, S., et al. (2010). Overcoming qEEG abnormalities and reward gene deficits during protracted abstinence in male psychostimulant and polydrug abusers utilizing putative dopamine D2 agonist therapy: Part 2. Postgraduate Medical Journal, 122, 214226.Google Scholar
Blum, K., Chen, T. J. H., Chen, A. L. C., et al. (2008b). Dopamine D2 receptor Taq A1 allele predicts treatment compliance of LG839 in a subset analysis of pilot study in the Netherlands. Gene Therapy & Molecular Biology, 12, 129140.Google Scholar
Blum, K., Febo, M. & Badgaiyan, R. D. (2016b). Fifty years in the development of a glutaminergic-dopaminergic optimization complex (KB220) to balance brain reward circuitry in Reward Deficiency Syndrome: A pictorial. Austin Addiction Sciences, 1, 1006.Google ScholarPubMed
Blum, K., Febo, M., Badgaiyan, R. D., et al. (2017a). Common neurogenetic diagnosis and meso-limbic manipulation of hypodopaminergic function in Reward Deficiency Syndrome (RDS): Changing the recovery landscape. Current Neuropharmacology, 15, 184194.Google Scholar
Blum, K., Febo, M., Fried, L., et al. (2017b). Hypothesizing that neuropharmacological and neuroimaging studies of glutaminergic-dopaminergic optimization complex (KB220Z) are associated with “dopamine homeostasis” in Reward Deficiency Syndrome (RDS). Substance Use and Misuse, 52, 535547.CrossRefGoogle ScholarPubMed
Blum, K., Febo, M., McLaughlin, T., et al. (2014a). Hatching the behavioral addiction egg: Reward Deficiency Solution System (RDSS)™ as a function of dopaminergic neurogenetics and brain functional connectivity linking all addictions under a common rubric. Journal of Behavioral Addictions, 3, 149156.Google Scholar
Blum, K., Febo, M., Thanos, P. K., et al. (2015a). Clinically combating Reward Deficiency Syndrome (RDS) with dopamine agonist therapy as a paradigm shift: Dopamine for dinner? Molecular Neurobiology, 52, 18621869.CrossRefGoogle ScholarPubMed
Blum, K., Gardner, E., Oscar-Berman, M. & Gold, M. (2012). “Liking” and “wanting” linked to Reward Deficiency Syndrome (RDS): Hypothesizing differential responsivity in brain reward circuitry. Current Pharmaceutical Design, 18, 113118.Google Scholar
Blum, K., Han, D., Hauser, M., et al. (2013a). Neurogenetic impairments of brain reward circuitry links to Reward Deficiency Syndrome (RDS) as evidenced by Genetic Addiction Risk Score (GARS): A case study. The Institute of Integrative Omics and Applied Biotechnology Journal, 4, 49.Google Scholar
Blum, K., Han, D., Modestino, E. J., et al. (2018b). A systematic, intensive statistical investigation of data from the Comprehensive Analysis of Reported Drugs (CARD) for compliance and illicit opioid abstinence in substance addiction treatment with buprenorphine/naloxone. Substance Use and Misuse, 53, 220229.Google Scholar
Blum, K., Han, D., Femino, J., et al. (2014b). Systematic evaluation of “compliance” to prescribed treatment medications and “abstinence” from psychoactive drug abuse in chemical dependence programs: Data from the comprehensive analysis of reported drugs. PLoS ONE, 9, e104275.Google Scholar
Blum, K., Jacobs, W., Modestino, E. J., et al. (2018c). Insurance companies fighting the peer review empire without any validity: The case for addiction and pain modalities in the face of an American drug epidemic. SEJ Surgery and Pain, 1, 111.Google Scholar
Blum, K., Liu, Y., Wang, W., et al. (2015b). rsfMRI effects of KB220Z™ on neural pathways in reward circuitry of abstinent genotyped heroin addicts. Postgraduate Medical Journal, 127, 232241.Google Scholar
Blum, K., Lott, L. Siwicki, D., et al. (2018d). Genetic Addiction Risk Score (GARS) as a predictor of substance use disorder: Identifying predisposition not diagnosis. Current Trends in Medical Diagnostic Methods, 1, 13.Google Scholar
Blum, K., Madigan, M. A., Fried, L., et al. (2017c). Coupling Genetic Addiction Risk Score (GARS) and pro dopamine regulation (KB220) to combat substance use disorder (SUD). Global Journal of Addiction and Rehabilitation Medicine, 1.Google Scholar
Blum, K., Modestino, E. J., Gondre-Lewis, M., et al. (2018e). The benefits of Genetic Addiction Risk Score (GARS™) testing in Substance Use Disorder (SUD). International Journal of Genomics and Data Mining, 1, 115.Google Scholar
Blum, K., Modestino, E. J., Gondré-Lewis, M. C., et al. (2017d). Global opioid epidemic: Doomed to fail without genetically based precision addiction medicine (PAMTM): Lessons learned from America. Journal of Laboratory and Precision Medicine (Bangalore), 2, 1722.Google Scholar
Blum, K., Modestino, J. E., Gondre Lewis, C. M., et al. (2018f). Pro-dopamine regulator (KB220) a fifty year sojourn to combat Reward Deficiency Syndrome (RDS): Evidence based bibliography (annotated). CPQ Journal of Neurology and Psychology, 1.Google Scholar
Blum, K., Modestino, E. J., Lott, L., et al. (2018g). Introducing “Precision Addiction Management (PAM®)” as an adjunctive genetic guided therapy for abusable drugs in America. Open Access Journal of Psychology and Behavioral Science, 1, 14.Google Scholar
Blum, K., Modestino, E. J., Neary, J., et al. (2018h). Promoting Precision Addiction Management (PAM) to combat the global opioid crisis. Biomedical Journal of Scientific and Technical Research, 2, 14.CrossRefGoogle ScholarPubMed
Blum, K., Noble, E. P., Sheridan, P. J., et al. (1990). Allelic association of human dopamine D2 receptor gene in alcoholism. The Journal of American Medical Association, 263(15), 20552060.Google Scholar
Blum, K., Oscar-Berman, M., Demetrovics, Z., Barh, D. & Gold, M. S. (2014c). Genetic Addiction Risk Score (GARS): Molecular neurogenetic evidence for predisposition to Reward Deficiency Syndrome (RDS). Molecular Neurobiology, 50, 765796.CrossRefGoogle ScholarPubMed
Blum, K., Oscar-Berman, M., Femino, J., et al. (2013b). Withdrawal from buprenorphine/naloxone and maintenance with a natural dopaminergic agonist: A cautionary note. Journal of Addiction Research and Therapy, 4.Google Scholar
Blum, K., Thompson, B., Demotrovics, Z., et al. (2015c). The molecular neurobiology of twelve steps program & fellowship: Connecting the dots for recovery. Journal of Reward Deficiency Syndrome, 1, 4664.Google Scholar
Blum, K., Wood, R. C., Braverman, E. P., Chen, T. J. H. & Sheridan, P. J. (1995). D2 dopamine receptor gene as a predictor of compulsive disease: Bayes’ theorem. Functional Neurology, 10, 3744.Google Scholar
Bousman, C., Maruf, A. A. & Müller, D. J. (2019). Towards the integration of pharmacogenetics in psychiatry: a minimum, evidence-based genetic testing panel. Current Opinion in Psychiatry, 32, 715.CrossRefGoogle ScholarPubMed
Casey, B. J., Craddock, N., Cuthbert, B. N., Hyman, S. E., Lee, F. S. & Ressler, K. J. (2013). DSM-5 and RDoC: progress in psychiatry research? Nature reviews. Neuroscience, 14, 810814.Google Scholar
Chen, A. L., Blum, K., Chen, T. J., et al. (2012). Correlation of the Taq1 dopamine D2 receptor gene and percent body fat in obese and screened control subjects: a preliminary report. Food and Function, 3, 4048.CrossRefGoogle ScholarPubMed
Chen, A. L., Chen, T. J., Waite, R. L., et al. (2009). Hypothesizing that brain reward circuitry genes are genetic antecedents of pain sensitivity and critical diagnostic and pharmacogenomic treatment targets for chronic pain conditions. Medical Hypotheses, 72, 1422.CrossRefGoogle ScholarPubMed
Chen, D., Liu, F., Shang, Q., et al. (2011). Association between polymorphisms of DRD2 and DRD4 and opioid dependence: evidence from the current studies. American Journal of Medical Genetics, 156, 661670.Google Scholar
Chen, T. J., Blum, K., Mathews, D., et al. (2005). Are dopaminergic genes involved in a predisposition to pathological aggression? Hypothesizing the importance of “super normal controls” in psychiatricgenetic research of complex behavioral disorders. Medical Hypotheses, 65, 703707.Google Scholar
Comings, D. E., MacMurray, J., Johnson, P., Dietz, G. & Muhleman, D. (1995). Dopamine D2 receptor gene (DRD2) haplotypes and the defense style questionnaire in substance abuse, Tourette syndrome, and controls. Biological Psychiatry, 37, 798805.Google Scholar
Corrigan, P. W., Schomerus, G., Shuman, V., et al. (2017). Developing a research agenda for reducing the stigma of addictions, part II: lessons from the mental health stigma literature. American Journal on Addictions, 1, 6774.Google Scholar
Dahlgren, A., Wargelius, H. L., Berglund, K. J., et al. (2011). Do alcohol-dependent individuals with DRD2 A1 allele have an increased risk of relapse? Alcohol and Alcoholism, 46, 509513.Google Scholar
Dunn, K E. & Strain, E. C. (2013). Pretreatment alcohol drinking goals are associated with treatment outcomes. Alcoholism: Clinical and Experimental Research, 37, 17451752.Google Scholar
Elston, S. F., Blum, K., DeLallo, L. & Briggs, A. H. (1982). Ethanol intoxication as a function of genotype dependent responses in three inbred mice strains. Pharmacology Biochemistry and Behavior, 16, 1315.Google Scholar
Erickson, C. (2007). The Science of Addiction. New York: W. W. Norton & Co.Google Scholar
Febo, M., Blum, K., Badgaiyan, R. D., et al. (2017a). Enhanced functional connectivity and volume between cognitive and reward centers of naïve rodent brain produced by pro-dopaminergic agent KB220Z. PLoS ONE, 12, e0174774.Google Scholar
Febo, M., Blum, K., Badgaiyan, R. D., et al. (2017b). Dopamine homeostasis: brain functional connectivity in reward deficiency syndrome. Frontiers Bioscience (Landmark Edition), 22, 669691.Google Scholar
Florence, C. S., Zhou, C., Luo, F. & Xu, L. (2016). The economic burden of prescription opioid overdose, abuse, and dependence in the United States. Medical Care, 54, 901906.Google Scholar
Gardner, E. L. (2011). Addiction and brain reward and antireward pathways. Advances in Psychosomatic Medicine, 30, 2260.Google Scholar
Gelernter, J., O'Malley, S., Risch, N., et al. (1991). No association between an allele at the D2 dopamine receptor gene (DRD2) and alcoholism. The Journal of American Medical Association, 266, 18011807.Google Scholar
Gerra, G., Somaini, L., Leonardi, C., et al. (2014). Association between gene variants and response to buprenorphine maintenance treatment. Psychiatry Research, 215, 202207.Google Scholar
Gold, M. S., Blum, K., Febo, M., et al. (2018). Molecular role of dopamine in anhedonia linked to reward deficiency syndrome (RDS) and anti-reward systems. Frontiers in Bioscience (Scholar Edition), 10, 309325.Google ScholarPubMed
Gressler, L. E., Martin, B. C., Hudson, T. J. & Painter, J. T. (2018) Relationship between concomitant benzodiazepine-opioid use and adverse outcomes among US veterans. Pain, 159, 451459.Google Scholar
Hill, E., Han, D., Dumouchel, P., et al. (2013). Long term Suboxone™ emotional reactivity as measured by automatic detection in speech. PLoS ONE, 8, e69043.Google Scholar
Hyman, S. E. (2007). Can neuroscience be integrated into the DSM-V? Nature Reviews Neuroscience, 8(9), 725732.Google Scholar
Johnson, M. I., Paley, C. A., Howe, T. E. & Sluka, K. A. (2015). Transcutaneous electrical nerve stimulation for acute pain. Cochrane Database Systematic Review, CD006142.Google Scholar
Joseph, Z., Victor, K. & Rimona, D. (2011). “Ego-dystonic” delusions as a predictor of dangerous behavior. Psychiatric Quaterly, 82, 113120.Google Scholar
Kandel, D. & Kandel, E. (2015). The Gateway Hypothesis of substance abuse: developmental, biological and societal perspectives. Acta Paediatrica, 104, 130137.CrossRefGoogle ScholarPubMed
Krebs, E. E., Gravely, A., Nugent, S., et al. (2018). Effect of opioid vs nonopioid medications on pain-related function in patients with chronic back pain or hip or knee osteoarthritis pain: The SPACE randomized clinical trial. The Journal of American Medical Association, 319, 872882.Google Scholar
Loth, E., Carvalho, F. & Schumann, G. (2011). The contribution of imaging genetics to the development of predictive markers for addictions. Trends in Cognitive Sciences, 15, 436446.Google Scholar
Lötsch, J., Skarke, C., Liefhold, J. & Geisslinger, G. (2004). Genetic predictors of the clinical response to opioid analgesics: clinical utility and future perspectives. Clinical Pharmacokinetics, 43, 9831013.Google Scholar
Makhinson, M. & Gomez-Makhinson, J. (2014). A successful treatment of buprenorphine withdrawal with the dopamine receptor agonist pramipexole. The American Journal on Addictions, 23, 475477.Google Scholar
Matthews, S., Dwyer, R. & Snoek, A. (2017). Stigma and self-stigma in addiction. Journal of Bioethical Inquiry, 14, 275286.Google Scholar
Moeller, S. J., Parvaz, M. A., Shumay, E., et al. (2013). Gene x abstinence effects on drug cue reactivity in addiction: multimodal evidence. Journal of Neuroscience, 33, 1002710036.Google Scholar
Mogil, J. S. & Wilson, S. G. (1997). Nociceptive and morphine antinociceptive sensitivity of 129 and C57BL/6 inbred mouse strains: implications for transgenic knock-out studies. European Journal of Pain, 1, 293297.Google Scholar
Palmer, R. H., Brick, L., Nugent, N. R., et al. (2015). Examining the role of common genetic variants on alcohol, tobacco, cannabis and illicit drug dependence: genetics of vulnerability to drug dependence. Addiction, 110, 530537.Google Scholar
Pergolizzi, J. V. Jr, LeQuang, J. A., Taylor, R. Jr. & Raffa, R. B. (2018) Going beyond prescription pain relievers to understand the opioid epidemic: the role of illicit fentanyl, new psychoactive substances, and street heroin. Postgraduate Medicine Journal, 130, 18.Google Scholar
Raheb, G., Khaleghi, E., Moghanibashi-Mansourieh, A., Farhoudian, A. & Teymouri, R. (2016). Effectiveness of social work intervention with a systematic approach to improve general health in opioid addicts in addiction treatment centers. Psychology Research and Behavior Management, 9, 309315.Google Scholar
Reilly, M. T., Noronha, A., Goldman, D. & Koob, G. F. (2017). Genetic studies of alcohol dependence in the context of the addiction cycle. Neuropharmacology, 122, 321.Google Scholar
Ritchie, T. & Noble, E. P. (1996). (3H) naloxone binding in the human brain: alcoholism and the TaqI A D2 dopamine receptor polymorphism. Brain Research, 718, 193197.Google Scholar
Rudd, R. A., Seth, P., David, F. & Scholl, L. (2016). Increases in drug and opioid-involved overdose deaths – United States, 2010–2015.Morbidity and Mortality Weekly Report, 65, 14451452.Google Scholar
Salling, M. C. & Martinez, D. (2016). Brain stimulation in addiction. Neuropsychopharmacology, 41, 27982809.Google Scholar
Schoenthaler, S. J., Blum, K., Fried, L., et al. (2017). The effects of residential dual diagnosis treatment on alcohol abuse. Journal of Systems and Integrative Neuroscience, 3.CrossRefGoogle ScholarPubMed
Schreiber, A. L. (2014). Challenging pain syndromes. Physical Medicine and Rehabilitation Clinics of North America, 2, xvxvi.Google Scholar
Severino, A. L., Shadfar, A., Hakimian, J. K., et al. (2018). Pain therapy guided by purpose and perspective in light of the opioid epidemic. Frontiers in Psychiatry, 9, 119.Google Scholar
Simpatico, T. A. (2015). Vermont responds to its opioid crisis. Preventive Medicine, 80, 1011.Google Scholar
Smith, D. E. (2012). The process addictions and the new ASAM definition of addiction. Journal of Psychoactive Drugs, 44, 14.CrossRefGoogle ScholarPubMed
Smith, S. R., Deshpande, B. R., Collins, J. E., Katz, J. N. & Losina, E. (2016). Comparative pain reduction of oral non-steroidal anti-inflammatory drugs and opioids for knee osteoarthritis: systematic analytic review. Osteoarthritis Cartilage, 24, 962972.Google Scholar
Stamer, U. M. & Stüber, F. (2007). Genetic factors in pain and its treatment. Current Opinion in Anaesthesiology, 20, 478484.Google Scholar
Sussman, S. & Pakdaman, S. (2020). Appetitive needs and addiction. In Sussman, S. (Ed.) The Cambridge Handbook of Substance and Behavioral Addictions. Cambridge, UK: Cambridge University Press, pp. 311.Google Scholar
Szutorisz, H. & Hurd, Y. L. (2016). Epigenetic effects of cannabis exposure. Biological Psychiatry, 79, 586594.Google Scholar
Volkow, N. D., Wise, R. A. & Baler, R. (2017). The dopamine motive system: implications for drug and food addiction. Nature Reviews Neuroscience, 18, 741752.Google Scholar
Vonasch, A. J., Clark, C. J., Lau, S., Vohs, K. D. & Baumeister, R. F. (2017). Ordinary people associate addiction with loss of free will. Addictive Behaviors Reports, 5, 5666.Google Scholar
Willuhn, I., Burgeno, L. M., Groblewski, P. A. & Phillips, P. E. (2014). Excessive cocaine use results from decreased phasic dopamine signaling in the striatum. Nature Neuroscience, 17, 704709.Google Scholar

References

Abdulrahim, D. & Bowden-Jones, O., on behalf of the NEPTUNE Expert Group (2015). Guidance on the Management of Acute and Chronic Harms of Club Drugs and Novel Psychoactive Substances. London: Novel Psychoactive Treatment UK Network (NEPTUNE).Google Scholar
Acciavatti, T., Lupi, M., Santacroce, R., et al. (2017). Novel psychoactive substance consumption is more represented in bipolar disorder than in psychotic disorders: A multicenter-observational study. Human Psychopharmacology, 32(3), doi: 10.1002/hup.2578.Google Scholar
Addison, M., Stockdale, K., McGovern, R., et al. (2018). Exploring intersections between Novel Psychoactive Substances (NPS) and other substance use in a police custody suite setting in the North East of England. Drugs: Education, Prevention & Policy, 25(4), 313319.Google Scholar
Alatrash, G., Majhail, N. S. & Pile, J.C. (2006). Rhabdomyolysis after ingestion of “foxy,” a hallucinogenic tryptamine derivative. Mayo Clinic Proceedings, 81(4), 550551.Google Scholar
Alzghari, S. K., Amin, Z. M., Chau, S., et al. (2017). On the horizon: The synthetic opioid U-49900. Cureus, 9(9), e1679. http://doi.org/10.7759/cureus.1679Google Scholar
Anderson, C. Morrell, C. & Marchevsky, D. (2015). A novel psychoactive substance poses a new challenge in the management of paranoid schizophrenia. BMJ Case Reports, bcr2015209573.http://doi.org/10.1136/bcr-2015-209573Google Scholar
Anizan, S., Concheiro, M., Lehner, K. R., et al. (2016). Linear pharmacokinetics of 3,4-methylenedioxypyrovalerone (MDPV) and its metabolites in the rat: relationship to pharmacodynamic effects. Addiction Biology, 21(2), 339347.Google Scholar
Antia, U., Lee, H. S., Kydd, R. R., Tingle, M. D. & Russell, B. R. (2009a). Pharmacokinetics of ‘party pill’ drug N-benzylpiperazine (BZP) in healthy human participants. Forensic Science International, 186(1–3), 6367.Google Scholar
Antia, U., Tingle, M. D. & Russell, B. R. (2009b). In vivo interactions between BZP and TFMPP (party pill drugs). The New Zealand Medical Journal, 122(1303), 2938.Google Scholar
Araújo, A. M., Carvalho, F., Bastos Mde, L., Guedes de Pinho, P. & Carvalho, M. (2015). The hallucinogenic world of tryptamines: An updated review. Archives of Toxicology, 89(8), 11511173.Google Scholar
Arbo, M. D., Bastos, M. L. & Carmo, H. F. (2012). Piperazine compounds as drugs of abuse. Drug and Alcohol Dependence, 122(3), 174185.Google Scholar
Armenian, P., Olson, A., Anaya, A., et al. (2017). Fentanyl and a novel synthetic opioid U-47700 masquerading as street “Norco” in central California: a case report. Annals of Emergency Medicine, 69(1), 8790.Google Scholar
Armenian, P., Vo, K. T., Barr-Walker, J. & Lynch, K. L. (2018). Fentanyl, fentanyl analogs and novel synthetic opioids: A comprehensive review. Neuropharmacology, 134(Part A), 121132. doi: 10.1016/j.neuropharm.2017.10.016Google Scholar
Bäckberg, M., Beck, O., Jönsson, K. H. & Helander, A. (2015). Opioid intoxications involving butyrfentanyl, 4-fluorobutyrfentanyl, and fentanyl from the Swedish STRIDA project. Clinical Toxicology (Philadelphia, Pa.), 53(7), 609617.Google Scholar
Banks, M. L., Worst, T. J. & Sprague, J. E. (2014). Synthetic Cathinones and amphetamine analogues: What’s the rave about? The Journal of Emergency Medicine, 46(5), 632642.Google Scholar
Barratt, M. J., Cakic, V. & Lenton, S. (2013). Patterns of synthetic cannabinoid use in Australia. Drug and Alcohol Review, 32(2), 141146.Google Scholar
Barrios, L., Grison-Hernando, H., Boels, D., et al. (2016). Death following ingestion of methylone. International Journal of Legal Medicine, 130(2), 381385.CrossRefGoogle ScholarPubMed
Baumann, M. H., Bukhari, M. O., Lehner, K. R., et al. (2017). Neuropharmacology of 3,4-methylenedioxypyrovalerone (MDPV), its metabolites, and related analogs. Current Topics in Behavioral Neurosciences, 32, 93117.Google Scholar
Baumann, M. H., Clark, R. D., Budzynski, A. G., et al. (2005). N-substituted piperazines abused by humans mimic the molecular mechanism of 3,4-methylenediox-ymethamphetamine (MDMA, or ‘Ecstasy’). Neuropsychopharmacology, 30(3), 550560.Google Scholar
Baumeister, D., Tojo, L. M. & Tracy, D. K. (2015). Legal highs: Staying on top of the flood of novel psychoactive substances. Therapeutic Advances in Psychopharmacology, 5(2), 97132.Google Scholar
Black, C., Setterfield, L. & Murray, L. (2016). Scottish Schools Adolescent Lifestyle and Substance Use Survey (SALSUS): Drug Use Report (2015). Scotland: Scottish Government, National Statistics publication for Scotland.Google Scholar
Blackman, S. & Bradley, R. (2017). From niche to stigma – Headshops to prison: Exploring the rise and fall of synthetic cannabinoid use among young adults. The International Journal on Drug Policy, 40, 7077.Google Scholar
Bonar, E. E., Ashrafioun, L. & Ilgen, M. A. (2014). Synthetic cannabinoid use among patients in residential substance use disorder treatment: Prevalence, motives, and correlatesDrug and Alcohol Dependence143, 268271.Google Scholar
Borek, H. A. & Holstege, C. P. (2012). Hyperthermia and multiorgan failure after abuse of “bath salts” containing 3,4-methylenedioxypyrovalerone. Annals of Emergency Medicine, 60(1), 103105.Google Scholar
Bright, S. J., Bishop, B., Kane, R., Marsh, A. & Barratt, M. J. (2013). Kronic hysteria: Exploring the intersection between Australian synthetic cannabis legislation, the media, and drug-related harm. The International Journal on Drug Policy, 24(3), 231237.Google Scholar
Brotherhood, A. & Sumnall, H. R. (2011). European Drug Prevention Quality Standards, Manual No 7. Lisbon: EMCDDA.Google Scholar
Brush, D. E., Bird, S. B. & Boyer, E. W. (2004). Monoamine oxidase inhibitor poisoning resulting from Internet misinformation on illicit substances. Journal of Toxicology. Clinical Toxicology, 42(2), 191195.Google Scholar
Burns, L., Roxburgh, A., Matthews, A., et al. (2014). The rise of new psychoactive substance use in Australia. Drug Testing and Analysis, 6(7–8), 846849.Google Scholar
Butler, R. A. & Sheridan, J. L. (2007). Highs and lows: patterns of use, positive and negative effects of benzylpiperazine-containing party pills (BZP-party pills) amongst young people in New Zealand. Harm Reduction Journal, 4, 18. doi:10.1186/1477-7517-4-18Google Scholar
Campbell, R., Starkey, F., Holliday, J., et al. (2008). An informal school-based peer-led intervention for smoking prevention in adolescence (ASSIST): A cluster randomised trial. The Lancet, 371(9624), 15951602.Google Scholar
Cannaert, A., Storme, J., Franz, F., Auwärter, V. & Stove, C. P. (2016). Detection and activity profiling of synthetic cannabinoids and their metabolites with a newly developed bioassay. Analytical Chemistry, 88(23), 1147611485.Google Scholar
Carbone, P. N., Carbone, D. L., Carstairs, S. D. & Luzi, S. A. (2013). Sudden cardiac death associated with methylone use. The American Journal of Forensic Medicine and Pathology, 34(1), 2628.CrossRefGoogle ScholarPubMed
Carhart-Harris, R. L., King, L. A. & Nutt, D. J. (2011). A web-based survey on mephedrone. Drug and Alcohol Dependence, 118(1), 1922.Google Scholar
Castaneto, M. S., Gorelick, D. A., Desrosiers, N. A., et al. (2014). Synthetic cannabinoids: Epidemiology, pharmacodynamics, and clinical implicationsDrug and Alcohol Dependence144, 1241.Google Scholar
Catalano, R. F., Fagan, A. A., Gavin, L. E., et al. (2012). Worldwide application of prevention science in adolescent health. The Lancet, 379(9826), 16531664.Google Scholar
Caudevilla-Gálligo, F., Riba, J., Ventura, M., et al. (2012). 4-Bromo-2,5-dimethoxyphenethylamine (2C-B): Presence in the recreational drug market in Spain, pattern of use and subjective effects. Journal of Psychopharmacology, 26(7), 10261035.Google Scholar
Caviness, C. M., Tzilos, G., Anderson, B. J. & Stein, M. D. (2015). Synthetic cannabinoids: Use and predictors in a community sample of young adultsSubstance Abuse, 36(3), 368373.CrossRefGoogle Scholar
Cha, S.-S. & Seo, B.-K. (2018). Smartphone use and smartphone addiction in middle school students in Korea: Prevalence, social networking service, and game use. Health Psychology Open, 5(1), 2055102918755046. doi:10.1177/2055102918755046.Google Scholar
Champion, K. E., Newton, N. C., Stapinski, L. A. & Teesson, M. (2016a). Effectiveness of a universal internet-based prevention program for ecstasy and new psychoactive substances: A cluster randomized controlled trial. Addiction, 111(8), 13961405.Google Scholar
Champion, K. E., Teeson, M. & Newton, N. C. (2016b). Patterns and correlates of new psychoactive substance use in a sample of Australian high school students. Drug and Alcohol Review, 35(3), 338344.Google Scholar
Cohen, K., Kapitány-Fövény, M., Mama, Y., et al. (2017). The effects of synthetic cannabinoids on executive function. Psychopharmacology (Berlin), 234(7), 11211134.Google Scholar
Cole, J. B., Dunbar, J. F., McIntire, S. A., Regelmann, W. E. & Slusher, T. M. (2015). Butyrfentanyl overdose resulting in diffuse alveolar hemorrhage. Pediatrics, 135(3), e740–743.Google Scholar
Cooper, Z. D. (2016). Adverse effects of synthetic cannabinoids: Management of acute toxicity and withdrawal. Current Psychiatry Reports, 18(5), 52. http://doi.org/10.1007/s11920–016-0694-1Google Scholar
Cooper, Z. D. & Haney, M. (2008). Cannabis reinforcement and dependence: role of the cannabinoid CB1 receptorAddiction Biology13(2), 188195.Google Scholar
Corazza, O., Assi, S., Malekianragheb, S., et al. (2014). Monitoring novel psychoactive substances allegedly offered online for sale in Persian and Arabic languages. The International Journal on Drug Policy, 25(4), 724726.CrossRefGoogle ScholarPubMed
Corazza, O., Assi, S., Simonato, P., et al. (2013). Promoting innovation and excellence to face the rapid diffusion of novel psychoactive substances in the EU: The outcomes of the ReDNet project. Human Psychopharmacology, 28(4), 317323.Google Scholar
Corazza, O. & Roman-Urrestarazu, A. (Eds.) (2017). Novel Psychoactive Substances: Policy, Economics and Drug Regulation. Berlin: Springer.Google Scholar
Corazza, O. & Roman-Urrestarazu, A. (Eds.) (2018). Handbook on Novel Psychoactive Substances. What Clinicians Should Know about NPS. New York: Routledge.Google Scholar
Corkery, J. M., Durkin, E., Elliott, S., Schifano, F. & Ghodse, A. H. (2012). The recreational tryptamine 5-MeO-DALT (N,N-diallyl-5-methoxytryptamine): A brief review. Progress in Neuropsychopharmacology & Biological Psychiatry, 39(2), 259262.Google Scholar
Csák, R., Demetrovics, Zs. & Rácz, J. (2013). Transition to injecting 3,4-methylene-dioxy-pyrovalerone (MDPV) among needle exchange program participants in Hungary. Journal of Psychopharmacology, 27(6), 559563.Google Scholar
Csete, J., Kamarulzaman, A., Kazatchkine, M., et al. (2016). Public Health and International Drug Policy: Report of the Johns Hopkins – Lancet Commission on Drug Policy and Health. Lancet (London, England), 387(10026), 14271480.Google Scholar
Cunningham, S. M., Haikal, N. A. & Kraner, J. C. (2016). Fatal intoxication with acetyl fentanyl. Journal of Forensic Sciences, 61 (Supplement 1), S276–280.Google Scholar
Daldrup, T., Heller, C., Matthiesen, U., et al. (1986). [Etryptamine, a new designer drug with a fatal effect]. Zeitschrift für Rechtsmedizin, 97(1), 6168.Google Scholar
Dargan, P. I., Albert, S. & Wood, D. M. (2010). Mephedrone use and associated adverse effects in school and college/university students before the UK legislation change. QJM: An International Journal of Medicine, 103(11), 875879.Google Scholar
de Boer, D., Bosman, I. J., Hidvégi, E., et al. (2001). Piperazine-like compounds: A new group of designer drugs-of-abuse on the European market. Forensic Science International, 121(1–2), 4756.Google Scholar
Dean, B. V., Stellpflug, S. J., Burnett, A. M. & Engebretsen, K. M. (2013). 2C or not 2C: Phenethylamine designer drug review. Journal of Medical Toxicology, 9(2), 172178.Google Scholar
Degenhardt, L. & Dunn, M. (2008). The epidemiology of GHB and ketamine use in an Australian household survey. The International Journal on Drug Policy, 19(4), 311316.Google Scholar
Deligianni, E., Corkery, J. M., Schifano, F. & Lione, L. A. (2017). An international survey on the awareness, use, preference, and health perception of novel psychoactive substances (NPS). Human Psychopharmacology, 32(3), doi: 10.1002/hup.2581.Google Scholar
Deluca, P., Davey, Z., Corazza, O., et al. (2012). Identifying emerging trends in recreational drug use; outcomes from the Psychonaut Web Mapping Project. Progress in Neuropsychopharmacology & Biological Psychiatry, 39(2), 221226.Google Scholar
Demetrovics, Z., Urbán, R., Nagygyörgy, K., et al. (2011). Why do you play? The development of the motives for online gaming questionnaire (MOGQ). Behavioral Research Methods, 43(3), 814825.Google Scholar
Dick, D. & Torrance, C. (2010). Mixmag drug survey. Mixmag, 225, 4453.Google Scholar
Domanski, K., Kleinschmidt, K. C., Schulte, J. M., et al. (2017). Two cases of intoxication with new synthetic opioid, U-47700. Clinical Toxicology (Philadelphia, Pa.), 55(1), 4650.Google Scholar
Elliott, S. (2011). Current awareness of piperazines: Pharmacology and toxicology. Drug Testing and Analysis, 3(7–8), 430438.Google Scholar
Elliott, S. & Smith, C. (2008). Investigation of the first deaths in the United Kingdom involving the detection and quantitation of the piperazines BZP and 3-TFMPP. Journal of Analytical Toxicology, 32(2), 172177.Google Scholar
Elliott, S. P., Brandt, S. D. & Smith, C. (2016). The first reported fatality associated with the synthetic opioid 3,4-dichloro-N-[2-(dimethylamino)cyclohexyl]-N-methylbenzamide (U-47700) and implications for forensic analysis. Drug Testing and Analysis, 8(8), 875879.Google Scholar
EMCDDA (2006). Selected Issue 3: Developments in Drug Use Within Recreational Settings. Luxembourg: Publications Office of the European Union. Available at: www.emcdda.europa.eu/system/files/publications/424/sel2006_3-en_69713.pdf [Accessed June 10, 2018]Google Scholar
EMCDDA (2016a). The Internet and Drug Markets. Luxembourg: Publications Office of the European Union. Available at: www.emcdda.europa.eu/publications/insights/internet-drug-markets [Accessed November 2, 2017]Google Scholar
EMCDDA (2016b). Report on the risk assessment of 1-phenyl-2-(pyrrolidin-1-yl)pentan-1-one (α-pyrrolidinovalerophenone, α-PVP) in the framework of the Council Decision on newpsychoactive substances). Luxembourg: Publications Office of the European Union. Available at: www.emcdda.europa.eu/system/files/publications/2934/TDAK16001ENN.pdf [Accessed May 25, 2018]Google Scholar
EMCDDA (2016c). Perspectives on drugs: Health Responses to New Psychoactive Substances. Luxembourg: Publications Office of the European Union. Available at:www.emcdda.europa.eu/system/files/publications/2933/NPS%20health%20responses_POD2016.pdf [Accessed June 05, 2018]Google Scholar
EMCDDA (2017). Germany – Country Drug Report 2017. Luxembourg: Publications Office of the European Union, Available at: www.emcdda.europa.eu/system/files/publications/4528/TD0416906ENN.pdf [Accessed December 10, 2017]Google Scholar
EMCDDA-Europol (2017). Joint Report on a New Psychoactive Substance: N-phenyl-N-[1-(2-Phenylethyl)piperidin-4-yl]-furan-2-carboxamide (furanylfentanyl). Luxembourg: Publications Office of the European Union, Available at: www.emcdda.europa.eu/system/files/publications/4682/JOINT_REPORT_furanylfentanyl_web.pdf [Accessed June 1, 2018]Google Scholar
ESPAD Group (2016). ESPAD Report 2015 – Results from the European School Survey Project on Alcohol and Other Drugs. Luxembourg: Publications Office of the European Union. Available at: www.espad.org/sites/espad.org/files/ESPAD_report_2015.pdf [Accessed October 17, 2017]Google Scholar
Euro-DEN (2015). Guidelines on when to call the Emergency Services 112 for unwell recreational drug users. Lisbon: EMCDDA.Google Scholar
Evenepoel, T. (2015). Drug helplines, online health and NPS. Presentation at the Health responses to NPS EMCDDA expert meeting, October 28–29, 2015, EMCDDA, Lisbon. Available at: www.emcdda.europa.eu/events/meetings/2015/nps-health-responses [Accessed December 20, 2017]Google Scholar
Every-Palmer, S. (2011). Synthetic cannabinoid JWH-018 and psychosis: An explorative study. Drug and Alcohol Dependence, 117(2–3), 152157.Google Scholar
Fantegrossi, W. E., Harrington, A. W., Kiessel, C. L., et al. (2006). Hallucinogen-like actions of 5-methoxy-N,N-diisopropyltryptamine in mice and rats. Pharmacology, Biochemistry and Behavior, 83(1), 122129.Google Scholar
Fantegrossi, W. E., Moran, J. H., Radominska-Pandya, A. & Prather, P. L. (2014). Distinct pharmacology and metabolism of K2 synthetic cannabinoids compared to Δ9-THC: Mechanism underlying greater toxicity? Life Sciences, 97(1), 4554.Google Scholar
Fattore, L. & Fratta, W. (2011). Beyond THC: The new generation of cannabinoid designer drugs. Frontiers in Behavioral Neuroscience, 5, 60. doi: 10.3389/fnbeh.2011.00060.Google Scholar
Fels, H., Krueger, J., Sachs, H., et al. (2017). Two fatalities associated with synthetic opioids: AH-7921 and MT-45. Forensic Science International, e30–e35. doi: 10.1016/j.forsciint.2017.04.003.Google Scholar
Forsyth, A. J. M. (2012). Virtually a drug scare: Mephedrone and the impact of the Internet on drug news transmission. The International Journal on Drug Policy, 23(3), 198209.Google Scholar
Gee, P., Richardson, S., Woltersdorf, W. & Moore, G. (2005). Toxic effects of BZP-based herbal party pills in humans: A prospective study in Christchurch, New Zealand. The New Zealand Medical Journal, 118(1227), U1784.Google Scholar
German, C. L., Fleckenstein, A. E. & Hanson, G. R. (2014). Bath salts and synthetic cathinones: An emerging designer drug phenomenon. Life Sciences, 97(1), 28.Google Scholar
Gilani, F. (2016). Novel psychoactive substances: The rising wave of “legal highs”. The British Journal of General Practice, 66(642), 89.Google Scholar
Ginsburg, B. C., McMahon, L. R., Sanchez, J. J. & Javors, M. A. (2012). Purity of synthetic cannabinoids sold online for recreational useJournal of Analytical Toxicology, 36(1), 6668.Google Scholar
Gołembiowska, K., Jurczak, A., Kamińska, K., Noworyta-Sokołowska, K. & Górska, A. (2016). Effect of some psychoactive drugs used as “legal highs” on brain neurotransmitters. Neurotoxicity Research, 29, 394407.Google Scholar
Gregg, R. A., Tallarida, C. S., Reitz, A., McCurdy, C. & Rawls, S. M. (2013). Mephedrone (4-methylmethcathinone), a principal constituent of psychoactive bath salts, produces behavioral sensitization in rats. Drug and Alcohol Dependence, 133(2), 746750.Google Scholar
Griswold, M. K., Chai, P. R., Krotulski, A. J., et al. (2017). A novel oral fluid assay (LC-QTOF-MS) for the detection of fentanyl and clandestine opioids in oral fluid after reported heroin overdose. Journal of Medical Toxicology, 13(4), 287292.Google Scholar
Guerrieri, D., Rapp, E., Roman, M., Druid, H. & Kronstrand, R. (2017). Postmortem and toxicological findings in a series of furanylfentanyl-related deaths. Journal of Analytical Toxicology, 41(3), 242249.Google Scholar
Guirguis, A., Corkery, J., Stair, J., et al. (2015). Survey of knowledge of legal highs (novel psychoactivesubstances) amongst London pharmacists. Drugs and Alcohol Today, 15(2), 9399.Google Scholar
Gunderson, E. W., Haughey, H. M., Ait-Daoud, N., Joshi, A. S. & Hart, C. L. (2014). A Survey of synthetic cannabinoid consumption by current cannabis usersSubstance Abuse, 35(2), 184189.Google Scholar
Gustavsson, D. & Escher, C. (2009). [Mephedrone-Internet drug which seems to have come and stay. Fatal cases in Sweden have drawn attention to previously unknown substance]. Lakartidningen, 106(43), 27692771.Google Scholar
Hawk, K. F., Vaca, F. E. & D’Onofrio, G. (2015). Reducing fatal opioid overdose: Prevention, treatment and harm reduction strategies. The Yale Journal of Biology and Medicine, 88(3), 235245.Google Scholar
Health and Social Care Information Centre (2015). Smoking, Drinking and Drug Use among Young People in England – 2013. London: Health and Social Care Information Centre.Google Scholar
Helander, A., Bäckberg, M. & Beck, O. (2014). MT-45, a new psychoactive substance associated with hearing loss and unconsciousness. Clinical Toxicology (Philadelphia, Pa.), 52(8), 901904.Google Scholar
Helander, A., Bäckberg, M. & Beck, O. (2016). Intoxications involving the fentanyl analogs acetylfentanyl, 4-methoxybutyrfentanyl and furanylfentanyl: Results from the Swedish STRIDA project. Clinical Toxicology (Philadelphia, Pa.), 54(4), 324332.Google Scholar
Helander, A., Bradley, M., Hasselblad, A., et al. (2017). Acute skin and hair symptoms followed by severe, delayed eye complications in subjects using the synthetic opioid MT-45. The British Journal of Dermatology, 176(4), 10211027.Google Scholar
Hermanns-Clausen, M., Kneisel, S., Szabo, B. & Auwärter, V. (2013). Acute toxicity due to the confirmed consumption of synthetic cannabinoids: Clinical and laboratory findings. Addiction, 108(3), 534544.Google Scholar
Hess, C., Stockhausen, S., Kernbach-Wighton, G. & Madea, B. (2015). Death due to diabetic ketoacidosis: Induction by the consumption of synthetic cannabinoids? Forensic Science International, 257, e611. doi: 10.1016/j.forsciint.2015.08.012.Google Scholar
Ikeda, A., Sekiguchi, K., Fujita, K., Yamadera, H. & Koga, Y. (2005). 5-methoxy-N,N-diisopropyltryptamine-induced flashbacks. The American Journal of Psychiatry, 162(4), 815.Google Scholar
Itokawa, M., Iwata, K., Takahashi, M., et al. (2007). Acute confusional state after designer tryptamine abuse. Psychiatry and Clinical Neurosciences, 61(2), 196199.Google Scholar
Jan, R. K., Lin, J. C., Lee, H., et al. (2010). Determining the subjective effects of TFMPP in human males. Psychopharmacology (Berlin), 211(3), 347353.Google Scholar
Javadi-Paydar, M., Nguyen, J. D., Vandewater, S. A., Dickerson, T. J. & Taffe, M. A. (2018). Locomotor and reinforcing effects of pentedrone, pentylone and methylone in rats. Neuropharmacology, 134(Part A), 5764. doi: 10.1016/j.neuropharm.2017.09.002.Google Scholar
Jebadurai, J. K. (2012). Qualitative research of online drug misuse communities with reference to the novel psychoactive substances. Doctoral Thesis at the University of Hertfordshire.Google Scholar
Jones, M. J., Hernandez, B. S., Janis, G. C. & Stellpflug, S. J. (2017). A case of U-47700 overdose with laboratory confirmation and metabolite identification. Clinical Toxicology (Philadelphia, Pa.), 55(1), 5559.Google Scholar
Joseph, A. M., Manseau, M. W., Lalane, M., Rajparia, A. & Lewis, C. F. (2017). Characteristics associated with synthetic cannabinoid use among patients treated in a public psychiatric emergency setting. The American Journal of Drug and Alcohol Abuse, 43(1), 117122.Google Scholar
Jovel, A., Felthous, A. & Bhattacharyya, A. (2014). Delirium due to intoxication from the novel synthetic tryptamine 5-MeO-DALT. Journal of Forensic Sciences, 59(3), 844846.Google Scholar
Kalasho, A. & Vibe Nielsen, S. (2016). 5-MeO-DALT; a novel designer drug on the market causing acute delirium and rhabdomyolysis. Acta Anaesthesiologica Scandinavica, 60(9), 13321336.Google Scholar
Kapitány-Fövény, M. & Demetrovics, Z. (2017). Utility of Web search query data in testing theoretical assumptions about mephedrone. Human Psychopharmacology, 32(3). doi: 10.1002/hup.2620Google Scholar
Kapitány-Fövény, M., Farkas, J., Csorba, J., Szabó, T. & Demetrovics, Z. (2013a). Különbségek a szintetikus kannabinoidok és a kannabisz szubjektív hatásaiban, a használati mintázatban és a használat okaiban. Magyar Addiktológiai Társaság IX. Országos Kongresszus, Siófok, 2013.11.21-2013.11.23, p. 25.Google Scholar
Kapitány-Fövény, M., Farkas, J., Pataki, P. A., et al. (2017). Novel psychoactive substance use among treatment-seeking opiate users: The role of life events and psychiatric symptoms. Human Psychopharmacology, 32(3), doi: 10.1002/hup.2602Google Scholar
Kapitány-Fövény, M., Kertész, M., Winstock, A., et al. (2013b). Substitutional potential of mephedrone: An analysis of the subjective effects. Human Psychopharmacology, 28(4), 308316.Google Scholar
Kapitány-Fövény, M., Vagdalt, E., Ruttkay, Z., et al. (2018). Potential of an interactive drug prevention mobile phone app (Once Upon a High): Questionnaire study among students.. JMIR Serious Games, 6(4), e19. doi: 10.2196/games.9944Google Scholar
Karila, L., Billieux, J., Benyamina, A., Lançon, C. & Cottencin, O. (2016). The effects and risks associated to mephedrone and methylone in humans: A review of the preliminary evidences. Brain Research Bulletin, 126(Part 1), 6167.Google Scholar
Karila, L., Lafaye, G., Scocard, A., Cottencin, O. & Benyamina, A. (2018). MDPV and α-PVP use in humans: The twisted sisters. Neuropharmacology, 134(Part A), 6572.Google Scholar
Karila, L., Megarbane, B., Cottencin, O. & Lejoyeux, M. (2015). Synthetic cathinones: A new public health problem. Current Neuropharmacology, 13(1), 1220.Google Scholar
Katselou, M., Papoutsis, I., Nikolaou, P., Spiliopoulou, C. & Athanaselis, S. (2015). AH-7921: The list of new psychoactive opioids is expanded. Forensic Toxicology, 33(2), 195201.Google Scholar
Katz, K. D., Leonetti, A. L., Bailey, B. C., et al. (2016). Case series of synthetic cannabinoid intoxication from one toxicology center. Western Journal of Emergency Medicine, 17(3), 290294.Google Scholar
Kehr, J., Ichinose, F., Yoshitake, S., et al. (2011). Mephedrone, compared with MDMA (ecstasy) and amphetamine, rapidly increases both dopamine and 5-HT levels in nucleus accumbens of awake rats. British Journal of Pharmacology, 164(8), 19491958.Google Scholar
Kelly, B. C., Wells, B. E., Pawson, M., et al. (2013). Novel psychoactive drug use among younger adults involved in US nightlife scenes. Drug and Alcohol Review, 32(6), 10.1111/dar.12058. http://doi.org/10.1111/dar.12058Google Scholar
Kempf, C., Llorca, P-M., Pizon, F., Brousse, G. & Flaudias, V. (2017). What’s new in addiction prevention in young people: A literature review of the last years of research. Frontiers in Psychology, 8, 1131. doi:10.3389/fpsyg.2017.01131.Google Scholar
Kersten, B. P. & McLaughlin, M. E. (2015). Toxicology and management of novel psychoactive drugs. Journal of Pharmacy Practice, 28(1), 5065.Google Scholar
Kesha, K., Boggs, C. L., Ripple, M. G., et al. (2013). Methylenedioxypyrovalerone ("bath salts"), related death: Case report and review of the literature. Journal of Forensic Sciences, 58(6), 16541659.Google Scholar
Kikura-Hanajiri, R., Kawamura, N. U. & Goda, Y. (2014). Changes in the prevalence of new psychoactive substances before and after the introduction of the generic scheduling of synthetic cannabinoids in Japan. Drug Testing and Analysis, 6(7–8), 832839.Google Scholar
Kjellgren, A., Jacobsson, K. & Soussan, C. (2016). The quest for well-being and pleasure: Experiences of the novel synthetic opioids AH-7921 and MT-45, as reported by anonymous users online. Journal of Addiction Research & Therapy, 7, 287. doi: 10.4172/2155-6105.1000287Google Scholar
Kovács, K., Tóth, A. R. & Kereszty, E. M. (2012). [A new designer drug: methylone related death]. Orvosi Hetilap, 153(7), 271276.Google Scholar
Kovaleva, J., Devuyst, E., De Paepe, P. & Verstraete, A. (2008). Acute chlorophenylpiperazine overdose: A case report and review of the literature. Therapeutic Drug Monitoring, 30(3), 394398.Google Scholar
Labay, L. M., Caruso, J. L., Gilson, T. P., et al. (2016). Synthetic cannabinoid drug use as a cause or contributory cause of death. Forensic Science International, 260, 3139.Google Scholar
Larabi, I. A., Martin, M., Etting, I., et al. (2018). Drug-facilitated sexual assault (DFSA) involving 4-methylethcathinone (4-MEC), 3,4-Methylenedioxypyrovalerone (MDPV), and doxylamine highlighted by hair analysis. Drug Testing and Analysis. doi: 10.1002/dta.2377.Google Scholar
Lea, T., Reynolds, R. & De Wit, J. (2011). Mephedrone use among same-sex attracted young people in Sydney, Australia. Drug and Alcohol Review, 30(4), 438440.Google Scholar
Lee, H. P., Chae, P. K., Lee, H. S. & Kim, Y. K. (2007). The five-factor gambling motivation model. Psychiatry Research, 150(1), 2132.Google Scholar
Lee, H., Kim, J. W. & Choi, T. Y. (2017). Risk factors for smartphone addiction in Korean adolescents: Smartphone use patterns. Journal of Korean Medical Science, 32(10), 16741679.Google Scholar
Lin, J. C., Bangs, N., Lee, H., Kydd, R. R. & Russell, B. R. (2009). Determining the subjective and physiological effects of BZP on human females. Psychopharmacology, 207(3), 439446.Google Scholar
Lin, J. C., Jan, R. K., Kydd, R. R. & Russell, B. R. (2011). Subjective effects in humans following administration of party pill drugs BZP and TFMPP alone and in combination. Drug Testing and Analysis, 3(9), 582585.Google Scholar
Lozier, M. J., Boyd, M., Stanley, C., et al. (2015). Acetyl fentanyl, a novel fentanyl analog, causes 14 overdose deaths in Rhode Island, March–May 2013. Journal of Medical Toxicology, 11(2), 208217.Google Scholar
Lusthof, K. J., Oosting, R., Maes, A., et al. (2011). A case of extreme agitation and death after the use of mephedrone in The Netherlands. Forensic Science International, 206(1–3), e93–95. doi: 10.1016/j.forsciint.2010.12.014.Google Scholar
Majeed-Ariss, R., Baildam, E., Campbell, M., et al. (2015). Apps and adolescents: A systematic review of adolescents' use of mobile phone and tablet apps that support personal management of their chronic or long-term physical conditions. Journal of Medical Internet Research, 17(12), e287. doi: 10.2196/jmir.5043Google Scholar
Marrinan, S., Roman-Urrestarazu, A., Naughton, D., et al. (2017). Hair analysis for the detection of drug use-is there potential for evasion? Human Psychopharmacology, 32(3), doi: 10.1002/hup.2587.Google Scholar
Martínez-Clemente, J., López-Arnau, R., Carbó, M., et al. (2013). Mephedrone pharmacokinetics after intravenous and oral administration in rats: Relation to pharmacodynamics. Psychopharmacology, 229(2), 295306.Google Scholar
Martinotti, G., Lupi, M., Acciavatti, T., et al. (2014). Novel psychoactive substances in young adults with and without psychiatric comorbidities. BioMed Research International, 2014, 815424. doi: 10.1155/2014/815424.Google Scholar
Martinotti, G., Lupi, M., Carlucci, L., et al. (2015). Novel psychoactive substances: Use and knowledge among adolescents and young adults in urban and rural areas. Human Psychopharmacology, 30(4), 295301.Google Scholar
McCall, H., Adams, N., Mason, D. & Willis, J. (2015). What is chemsex and why does it matter? BMJ, 351, h5790. doi: 10.1136/bmj.h5790Google Scholar
McIntyre, I. M., Trochta, A., Gary, R. D., Malamatos, M. & Lucas, J. R. (2015). acute acetyl fentanyl fatality: A case report with postmortem concentrations. Journal of Analytical Toxicology, 39(6), 490494.Google Scholar
McIntyre, I. M., Trochta, A., Gary, R. D., Wright, J. & Mena, O. (2016). An acute butyr-fentanyl fatality: A case report with postmortem concentrations. Journal of Analytical Toxicology, 40(2), 162166.CrossRefGoogle ScholarPubMed
Mdege, N. D., Meader, N., Lloyd, C., Parrott, S. & McCambridge, J. (2017). The Novel Psychoactive Substances in the UK Project: Empirical and Conceptual Review Work to Produce Research Recommendations. Southampton (UK): NIHR Journals Library. Available at: www.ncbi.nlm.nih.gov/pubmedhealth/PMH0095704/ [Accessed December 20, 2017]Google Scholar
Meader, N., Mdege, N. & McCambridge, J. (2018). The public health evidence-base on novel psychoactive substance use: Scoping review with narrative synthesis of selected bodies of evidence. Journal of Public Health (Oxford, England). doi: 10.1093/pubmed/fdy016Google Scholar
Meltzer, P. C., Butler, D., Deschamps, J. R. & Madras, B. K. (2006). 1-(4-Methylphenyl)-2-pyrrolidin-1-yl-pentan-1-one (Pyrovalerone) analogs. A promising class of monoamine uptake inhibitors. Journal of Medicinal Chemistry, 49(4), 14201432.Google Scholar
Miliano, C., Serpelloni, G., Rimondo, C., et al. (2016). Neuropharmacology of New Psychoactive Substances (NPS): Focus on the rewarding and reinforcing properties of cannabimimetics and amphetamine-like stimulants. Frontiers in Neuroscience, 10, 153. http://doi.org/10.3389/fnins.2016.00153Google Scholar
Miller, M. L., Creehan, K. M., Angrish, D., et al. (2013). Changes in ambient temperature differentially alter the thermoregulatory, cardiac and locomotor stimulant effects of 4-methylmethcathinone (mephedrone). Drug and Alcohol Dependence, 127(1–3), 248253.Google Scholar
Miller, J. M., Stogner, J. M., Miller, B. L. & Blough, S. (2018). Exploring synthetic heroin: Accounts of acetyl fentanyl use from a sample of dually diagnosed drug offenders. Drug and Alcohol Review, 37(1), 121127.Google Scholar
Ministry of Health – New Zealand (2012). Regulatory impact statement, new regulatory regime for psychoactive substances. Wellington, New Zealand: The Treasury. Available at: www.health.govt.nz/about-ministry/legislation-and-regulation/regulatory-impact-statements/new-regulatory-regime-psychoactive-substances. [Accessed October 16, 2017]Google Scholar
Moore, K., Dargan, P. I., Wood, D. M. & Measham, F. (2013). Do novel psychoactive substances displace established club drugs, supplement them or act as drugs of initiation? The relationship between mephedrone, ecstasy and cocaine. European Addiction Research, 19(5), 276282.Google Scholar
Morano, R. A., Spies, C., Walker, F. B. & Plank, S. M. (1993). Fatal intoxication involving etryptamine. Journal of Forensic Sciences, 38(3), 721725.Google Scholar
Móró, L. & Rácz, J. (2013). Online drug user-led harm reduction in Hungary: A review of “Daath”. Harm Reduction Journal, 10, 18. doi: 10.1186/1477-7517-10-18.Google Scholar
Murphy, D. L., Lesch, K. P., Aulakh, C. S. & Pigott, T. A. (1991). Serotonin-selective arylpiperazines with neuroendocrine, behavioral, temperature, and cardiovascular effects in humans. Pharmacological Reviews, 43(4), 527552.Google Scholar
Murray, B. L., Murphy, C. M. & Beuhler, M. C. (2012). Death following recreational use of designer drug “bath salts” containing 3,4-methylenedioxypyrovalerone (MDPV). Journal of Medical Toxicology, 8(1), 6975.Google Scholar
Nagai, H., Saka, K., Nakajima, M., et al. (2014). Sudden death after sustained restraint following self-administration of the designer drug α-pyrrolidinovalerophenone. International Journal of Cardiology, 172(1), 263265.Google Scholar
Negrei, C., Galateanu, B., Stan, M., et al. (2017). Worldwide legislative challenges related to psychoactive drugs. DARU Journal of Pharmaceutical Sciences, 25, 14. http://doi.org/10.1186/s40199–017-0180-2Google Scholar
Nurmedov, S., Yilmaz, O., Darcin, A. E., Noyan, O. C. & Dilbaz, N. (2015). Frequency of synthetic cannabinoid use and its relationship with socio-demographic characteristics and treatment outcomes in alcohol- and substance-dependent inpatients: A retrospective study. Klinik Psikofarmakoloji Bulteni – Bulletin of Clinical Psychopharmacology, 25(4), 348354.Google Scholar
Oei, A. C. & Patterson, M. D. (2013). Enhancing cognition with video games: A multiple game training study, Geng, J. J. (Ed.). PLoS ONE, 8(3), e58546. doi:10.1371/journal.pone.0058546.Google Scholar
Ott, J. (2001). Pharmepéna-Psychonautics: Human intranasal, sublingual and oral pharmacology of 5-methoxy-N,N-dimethyl-tryptamine. Journal of Psychoactive Drugs, 33(4), 403407.Google Scholar
Paglia-Boak, A., Mann, R. E., Adlaf, E. M. & Rehm, J. (2009). Drug Use among Ontario Students, 1977–2009: Detailed OSDUHS Findings. Toronto, Ontario: Centre for Addiction and Mental Health. Available at: http://odesi1.scholarsportal.info/documentation/PHIRN/OSDUHS/Highlights_DrugReport_2009OSDUHS_Final_Web.pdf [Accessed: May 15, 2018]Google Scholar
Paksi, B., Magi, A., Felvinczi, K. & Demetrovics, Zs. (2016). The prevalence of new psychoactive substances in Hungary – Based on a general population survey dealing with addiction related problems (OLAAP 2015). IV. International Conference on Novel Psychoactive Substances (NPS). Budapest, May 30–31, 2016.Google Scholar
Palamar, J. J., Martins, S. S., Su, M. K. & Ompad, D.C. (2015). Self-reported use of novel psychoactive substances in a US nationally representative survey: Prevalence, correlates, and a call for new survey methods to prevent underreporting. Drug and Alcohol Dependence, 156, 112119.Google Scholar
Palamar, J. J., Su, M. K. & Hoffman, R. S. (2016). Characteristics of novel psychoactive substance exposures reported to New York City Poison Center, 2011–2014. The American Journal of Drug and Alcohol Abuse, 42(1), 3947.Google Scholar
Palma-Conesa, Á. J.Ventura, M.Galindo, L.et al. (2017). Something new about something old: A 10-year follow-up on classical and new psychoactive tryptamines and results of analysis. Journal of Psychoactive Drugs, 49(4), 297305.Google Scholar
Papaseit, E., Olesti, E., de la Torre, R., Torrens, M. & Farré, M. (2017). Mephedrone concentrations in cases of clinical intoxication. Current Pharmaceutical Design. doi: 10.2174/1381612823666170704130213.Google Scholar
Papaseit, E., Pérez-Mañá, C., Mateus, J.-A., et al. (2016). Human pharmacology of mephedrone in comparison with MDMA. Neuropsychopharmacology, 41(11), 27042713.Google Scholar
Papsun, D., Krywanczyk, A., Vose, J. C., Bundock, E. A. & Logan, B. K. (2016). Analysis of MT-45, a novel synthetic opioid, in human whole blood by LC-MS-MS and its identification in a drug-related death. Journal of Analytical Toxicology, 40(4), 313317.Google Scholar
Patrick, M. E., O’Malley, P. M., Kloska, D. D., et al. (2016). Novel psychoactive substance use by US adolescents: Characteristics associated with use of synthetic cannabinoids and synthetic cathinones. Drug and Alcohol Review, 35(5), 586590.Google Scholar
Pearson, J. M., Hargraves, T. L., Hair, L. S., et al. (2012). Three fatal intoxications due to methylone. Journal of Analytical Toxicology, 36(6), 444451.Google Scholar
Penders, T. M., Gestring, R. E. & Vilensky, D. A. (2012). Intoxication delirium following use of synthetic cathinone derivatives. The American Journal of Drug and Alcohol Abuse, 38(6), 616617.Google Scholar
Penney, J., Dargan, P. I., Padmore, J., Wood, D. M. & Norman, I. J. (2016). Epidemiology of adolescent substance use in London schools. QJM: An International Journal of Medicine, 109(6), 405409.Google Scholar
Péterfi, A., Tarján, A., Horváth, G. C., Csesztregi, T. & Nyírády, A. (2014). Changes in patterns of injecting drug use in Hungary: A shift to synthetic cathinones. Drug Testing and Analysis, 6(7–8), 825831.Google Scholar
Pintori, N., Loi, B. & Mereu, M. (2017). Synthetic cannabinoids: The hidden side of Spice drugs. Behavioral Pharmacology, 28(6), 409419.Google Scholar
Poklis, J., Poklis, A., Wolf, C., et al. (2016). Two fatal intoxications involving butyryl fentanyl. Journal of Analytical Toxicology, 40(8), 703708.Google Scholar
Potocka-Banaś, B., Janus, T., Majdanik, S., et al. (2017). Fatal intoxication with α-PVP, a synthetic cathinone derivative. Journal of Forensic Sciences, 62(2), 553556.Google Scholar
Prekupec, M. P., Mansky, P. A. & Baumann, M. H. (2017). Misuse of novel synthetic opioids: A deadly new trend. Journal of Addiction Medicine, 11(4), 256265.Google Scholar
Prosser, J. M. & Nelson, L. S. (2012). The toxicology of bath salts: A review of synthetic cathinones. Journal of Medical Toxicology, 8(1), 3342.Google Scholar
Ralphs, R. & Gray, P. (2017). New psychoactive substances: New service provider challenges. Drugs: Education, Prevention and Policy, 25(4), 301312.Google Scholar
Ralphs, R., Williams, L., Askew, R. & Norton, A. (2017). Adding Spice to the Porridge: The development of a synthetic cannabinoid market in an English prison. The International Journal on Drug Policy, 40, 5769.Google Scholar
Rambaran, K. A., Fleming, S. W., An, J., et al. (2017). U-47700: A clinical review of the literature. The Journal of Emergency Medicine, 53(4), 509519.Google Scholar
RAND (EUROPE) (2016). The role of the ‘dark’ web in the trade of illicit drugs. Research brief. Available at: www.rand.org/content/dam/rand/pubs/research_briefs/RB9900/RB9925/RAND_RB9925.pdf [Accessed: June 06, 2018]Google Scholar
Reuter, P. & Pardo, B. (2017). Can new psychoactive substances be regulated effectively? An assessment of the British Psychoactive Substances Bill. Addiction, 112(1), 2531.Google Scholar
Rodgman, C. J. C., Verrico, C. D., Worthy, R. B. & Lewis, E. E. (2014). Inpatient detoxification from a synthetic cannabinoid and control of postdetoxification cravings with naltrexone. The Primary Care Companion for CNS Disorders, 16(4), 10.4088/PCC.13l01594. http://doi.org/10.4088/PCC.13l01594Google Scholar
Romanek, K., Stenzel, J., Schmoll, S., et al. (2017). Synthetic cathinones in Southern Germany – Characteristics of users, substance-patterns, co-ingestions, and complications. Clinical Toxicology (Philadelphia, Pa.), 55(6), 573578.Google Scholar
Sanders, B., Lankenau, S. E., Bloom, J. J. & Hathazi, D. (2008). “Research Chemicals”: Tryptamine and phenethylamine use among high-risk youth. Substance Use & Misuse, 43(3–4), 389402.Google Scholar
Schep, L. J., Slaughter, R. J., Hudson, S., Place, R. & Watts, M. (2015). Delayed seizure-like activity following analytically confirmed use of previously unreported synthetic cannabinoid analogues. Human & Experimental Toxicology, 34(5), 557560.Google Scholar
Schep, L. J., Slaughter, R. J., Vale, J. A., Beasley, D. M. & Gee, P. (2011). The clinical toxicology of the designer party pills benzylpiperazine and trifluoromethylphenylpiperazine. Clinical Toxicology (Philadelphia, Pa.), 49(3), 131141.Google Scholar
Schifano, F., Orsolini, L., Duccio Papanti, G. & Corkery, J. M. (2015). Novel psychoactive substances of interest for psychiatry. World Psychiatry, 14(1), 1526.Google Scholar
Schindler, C. W., Thorndike, E. B., Suzuki, M., Rice, K. C. & Baumann, M. H. (2016). Pharmacological mechanisms underlying the cardiovascular effects of the “bath salt” constituent 3,4‐methylenedioxypyrovalerone (MDPV). British Journal of Pharmacology, 173(24), 34923501.Google Scholar
Schneir, A., Metushi, I. G., Sloane, C., Benaron, D. J. & Fitzgerald, R. L. (2017). Near death from a novel synthetic opioid labeled U-47700: Emergence of a new opioid class. Clinical Toxicology (Philadelphia, Pa.), 55(1), 5154.Google Scholar
Shanks, K. G. & Behonick, G. S. (2016). Death after use of the synthetic cannabinoid 5F-AMB. Forensic Science International, 262, e21–24, doi: 10.1016/j.forsciint.2016.03.004.Google Scholar
Shanks, K. G., Clark, W. & Behonick, G. (2016). Death associated with the use of the synthetic cannabinoid ADB-FUBINACA. Journal of Analytical Toxicology, 40(3), 236239.Google Scholar
Shimizu, E., Watanabe, H., Kojima, T., et al. (2007). Combined intoxication with methylone and 5-MeO-MIPT. Progress in Neuropsychopharmacology & Biological Psychiatry, 31(1), 288291.Google Scholar
Siddiqi, S., Verney, C., Dargan, P. & Wood, D. M. (2015). Understanding the availability, prevalence of use, desired effects, acute toxicity and dependence potential of the novel opioid MT-45. Clinical Toxicology (Philadelphia, Pa.), 53(1), 5459.Google Scholar
Simonato, P., Bersani, F. S., Santacroce, R., et al. (2017). Can mobile phone technology support a rapid sharing of information on novel psychoactive substances among health and other professionals internationally? Human Psychopharmacology, 32(3). doi: 10.1002/hup.2580Google Scholar
Simonato, P., Corazza, O.Santonastaso, P.et al. (2013). Novel psychoactive substances as a novel challenge for health professionals; results from an Italian survey. Human Psychopharmacology, 28(4), 324331.Google Scholar
Sindicich, N. & Burns, L. (2012). Australian trends in ecstasy and related drug markets 2012: Findings from the Ecstasy and Related Drugs Reporting System (EDRS). Australian Drug Trends Series No.100. National Drug and Alcohol Research Centre, University of New South Wales. Available at: https://ndarc.med.unsw.edu.au/sites/default/files/ndarc/resources/EDRS%202012%20national%20report%20FINAL.pdf [Accessed: October 16, 2017]Google Scholar
Sivagnanam, K., Chaudari, D., Lopez, P., Sutherland, M. E. & Ramu, V. K. (2013). “Bath salts” induced severe reversible cardiomyopathy. The American Journal of Case Reports, 14, 288291.Google Scholar
Smith, K. & Flatley, J. (2011). Drug Misuse Declared: Findings from the 2010/2011 British Crime Survey England and Wales. UK: Home Office.Google Scholar
Smith, S. W. & Garlich, F. M. (2013). Availability and supply of novel psy-choactive substances. In Dargan, P. I. & Wood, D. M. (Eds.), Novelpsychoactive Substances: Classification, Pharmacology and Toxicology. Elsevier, UK: Academic Press, pp. 5586.Google Scholar
Smolinske, S. C., Rastogi, R. & Schenkel, S. (2005). Foxy methoxy: A new drug of abuse. Journal of Medical Toxicology, 1(1), 2225.Google Scholar
Smyth, B. P., James, P., Cullen, W. & Darker, C. (2015). “So prohibition can work?” Changes in use of novel psychoactive substances among adolescents attending a drug and alcohol treatment service following a legislative ban. The International Journal on Drug Policy, 26(9), 887889.Google Scholar
Smyth, B. P., Lyons, S. & Cullen, W. (2017). Decline in new psychoactive substance use disorders following legislation targeting headshops: Evidence from national addiction treatment data. Drug and Alcohol Review, 36(5), 609617.Google Scholar
Soussan, C. & Kjellgren, A. (2016). The users of Novel Psychoactive Substances: Online survey about their characteristics, attitudes and motivations. The International Journal of Drug Policy, 32, 7784.Google Scholar
Soussan, C., Andersson, M. & Kjellgren, A. (2018). The diverse reasons for using Novel Psychoactive Substances – A qualitative study of the users’ own perspectives. The International Journal on Drug Policy, 52, 7178.Google Scholar
Spaderna, M., Addy, P. H. & D’Souza, D. C. (2013). Spicing thing up: Synthetic cannabinoids. Psychopharmacology, 228(4), 525540.Google Scholar
Spiller, H. A., Ryan, M. L., Weston, R. G. & Jansen, J. (2011). Clinical experience with and analytical confirmation of “bath salts” and “legal highs” (synthetic cathinones) in the United States. Clinical Toxicology (Philadelphia, Pa.), 49(6), 499505.Google Scholar
Srisung, W., Jamal, F. & Prabhakar, S. (2015). Synthetic cannabinoids and acute kidney injury. Proceedings (Baylor University Medical Center), 28(4), 475477.Google Scholar
Stanciu, C. N., Penders, T. M., Gnanasegaram, S. A., et al. (2017). The behavioral profile of methylenedioxypyrovalerone (MDPV) and α-pyrrolidinopentiophenone (PVP) – A systematic review. Current Drug Abuse Reviews. doi: 10.2174/1874473710666170321122226.Google Scholar
Stanley, J. L., Mogford, D. V., Lawrence, R. J. & Lawrie, S. M. (2016). Use of novel psychoactive substances by inpatients on general adult psychiatric wards. BMJ Open, 6(5), e009430. http://doi.org/10.1136/bmjopen-2015-009430Google Scholar
Štefková, K., Židková, M., Horsley, R. R., et al. (2017). Pharmacokinetic, ambulatory, and hyperthermic effects of 3,4-methylenedioxy-N-methylcathinone (methylone) in rats. Frontiers in Psychiatry, 8, 232. http://doi.org/10.3389/fpsyt.2017.00232Google Scholar
Stevens, A., Fortson, R., Measham, F. & Sumnall, H. (2015). ‘Legally flawed, scientifically problematic, potentially harmful: The UK Psychoactive Substance Bill’. International Journal of Drug Policy, 26(12), 11671170.Google Scholar
Stogner, J. M. (2014). The potential threat of acetyl fentanyl: Legal issues, contaminated heroin, and acetyl fentanyl "disguised" as other opioids. Annals of Emergency Medicine, 64(6), 637639.Google Scholar
Strassman, R. J. (1996). Human psychopharmacology of N,N-dimethyltryptamine. Behavioural Brain Research, 73(1–2), 121124.Google Scholar
Stratton, S. J., Rogers, C., Brickett, K. & Gruzinski, G. (2001). Factors associated with sudden death of individuals requiring restraint for excited delirium. The American Journal of Emergency Medicine, 19(3), 187191.Google Scholar
Sykutera, M., Cychowska, M. & Bloch-Boguslawska, E. (2015). A fatal case of pentedrone and α-pyrrolidinovalerophenone poisoning. Journal of Analytical Toxicology, 39(4), 324329.Google Scholar
Takase, I., Koizumi, T., Fujimoto, I., Yanai, A. & Fujimiya, T. (2016). An autopsy case of acetyl fentanyl intoxication caused by insufflation of 'designer drugs'. Legal Medicine (Tokyo), 21, 3844.Google Scholar
Tanaka, E., Kamata, T., Katagi, M., Tsuchihashi, H. & Honda, K. (2006). A fatal poisoning with 5-methoxy-N,N-diisopropyltryptamine, Foxy. Forensic Science International, 163(1–2), 152154.Google Scholar
Tancer, M. E. & Johanson, C. E. (2001). The subjective effects of MDMA and mCPP in moderate MDMA users. Drug and Alcohol Dependence, 65(1), 97101.Google Scholar
TEDI (Trans European Drug Information) (2013). 2nd TEDI Trend Report, Nightlife Empowerment and Well-Being Information Project (NEWIP). Available at: http://fileserver.idpc.net/library/Tedi_trend_report_feb2013.pdf [Accessed June 05, 2018]Google Scholar
Teske, J., Weller, J. P., Fieguth, A., et al. (2010). Sensitive and rapid quantification of the cannabinoid receptor agonist naphthalen-1-yl-(1-pentylindol-3-yl)methanone (JWH-018) in human serum by liquid chromatography-tandem mass spectrometry. Journal of Chromatography, B. Analytical Technologies in the Biomedical and Life Sciences, 878(27), 26592663.Google Scholar
Thammongkolchai, T., Termsarasab, P., Alkhachroum, A., et al. (2015). 5-Meo-DALT-induced cyclic myoclonus (P3.013). Neurology, 84 (14 Supplement), P3.013.Google Scholar
The New Psychoactive Substances Review Expert Panel (2014). New Psychoactive Substances: Report of the Expert Panel. Available at: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/368583/NPSexpertReviewPanelReport.pdf [Accessed: June 06, 2018]Google Scholar
Thompson, I., Williams, G., Caldwell, B., et al. (2010). Randomised double-blind, placebo-controlled trial of the effects of the 'party pills' BZP/TFMPP alone and in combination with alcohol. Journal of Psychopharmacology, 24(9), 12991308.Google Scholar
Tittarelli, R., Mannocchi, G., Pantano, F. & Romolo, F. S. (2015). Recreational use, analysis and toxicity of tryptamines. Current Neuropharmacology, 13(1), 2646.Google Scholar
Toennes, S. W., Geraths, A., Pogoda, W., et al. (2017). Pharmacokinetic properties of the synthetic cannabinoid JWH-018 and of its metabolites in serum after inhalation. Journal of Pharmaceutical and Biomedical Analysis, 140, 215222.Google Scholar
TracyD. K.WoodD. M. & BaumeisterD. (2017). Novel psychoactive substances: Identifying and managing acute and chronic harmful use. BMJ, 356. doi: 10.1136/bmj.i6814.Google Scholar
Trecki, J., Gerona, R. R. & Schwartz, M.D. (2015). Perspective: synthetic cannabinoid–related illnesses and deaths. The New England Journal of Medicine, 373(2), 103107.Google Scholar
Turner, C. F., Ku, L., Rogers, S. M., et al. (1998). Adolescent sexual behavior, drug use, and violence. Science, 280(5365), 867873.Google Scholar
United Nation Office on Drugs and Crime (UNODC) (2015). Special Segment, Legal responses to NPS: multiple approaches to a multi-faceted problem. Global Smart Update, Vol 14. Available at: www.unodc.org/documents/scientific/Global_SMART_Update_14-web.pdf [Accessed: June 06, 2018]Google Scholar
Ukaigwe, A., Karmacharya, P. & Donato, A. (2014). A gut gone to pot: A case of cannabinoid hyperemesis syndrome due to K2, a synthetic cannabinoid. Case Reports in Emergency Medicine, 167098. http://doi.org/10.1155/2014/167098Google Scholar
Ustundag, M. F., Ozhan Ibis, E., Yucel, A. & Ozcan, H. (2015). Synthetic cannabis-induced mania. Case Reports in Psychiatry. doi: 10.1155/2015/310930.Google Scholar
Valente, M. J., Guedes de Pinho, P., de Lourdes Bastos, M., Carvalho, F. & Carvalho, M. (2014). Khat and synthetic cathinones: A review. Archives of Toxicology, 88(1), 1545.Google Scholar
Van Amsterdam, J., Brunt, T. & van den Brink, W. (2015). The adverse health effects of synthetic cannabinoids with emphasis on psychosis-like effects. Journal of Psychopharmacology, 29(3), 254263.Google Scholar
Van Hout, M. C. (2014). An internet study of user's experiences of the synthetic cathinone 4-methylethcathinone (4-MEC). Journal of Psychoactive Drugs, 46(4), 273286.Google Scholar
Van Hout, M. C. & Brennan, R. (2012). Curiosity killed M-Cat: A post-legislative study on mephedrone use in Ireland. Drugs: Education Prevention and Policy, 19(2), 156162.Google Scholar
Vento, A. E., Martinotti, G., Cinosi, E., et al. (2014). Substance use in the club scene of Rome: A pilot study. BioMed Research International, 2014, 617546. http://doi.org/10.1155/2014/617546Google Scholar
Vidourek, R. A., King, K. A. & Burbage, M.L. (2013). Reasons for synthetic THC use among college students. Journal of Drug Education, 43(4), 353363.Google Scholar
Vorce, S. P., Knittel, J. L., Holler, J. M., et al. (2014). A fatality involving AH-7921. Journal of Analytical Toxicology, 38(4), 226230.Google Scholar
Vreeker, A., van der Burg, B. G., van Laar, M. & Brunt, T.M. (2017). Characterizing users of new psychoactive substances using psychometric scales for risk-related behavior. Addictive Behaviors, 70, 7278.Google Scholar
Warrick, B. J., Wilson, J., Hedge, M., et al. (2012). Lethal serotonin syndrome after methylone and butylone ingestion. Journal of Medical Toxicology, 8(1), 6568.Google Scholar
Weinstein, A. M., Rosca, P., Fattore, L. & London, E. D. (2017). Synthetic cathinone and cannabinoid designer drugs pose a major risk for public health. Frontiers in Psychiatry, 8, 156. http://doi.org/10.3389/fpsyt.2017.00156Google Scholar
Westin, A. A., Frost, J., Brede, W. R., et al. (2016). Sudden cardiac death following use of the synthetic cannabinoid MDMB-CHMICA. Journal of Analytical Toxicology, 40(1), 8687.Google Scholar
White, J., Hawkins, J., Madden, K., et al. (2017). Adapting the ASSIST model of informal peer-led intervention delivery to the Talk to FRANK drug prevention programme in UK secondary schools (ASSIST + FRANK): intervention development, refinement and a pilot cluster randomised controlled trial. Public Health Research, No. 5.7. Southampton (UK): NIHR Journals Library.Google Scholar
Wiley, J. L., Marusich, J. A., Huffman, J. W., Balster, R. L. & Thomas, B. F. (2011). Hijacking of basic research: The case of synthetic cannabinoidsMethods Report (RTI Press)2011, 17971.Google Scholar
Wilkins, C., Sweetsur, P. & Girling, M. (2008). Patterns of benzylpiperazine/trifluoromethylphenylpiperazine party pill use and adverse effects in a population sample in New Zealand. Drug and Alcohol Review, 27(6), 633639.Google Scholar
Wilson, J. M., McGeorge, F., Smolinske, S. & Meatherall, R. (2005). A foxy intoxication. Forensic Science International, 148(1), 3136.Google Scholar
Winstock, A. R. & Barratt, M. J. (2013). Synthetic cannabis: A comparison of patterns of use and effect profile with natural cannabis in a large global sample. Drug and Alcohol Depend, 131(1–2), 106111.Google Scholar
Winstock, A. R. & Barratt, M. (2016). Dark-net markets: the good, the bad and ugly? Available at: www.globaldrugsurvey.com/gds2017-launch/dark-net-markets-the-good-the-bad-and-ugly/ [Accessed: December 20, 2017]Google Scholar
Winstock, A., Barratt, M., Ferris, J. & Maier, L. (2017). Global Drug Survey 2017 – Global Overview and Highlights. Available at: www.globaldrugsurvey.com/wp-content/themes/globaldrugsurvey/results/GDS2017_key-findings-report_final.pdf [Accessed: October 17, 2017]Google Scholar
Winstock, A. R., Marsden, J. & Mitcheson, L. (2010). What should be done about mephedrone? BMJ, 340, c1605. doi: 10.1136/bmj.c1605.Google Scholar
Winstock, A. R., Mitcheson, L. R., Deluca, P., et al. (2011). Mephedrone, new kid for the chop? Addiction, 106(1), 154161.Google Scholar
Wood, D. M., Ceronie, B. & Dargan, P. I. (2016). Healthcare professionals are less confident in managing acute toxicity related to the use of new psychoactive substances (NPS) compared with classical recreational drugs. QJM: An International Journal of Medicine, 109(8), 527529.Google Scholar
Wood, D. M., Davies, S., Greene, S. L., et al. (2010). Case series of individuals with analytically confirmed acute mephedrone toxicity. Clinical Toxicology (Philadelphia, Pa), 48(9), 924927.Google Scholar
Wood, D. M., Heyerdahl, F., Yates, C. B., et al. (2014). The European Drug Emergencies Network (Euro-DEN). Clinical Toxicology (Philadelphia, Pa.), 52(4), 239241.Google Scholar
Wood, D. M., Measham, F. & Dargan, P. I. (2012). ‘Our favourite drug’: prevalence of use and preference for mephedrone in the London night-time economy 1 year after control. Journal of Substance Use, 17(2), 9197.Google Scholar
Wyman, J. F., Lavins, E. S., Engelhart, D., et al. (2013). Postmortem tissue distribution of MDPV following lethal intoxication by “bath salts”. Journal of Analytical Toxicology, 37(3), 182185.Google Scholar
Yin, S. & Ho, M. (2012). Monitoring a toxicological outbreak using Internet search query data. Clinical Toxicology (Philadelphia, Pa.), 50(9), 818822.Google Scholar
Zawilska, J. B. (2017). An expanding world of novel psychoactive substances: Opioids. Frontiers in Psychiatry, 8, 110. http://doi.org/10.3389/fpsyt.2017.00110Google Scholar
Zawilska, J. B. & Wojcieszak, J. (2017). α-Pyrrolidinophenones: A new wave of designer cathinones. Forensic Toxicology, 35(2), 201216.Google Scholar
Zheluk, A., Quinn, C. &, Meylakhs, P. (2014). Internet search and krokodil in the Russian Federation: An infoveillance study. Journal of Medical Internet Research, 16(9), e212. doi: 10.2196/jmir.3203Google Scholar

References

Alexander, B. H., Checkoway, H., Nagahama, S. I. & Domino, K. B. (2000). Cause-specific mortality risks of anesthesiologists. Anesthesiology, 93(4), 922930.Google Scholar
American Psychiatric Association (2000). Diagnostic and Statistical Manual of Mental Disorders: DSM-IV-TR. Arlington, VA: American Psychiatric Publishing.Google Scholar
American Psychiatric Association (2013). Diagnostic and Statistical Manual of Mental Disorders (5th edition). Arlington, VA: American Psychiatric Publishing.Google Scholar
Angres, D. H. (2010). The temperament and character inventory in addiction treatment. Focus, 8(2), 187198. doi:10.1176/foc.8.2.foc187Google Scholar
Angres, D. H. & Nielsen, A. K. (2007). The role of the TCI-R (Temperament Character Inventory) in individualized treatment plannning in a population of addicted professionals. Journal of Addictive Diseases, 26 (Supplement 1), 5164. doi:10.1300/J069v26S01_06Google Scholar
Boisaubin, E. V. & Levine, R. E. (2001). Identifying and assisting the impaired physician. American Journal of Medical Sciences, 322(1), 3136.Google Scholar
Boyd, J. W. (2015a). A call for national standards and oversight of state physician health programs. Journal of Addiction Medicine, 9(6), 431432. doi:10.1097/adm.0000000000000174Google Scholar
Boyd, J. W. (2015b). Deciding whether to refer a colleague to a physician health program. AMA Journal of Ethics, 17(10), 888893. doi:10.1001/journalofethics.2015.17.10.spec1-1510Google Scholar
Boyd, J. W. & Knight, J. R. (2012). Ethical and managerial considerations regarding state physician health programs. Journal of Addiction Medicine, 6(4), 243246. doi:10.1097/ADM.0b013e318262ab09Google Scholar
Brewster, J. M. (1986). Prevalence of alcohol and other drug problems among physicians. JAMA, 255(14), 19131920. doi:10.1001/jama.1986.03370140111034Google Scholar
Candilis, P. J. (2016). Physician health programs and the social contract. AMA Journal of Ethics, 18(1), 7781. doi:10.1001/journalofethics.2016.18.1.corr1-1601Google Scholar
Cloninger, C. R., Svrakic, D. M. & Przybeck, T. R. (1993). A psychobiological model of temperament and character. Archives of General Psychiatry, 50(12), 975990.Google Scholar
Cloninger, C. R., Zohar, A. H. & Cloninger, K. M. (2010). Promotion of well-being in person-centered mental health care. Focus, 8(2), 165179. doi:10.1176/foc.8.2.foc165Google Scholar
Cottler, L. B., Ajinkya, S., Merlo, L. J., et al. (2013). Lifetime psychiatric and substance use disorders among impaired physicians in a physicians health program: Comparison to a general treatment population: Psychopathology of impaired physicians. Journal of Addiction Medicine, 7(2), 108112. doi:10.1097/ADM.0b013e31827fadc9Google Scholar
Dewa, C. S., Loong, D., Bonato, S. & Trojanowski, L. (2017). The relationship between physician burnout and quality of healthcare in terms of safety and acceptability: A systematic review. BMJ Open, 7.Google Scholar
Dorr, D. (1981). MMPI profiles of emotionally impaired physicians. Journal of Clinical Psychology, 37(2), 451455.Google Scholar
Drummond, D. (2015). Physician burnout: Its origin, symptoms, and five main causes. Family Practice Management, 22(5), 4247.Google Scholar
DuPont, R. L., Compton, W. M. & McLellan, A. T. (2015). Five-year recovery: A new standard for assessing effectiveness of substance use disorder treatment. Journal of Substance Abuse Treatment, 58, 15. doi:10.1016/j.jsat.2015.06.024Google Scholar
DuPont, R. L., McLellan, A. T., Carr, G., Gendel, M. & Skipper, G. E. (2009a). How are addicted physicians treated? A national survey of Physician Health Programs. Journal of Substance Abuse Treatment, 37(1), 17. doi:10.1016/j.jsat.2009.03.010Google Scholar
DuPont, R. L., McLellan, A. T., White, W. L., Merlo, L. J. & Gold, M. S. (2009b). Setting the standard for recovery: Physicians' Health Programs. Journal of Substance Abuse Treatment, 36(2), 159171. doi:10.1016/j.jsat.2008.01.004Google Scholar
Federation of State Medical Boards (2006). Addressing Sexual Boundaries: Guidelines for State Medical Boards. Retrieved from Federation of State Physician Health Programs State Programs. Retrieved from www.fsphp.org/state-programsGoogle Scholar
Freud, S. (1884). Über Coca. Centralblatt für die gesamte Therapie, 2, 289314.Google Scholar
Gold, M. S., Melker, R. J., Dennis, D. M., et al. (2006). Fentanyl abuse and dependence: Further evidence for second hand exposure hypothesis. Journal of Addictive Diseases, 25(1), 1521. doi:10.1300/J069v25n01_04Google Scholar
Grant, J. E., Potenza, M. N., Weinstein, A. & Gorelick, D. A. (2010). Introduction to behavioral addictions. The American Journal of Drug and Alcohol Abuse, 36(5), 233241. doi:10.3109/00952990.2010.491884Google Scholar
Higgins, S. T., Heil, S. H. & Lussier, J. P. (2004). Clinical implications of reinforcement as a determinant of substance use disorders. Annual Review of Psychology, 55, 431461. doi:10.1146/annurev.psych.55.090902.142033Google Scholar
Hloch, K., Mladenka, P., Dosedel, M., Adriani, W. & Zoratto, F. (2017). The current clinical knowledge on the treatment of gambling disorder: A summary. Synapse, 71(8). doi:10.1002/syn.21976Google Scholar
Hughes, P. H., Brandenburg, N., Baldwin, D. C. Jr., et al. (1992). Prevalence of substance use among US physicians. JAMA, 267(17), 23332339.Google Scholar
Hughes, P. H., Storr, C. L., Brandenburg, N. A., et al. (1999). Physician substance use by medical specialty. Journal of Addictive Diseases, 18(2), 2337. doi:10.1300/J069v18n02_03Google Scholar
Kessler, R. C., Hwang, I., LaBrie, R., et al. (2008). DSM-IV pathological gambling in the National Comorbidity Survey Replication. Psychological Medicine, 38(9), 13511360. doi:10.1017/s0033291708002900Google Scholar
Kraus, S. W., Voon, V. & Potenza, M. N. (2016). Should compulsive sexual behavior be considered an addiction? Addiction, 111(12), 20972106. doi:10.1111/add.13297Google Scholar
Lenzer, J. (2016). Physician health programs under fire. BMJ, 353, i3568. doi:10.1136/bmj.i3568Google Scholar
Markel, H. (2012). An Anatomy of Addiction: Sigmund Freud, William Halsted, and the Miracle Drug Cocaine. New York, NY: Vintage Books, Random House, Inc.Google Scholar
McLellan, A. T., Skipper, G. S., Campbell, M. & DuPont, R. L. (2008). Five year outcomes in a cohort study of physicians treated for substance use disorders in the United States. BMJ, 337, a2038. doi:10.1136/bmj.a2038Google Scholar
Merlo, L. J. & Gold, M. S. (2008). Prescription opioid abuse and dependence among physicians: Hypotheses and treatment. Harvard Review of Psychiatry, 16(3), 181194. doi:10.1080/10673220802160316Google Scholar
Merlo, L. J. & Greene, W. M. (2010). Physician views regarding substance use-related participation in a state physician health program. American Journal on Addictions, 19(6), 529533. doi:10.1111/j.1521-0391.2010.00088.xGoogle Scholar
Merlo, L. J., Campbell, M. D., Skipper, G. E., Shea, C. L. & DuPont, R. L. (2016). Outcomes for physicians with opioid dependence treated without agonist pharmacotherapy in physician health programs. Journal of Substance Abuse Treatment, 64, 4754. doi:10.1016/j.jsat.2016.02.004Google Scholar
Merlo, L. J., Goldberger, B. A., Kolodner, D., Fitzgerald, K. & Gold, M. S. (2008). Fentanyl and propofol exposure in the operating room: Sensitization hypotheses and further data. Journal of Addictive Diseases, 27(3), 6776. doi:10.1080/10550880802122661Google Scholar
Merlo, L. J., Greene, W. M. & Pomm, R. (2011). Mandatory naltrexone treatment prevents relapse among opiate-dependent anesthesiologists returning to practice. Journal of Addiction Medicine, 5(4), 279283. doi:10.1097/ADM.0b013e31821852a0Google Scholar
Merlo, L. J., Singhakant, S., Cummings, S. M. & Cottler, L. B. (2013a). Reasons for misuse of prescription medication among physicians undergoing monitoring by a physician health program. Journal of Addiction Medicine, 7(5), 349353. doi:10.1097/ADM.0b013e31829da074Google Scholar
Merlo, L. J., Trejo-Lopez, J., Conwell, T. & Rivenbark, J. (2013b). Patterns of substance use initiation among healthcare professionals in recovery. American Journal on Addictions, 22(6), 605612. doi:10.1111/j.1521-0391.2013.12017.xGoogle Scholar
Nace, E. P., Birkmayer, F., Sullivan, M. A., et al. (2007). Socially sanctioned coercion mechanisms for addiction treatment. American Journal on Addictions, 16(1), 1523. doi:10.1080/10550490601077783Google Scholar
Nelson, H. D., Matthews, A. M., Girard, D. E. & Bloom, J. D. (1996). Substance-impaired physicians probationary and voluntary treatment programs compared. Western Journal of Medicine, 165(1–2), 3136.Google Scholar
Oreskovich, M. R., Shanafelt, T., Dyrbye, L. N., et al. (2015). The prevalence of substance use disorders in American physicians. American Journal on Addictions, 24(1), 3038. doi:10.1111/ajad.12173Google Scholar
Rash, C. J., Stitzer, M. & Weinstock, J. (2017). Contingency management: New directions and remaining challenges for an evidence-based intervention. Journal of Substance Abuse Treatment, 72, 1018. doi:10.1016/j.jsat.2016.09.008Google Scholar
Rezvani, A., Bouju, G., Keriven-Dessomme, B., Moret, L. & Grall-Bronnec, M. (2014). Workaholism: Are physicians at risk? Occupational Medicine (London), 64(6), 410416. doi:10.1093/occmed/kqu081Google Scholar
Rush, B. (1823). An Inquiry into the Effect of Ardent Spirits upon the Human Body and Mind, with an Account of the Means of Preventing and of the Remedies for Curing Them (8th edition). Boston: James Loring.Google Scholar
Shaffer, H. (1984). Uber coca: Freud's cocaine discoveries. Journal of Substance Abuse Treatment, 1(3), 205217. doi:http://dx.doi.org/10.1016/0740-5472(84)90023-0Google Scholar
Shanafelt, T. D., Hasan, O., Dyrbye, L. N., et al. (2015). Changes in burnout and satisfaction with work-life balance in physicians and the general US working population between 2011 and 2014. Mayo Clinic Proceedings, 90(12), 16001613. doi:10.1016/j.mayocp.2015.08.023Google Scholar
Shanafelt, T. D., Sloan, J. A. & Habermann, T. M. (2003). The well-being of physicians. American Journal of Medicine, 114(6), 513519.Google Scholar
Sinsky, C. A., Dyrbye, L. N., West, C. P., et al. (2017). Professional satisfaction and the career plans of US physicians. Mayo Clinic Proceedings, 92(11), 16251635. doi:10.1016/j.mayocp.2017.08.017Google Scholar
US Department of Health and Human Services (HHS) & Office of the Surgeon General. (November 2016). Facing Addiction in America: The Surgeon General’s Report on Alcohol, Drugs, and Health. Washington, DC: HHS.Google Scholar
Vaillant, G. E., Brighton, J. R. & McArthur, C. (1970). Physicians' use of mood-altering drugs. A 20-year follow-up report. New England Journal of Medicine, 282(7), 365370. doi:10.1056/nejm197002122820705Google Scholar
Warner, D. O., Berge, K., Sun, H., et al. (2013). Substance use disorder among anesthesiology residents, 1975-2009. JAMA, 310(21), 22892296. doi:10.1001/jama.2013.281954Google Scholar
Washton, A. M., Gold, M. S. & Pottash, A. C. (1984). Naltrexone in addicted physicians and business executives. NIDA Research Monographs, 55, 185190.Google Scholar
White, W. L. (1998). Slaying the Dragon: The History of Addiction Treatment and Recovery in America. Normal, IL: Chestnut Health Systems/Lighthouse Institute.Google Scholar
White, W. L., DuPont, R. L. & Skipper, G.E. (2007). Physicians health programs: What counselors can learn from these remarkable programs. Counselor, 8(2), 4247.Google Scholar
Xiong, W. (2017). Physician burnout: An epidemic or the new norm? American Journal of Psychiatry Residents' Journal, 12(4), 2. doi:10.1176/appi.ajp-rj.2017.120401Google Scholar
Williams, B. W., Flanders, P., Welindt, D. & Williams, M. V. (2018). Importance of neuropsychological screening in physicians referred for performance concerns. PloS ONE, 13(11), e0207874e0207874. doi:10.1371/journal.pone.0207874Google Scholar
Wood, B. A. (2014). Performance audit: North Carolina physicians health program. North Carolina Office of the State Health Auditor.Google Scholar
Yip, S. W. & Potenza, M. N. (2014). Treatment of gambling disorders. Current Treatment Options in Psychiatry, 1(2), 189203. doi:10.1007/s40501-014-0014-5Google Scholar

References

Auer, M. & Griffiths, M. D. (2013). Voluntary limit setting and player choice in most intense online gamblers: An empirical study of gambling behaviour. Journal of Gambling Studies29, 647660.Google Scholar
Auer, M. & Griffiths, M. D. (2014a). Personalised feedback in the promotion of responsible gambling: A brief overview. Responsible Gambling Review, 1, 2736.Google Scholar
Auer, M. & Griffiths, M. D. (2014b). An empirical investigation of theoretical loss and gambling intensity. Journal of Gambling Studies, 30, 879887.Google Scholar
Auer, M. & Griffiths, M. D. (2015a). Testing normative and self-appraisal feedback in an online slot-machine pop-up message in a real-world setting. Frontiers in Psychology, 6, 339. doi: 10.3389/fpsyg.2015.00339Google Scholar
Auer, M. & Griffiths, M. D. (2015b). The use of personalized behavioral feedback for problematic online gamblers: An empirical study. Frontiers in Psychology, 6, 1406. doi: 10.3389/fpsyg.2015.01406.Google Scholar
Auer, M. & Griffiths, M. D. (2015c). Theoretical loss and gambling intensity (revisited): A response to Braverman et al. (2013). Journal of Gambling Studies, 31, 921931.Google Scholar
Auer, M. & Griffiths, M. D. (2016). Personalized behavioral feedback for online gamblers: A real world empirical study. Frontiers in Psychology, 7, 1875. doi: 10.3389/fpsyg.2016.01875Google Scholar
Auer, M. & Griffiths, M. D. (2017a). Self-reported losses versus actual losses in online gambling: An empirical study. Journal of Gambling Studies, 33, 795806.Google Scholar
Auer, M. & Griffiths, M. D. (2017b). Cognitive dissonance, personalized feedback, and online gambling behavior: An exploratory study using objective tracking data and subjective self-report. International Journal of Mental Health and Addiction. Epub ahead of print. doi: 10.1007/s11469-017-9808-1Google Scholar
Auer, M., Malischnig, D. & Griffiths, M. D. (2014). Is ‘pop-up’ messaging in online slot machine gambling effective? An empirical research note. Journal of Gambling Issues, 29, 110.Google Scholar
Auer, M., Schneeberger, A. & Griffiths, M. D. (2012). Theoretical loss and gambling intensity: A simulation study. Gaming Law Review and Economics, 16, 269273.Google Scholar
Braverman, J., LaPlante, D. A., Nelson, S. E. & Shaffer, H. J. (2013). Using crossgame behavioral markers for early identification of high-risk Internet gamblers. Psychology of Addictive Behaviors, 27, 868877.Google Scholar
Braverman, J. & Shaffer, H. J. (2012). How do gamblers start gambling: Identifying behavioral markers for high-risk Internet gambling. European Journal of Public Health, 22, 273278.Google Scholar
Braverman, J., Tom, M. A. & Shaffer, H. J. (2014). Accuracy of self-reported versus actual online-gambling wins and losses. Psychological Assessment, 26, 865877.Google Scholar
Broda, A., LaPlante, D. A., Nelson, S. E., et al. (2008). Virtual harm reduction efforts for Internet gambling: Effects of deposit limits on actual Internet sports gambling behaviour. Harm Reduction Journal, 5, 27.Google Scholar
Buchanan, T. (2000). Potential of the Internet for personality research. In Birnbaum, M. H. (Ed.), Psychological Experiments on the Internet. San Diego: Academic Press, pp.121140.Google Scholar
Buchanan, T. (2007). Personality testing on the Internet: What we know, and what we do not. In Joinson, A. N., McKenna, K. Y. A., Postmes, T. & Reips, U. R. (Eds.), Oxford Handbook of Internet Psychology. Oxford: Oxford University Press, pp. 447459.Google Scholar
Delfabbro, P. H., King, D. L. & Griffiths, M. D. (2012). Behavioural profiling of problem gamblers: A critical review. International Gambling Studies, 12, 349366.Google Scholar
Dragicevic, S., Percy, C., Kudic, A. & Parke, J. (2015). A descriptive analysis of demographic and behavioral data from internet gamblers and those who self-exclude from online gambling platforms. Journal of Gambling Studies, 31, 105132.Google Scholar
Forsström, D., Hesser, H. & Carlbring, P. (2016). Usage of a responsible gambling tool: A descriptive analysis of latent class analysis of user behavior. Journal of Gambling Studies, 32, 889904.Google Scholar
Gainsbury, S. M. (2015). Online gambling addiction: The relationship between Internet gambling and disordered gambling. Current Addiction Reports, 2(2), 185193.Google Scholar
Gray, H. M., LaPlante, D. A. & Shaffer, H. J. (2012). Behavioral characteristics of Internet gamblers who trigger corporate responsible gambling interventions. Psychology of Addictive Behaviors, 26, 527535.Google Scholar
Griffiths, M. D. (2003). Internet gambling: Issues, concerns and recommendations. CyberPsychology and Behavior, 6, 557568.Google Scholar
Griffiths, M. D. (2010). The use of online methodologies in data collection for gambling and gaming addictions. International Journal of Mental Health and Addiction, 8, 820.Google Scholar
Griffiths, M. D. & Auer, M. (2011). Approaches to understanding online versus offline gaming impacts. Casino and Gaming International, 7(3), 4548.Google Scholar
Griffiths, M. D. & Parke, J. (2002). The social impact of Internet gambling. Social Science Computer Review, 20, 312320.Google Scholar
Griffiths, M. D. & Whitty, M. W. (2010). Online behavioural tracking in Internet gambling research: Ethical and methodological issues. International Journal of Internet Research Ethics, 3, 104117.Google Scholar
Griffiths, M. D. & Wood, R. T. A. (2008a). Gambling loyalty schemes: Treading a fine line? Casino and Gaming International, 4(2), 105108.Google Scholar
Griffiths, M. D. & Wood, R. T. A. (2008b). Responsible gaming and best practice: How can academics help? Casino and Gaming International, 4(1), 107112.Google Scholar
Griffiths, M. D., Wood, R. T. A. & Parke, J. (2009). Social responsibility tools in online gambling: A survey of attitudes and behaviour among Internet gamblers. CyberPsychology and Behavior, 12, 413421.Google Scholar
Griffiths, M. D., Wood, R. T. A., Parke, J. & Parke, A. (2007). Gaming research and best practice: Gaming industry, social responsibility and academia. Casino and Gaming International, 3, 97103.Google Scholar
Harris, A. & Griffiths, M. D. (2017). A critical review of the harm-minimisation tools available for electronic gambling. Journal of Gambling Studies, 33, 187221.Google Scholar
Joinson, A. N., Paine, C., Buchanan, T. & Reips, U-D. (2008). Measuring self-disclosure online: Blurring and non-response to sensitive items in web-based surveys. Computers in Human Behavior, 24, 21582171.Google Scholar
Kuss, D. J. & Griffiths, M. D. (2012). Internet gambling behavior. In Yan, Z. (Ed.), Encyclopedia of Cyber Behavior. Pennsylvania: IGI Global, pp. 735753.Google Scholar
LaBrie, R. A., Kaplan, S., LaPlante, D. A., Nelson, S. E. & Shaffer, H. J. (2008). Inside the virtual casino: A prospective longitudinal study of Internet casino gambling. European Journal of Public Health, 18(4), 410416.Google Scholar
LaBrie, R. A., LaPlante, D. A., Nelson, S.E., Schumann, A. & Shaffer, H. J. (2007). Assessing the playing field: A prospective longitudinal study of internet sports gambling behavior. Journal of Gambling Studies, 23, 347363.Google Scholar
LaPlante, D. A., Kleschinsky, J. H., LaBrie, R. A., Nelson, S. E. & Shaffer, H. J. (2009). Sitting at the virtual poker table: A prospective epidemiological study of actual Internet poker gambling behavior. Computers in Human Behavior, 25, 711717.Google Scholar
LaPlante, D. A., Schumann, A., LaBrie, R. A. & Shaffer, H. J. (2008). Population trends in Internet sports gambling. Computers in Human Behavior, 24(5), 23992414.Google Scholar
Leino, T., Sagoe, D., Griffiths, M. D., et al. (2017). Gambling behavior in alcohol-serving and non-alcohol-serving venues: A study of electronic gaming machine players using account records. Addiction Research and Theory, 25, 201207.Google Scholar
Leino, T., Torsheim, T., Blaszczynski, A., et al. (2015). The relationship between structural characteristics and gambling behavior: A population based study. Journal of Gambling Studies, 31, 12971315.Google Scholar
Miller, W. R. & Rollnick, S. (1991). Motivational Interviewing: Preparing People to Change Addictive Behavior. New York: Guilford Press.Google Scholar
Nelson, S. E., LaPlante, D. A., Peller, A. J., et al. (2008). Real limits in the virtual world: Self-limiting behavior of Internet gamblers. Journal of Gambling Studies, 24(4), 463477.Google Scholar
Wardle, H., Sproston, K., Orford, J., et al. (2007). The British Gambling Prevalence Survey 2007. London: The Stationery Office.Google Scholar
Whitty, M. T. (2004). Peering into online bedroom windows: Considering the ethical implications of investigating Internet relationships and sexuality. In Buchanan, E. (Ed.), Readings in Virtual Research Ethics: Issues and Controversies. Hershey, USA: Idea Group Inc., pp. 203218.Google Scholar
Wohl, M. J. A., Davis, C. G. & Hollingshead, S. J. (2017). How much have you won or lost? Personalized behavioral feedback about gambling expenditures regulates play. Computers in Human Behavior, 70, 437455.Google Scholar
Wood, R. T. A. & Griffiths, M. D. (2007). Online data collection from gamblers: Methodological issues. International Journal of Mental Health and Addiction, 5, 151163.Google Scholar
Wood, R. T. A. & Griffiths, M. D. (2010). Social responsibility in online gambling: Voluntary limit setting. World Online Gambling Law Report, 9(11), 1011.Google Scholar
Wood, R. T. A. & Wohl, M. J. (2015). Assessing the effectiveness of a responsible gambling behavioural feedback tool for reducing the gambling expenditure of at-risk players. International Gambling Studies, 15(2), 116.Google Scholar
Wood, R. T. A., Griffiths, M. D. & Eatough, V. (2004). Online data collection from videogame players: Methodological issues. Cyberpsychology and Behavior, 7, 511518.Google Scholar
Wysocki, D. K. (1998). Let your fingers to do the talking: Sex on an adult chat-line. Sexualities, 1, 425452.Google Scholar
Xuan, Z. M. & Shaffer, H. J. (2009). How do gamblers end gambling: Longitudinal analysis of internet gambling behaviors prior to account closure due to gambling related problems. Journal of Gambling Studies, 25, 239252.Google Scholar

References

Ahmed, S. H., Avena, N. M., Berridge, K. C., Gearhardt, A. N. & Guillem, K. (2013). Food addiction. In Neuroscience in the 21st Century. Springer, pp. 28332857.Google Scholar
American Psychiatric Association (2013a). Diagnostic and Statistical Manual of Mental Disorders. Arlington, VA: American Psychiatric Publishing.Google Scholar
American Psychiatric Association (2013b). Diagnostic and Statistical Manual of Mental Disorders (DSM-5). Retrieved from http://dsm.psychiatryonline.org/book.aspx?bookid=556Google Scholar
Anderson, P., Chisholm, D. & Fuhr, D. C. (2009). Effectiveness and cost-effectiveness of policies and programmes to reduce the harm caused by alcohol. The Lancet, 373(9682), 22342246.Google Scholar
Arnow, B., Kenardy, J. & Agras, W. S. (1992). Binge eating among the obese: A descriptive study. Journal of Behavioral Medicine, 15(2), 155170. doi:10.1007/bf00848323Google Scholar
Avena, N. M., Bocarsly, M. E., Rada, P., Kim, A. & Hoebel, B. G. (2008a). After daily bingeing on a sucrose solution, food deprivation induces anxiety and accumbens dopamine/acetylcholine imbalance. Physiology & Behavior, 94(3), 309315.Google Scholar
Avena, N. M., Rada, P. & Hoebel, B. G. (2008b). Evidence for sugar addiction: Behavioral and neurochemical effects of intermittent, excessive sugar intake. Neuroscience & Biobehavioral Reviews, 32(1), 2039. doi:10.1016/j.neubiorev.2007.04.019Google Scholar
Avena, N. M., Rada, P. & Hoebel, B. G. (2009). Sugar and fat bingeing have notable differences in addictive-like behavior. The Journal of Nutrition, 139(3), 623628.Google Scholar
Balster, R. L. (1991). Drug abuse potential evaluation in animals. British Journal of Addiction, 86(12), 15491558.Google Scholar
Berridge, K. C. (1996). Food reward: Brain substrates of wanting and liking. Neuroscience & Biobehavioral Reviews, 20(1), 125.Google Scholar
Blaszczynski, A. & Nower, L. (2002). A pathways model of problem and pathological gambling. Addiction, 97(5), 487499.Google Scholar
Bocarsly, M. E., Berner, L. A., Hoebel, B. G. & Avena, N. M. (2011). Rats that binge eat fat-rich food do not show somatic signs or anxiety associated with opiate-like withdrawal: Implications for nutrient-specific food addiction behaviors. Physiology & Behavior, 104(5), 865872.Google Scholar
Boggiano, M. M., Artiga, A. I., Pritchett, C. E., et al. (2007). High intake of palatable food predicts binge-eating independent of susceptibility to obesity: An animal model of lean vs obese binge-eating and obesity with and without binge-eating. International Journal of Obesity, 31(9), 13571367.Google Scholar
Boggiano, M. M., Dorsey, J. R., Thomas, J. M. & Murdaugh, D. L. (2009). The Pavlovian power of palatable food: Lessons for weight-loss adherence from a new rodent model of cue-induced overeating. International Journal of Obesity (London), 33(6), 693701. doi:10.1038/ijo.2009.57Google Scholar
Brownley, K. A., Berkman, N. D., Sedway, J. A., Lohr, K. N. & Bulik, C. M. (2007). Binge eating disorder treatment: A systematic review of randomized controlled trials. International Journal of Eating Disorders, 40(4), 337348.Google Scholar
Carey, K. B. (1996). Substance use reduction in the context of outpatient psychiatric treatment: A collaborative, motivational, harm reduction approach. Community Mental Health Journal, 32(3), 291306.Google Scholar
Carroll, K. M., Ball, S. A., Nich, C., et al. (2006). Motivational interviewing to improve treatment engagement and outcome in individuals seeking treatment for substance abuse: A multisite effectiveness study. Drug & Alcohol Dependence, 81(3), 301312.Google Scholar
Carter, L. P., Stitzer, M. L., Henningfield, J. E., et al. (2009). Abuse liability assessment of tobacco products including potential reduced exposure products. Cancer Epidemiology, Biomarkers & Prevention, 18(12), 32413262. doi:10.1158/1055-9965.EPI-09-0948Google Scholar
Carter, W. P., Hudson, J. I., Lalonde, J. K., et al. (2003). Pharmacologic treatment of binge eating disorder. International Journal of Eating Disorders, 34(S1), S74–88.Google Scholar
Cassin, S. E., von Ranson, K. M., Heng, K., Brar, J. & Wojtowicz, A. E. (2008). Adapted motivational interviewing for women with binge eating disorder: A randomized controlled trial. Psychology of Addictive Behaviors, 22(3), 417.Google Scholar
Chappel, J. N. & DuPont, R. L. (1999). Twelve-step and mutual-help programs for addictive disorders. Psychiatric Clinics, 22(2), 425446.Google Scholar
Cooper, M. L., Russell, M. & George, W. H. (1988). Coping, expectancies, and alcohol abuse: A test of social learning formulations. Journal of Abnormal Psychology, 97(2), 218.Google Scholar
Corsica, J. A. & Pelchat, M. L. (2010). Food addiction: True or false? Current Opinion in Gastroenterology, 26(2), 165169. doi:10.1097/MOG.0b013e328336528dGoogle Scholar
Corwin, R. L. (2006). Bingeing rats: A model of intermittent excessive behavior? Appetite, 46(1), 1115. doi:10.1016/j.appet.2004.09.002Google Scholar
Corwin, R. L. & Grigson, P. S. (2009). Symposium overview – Food addiction: Fact or fiction? Journal of Nutrition, 139(3), 617619. doi:10.3945/jn.108.097691Google Scholar
Davis, C. & Carter, J. C. (2009). Compulsive overeating as an addiction disorder. A review of theory and evidence. Appetite, 53(1), 18. doi:10.1016/j.appet.2009.05.018Google Scholar
Davis, C., Curtis, C., Levitan, R. D., et al. (2011). Evidence that ‘food addiction’ is a valid phenotype of obesity. Appetite, 57(3), 711717. doi:10.1016/j.appet.2011.08.017Google Scholar
Davis, C. & Mason, A. (2020). Prevention and treatment of “food addiction” In Sussman, S. (Ed.) The Cambridge Handbook of Substance and Behavioral Addictions. Cambridge, UK: Cambridge University Press, pp. 230240.Google Scholar
Donny, E. C., Houtsmuller, E. & Stitzer, M. L. (2007). Smoking in the absence of nicotine: Behavioral, subjective and physiological effects over 11 days. Addiction, 102(2), 324334. doi:10.1111/j.1360-0443.2006.01670.xGoogle Scholar
Eiser, J. R. (1985). Smoking: The social learning of an addiction. Journal of Social and Clinical Psychology, 3(4), 446.Google Scholar
Emrick, C. D., Tonigan, J. S., Montgomery, H. & Little, L. (1993). Alcoholics anonymous: What is currently known? In McCrady, B. S. & Miller, W. R. (Eds.), Research on Alcoholics Anonymous: Opportunities and Alternatives. Rutgers Center of Alcohol Studies, pp. 4176.Google Scholar
Epel, E., Lapidus, R., McEwen, B. & Brownell, K. (2001). Stress may add bite to appetite in women: A laboratory study of stress-induced cortisol and eating behavior. Psychoneuroendocrinology, 26(1), 37–9.Google Scholar
Food Addicts Anonymous.” FAA. Accessed January 23, 2020. http://www.foodaddictsanonymous.org/faa-food-planGoogle Scholar
Gearhardt, A. N., Corbin, W. R. & Brownell, K. D. (2009). Preliminary validation of the Yale Food Addiction Scale. Appetite, 52(2), 430436. doi:10.1016/j.appet.2008.12.003Google Scholar
Gearhardt, A. N., Corbin, W. R. & Brownell, K. D. (2016). Development of the Yale Food Addiction Scale Version 2.0. Psychology of Addictive Behaviors, 30(1), 113.Google Scholar
Gearhardt, A. N., Davis, C., Kuschner, R. & Brownell, K. D. (2011a). The addiction potential of hyperpalatable foods. Current Drug Abuse Reviews, 4(3), 140145.Google Scholar
Gearhardt, A. N., Murray, S. & Avena, N. M. (2015). Emerging evidence of addiction in problematic eating behavior. Emerging Trends in the Social and Behavioral Sciences: An Interdisciplinary, Searchable, and Linkable Resource. John Wiley & Sons, Inc.Google Scholar
Gearhardt, A. N., Yokum, S., Orr, P. T., et al. (2011b). Neural correlates of food addiction. Archives of General Psychiatry, 68(8), 808816. doi:10.1001/archgenpsychiatry.2011.32Google Scholar
Gilhooly, C., Das, S., Golden, J., et al. (2007). Food cravings and energy regulation: The characteristics of craved foods and their relationship with eating behaviors and weight change during 6 months of dietary energy restriction. International Journal of Obesity, 31(12), 18491858.Google Scholar
Gold, M. S., Frost-Pineda, K. & Jacobs, W. S. (2003). Overeating, binge eating, and eating disorders as addictions. Psychiatric Annals, 33(2), 117122.Google Scholar
Goldfein, J. A., Walsh, B. T., LaChaussee, J. L., Kissileff, H. R. & Devlin, M. J. (1993). Eating behavior in binge eating disorder. International Journal of Eating Disordorders, 14(4), 427431.Google Scholar
Griffiths, M. (1999). Gambling technologies: Prospects for problem gambling. Journal of Gambling Studies, 15(3), 265283.Google Scholar
Guss, J. L., Kissileff, H. R., Devlin, M. J., Zimmerli, E. & Walsh, B. T. (2002). Binge size increases with body mass index in women with binge-eating disorder. Obesity Research, 10(10), 10211029. doi:10.1038/oby.2002.139Google Scholar
Hadigan, C. M., Kissileff, H. R. & Walsh, B. T. (1989). Patterns of food selection during meals in women with bulimia. American Journal of Clinical Nutrition, 50(4), 759766.Google Scholar
Hagan, M. M., Chandler, P. C., Wauford, P. K., Rybak, R. J. & Oswald, K. D. (2003). The role of palatable food and hunger as trigger factors in an animal model of stress induced binge eating. International Journal of Eating Disorders, 34(2), 183197. doi:10.1002/eat.10168Google Scholar
Haney, M. (2009). Self-administration of cocaine, cannabis and heroin in the human laboratory: Benefits and pitfalls. Addiction Biology, 14(1), 921. doi:10.1111/j.1369-1600.2008.00121.xGoogle Scholar
Hardman, C. A., Rogers, P. J., Dallas, R., et al. (2015). “Food addiction is real”. The effects of exposure to this message on self-diagnosed food addiction and eating behaviour. Appetite, 91, 179184.Google Scholar
Hebebrand, J., Albayrak, Ö., Adan, R., et al. (2014). “Eating addiction”, rather than “food addiction”, better captures addictive-like eating behavior. Neuroscience & Biobehavioral Reviews, 47, 295306.Google Scholar
Herz, A. (1997). Endogenous opioid systems and alcohol addiction. Psychopharmacology (Berlin), 129(2), 99111.Google Scholar
Higgins, S. T., Budney, A. J., Bickel, W. K., et al. (1994). Incentives improve outcome in outpatient behavioral treatment of cocaine dependence. Archives of General Psychiatry, 51(7), 568576.Google Scholar
Hoebel, B. G., Avena, N. M., Bocarsly, M. E. & Rada, P. (2009). Natural addiction: A behavioral and circuit model based on sugar addiction in rats. Journal of Addiction Medicine, 3(1), 3341. doi:10.1097/ADM.0b013e31819aa621Google Scholar
Humphreys, K. (2003). Circles of Recovery: Self-Help Organizations for Addictions. Cambridge: Cambridge University Press.Google Scholar
Hwa, L. S., Chu, A., Levinson, S. A., et al. (2011). Persistent escalation of alcohol drinking in C57BL/6J mice with intermittent access to 20% ethanol. Alcoholism: Clinical and Experimental Research, 35(11), 19381947. doi:10.1111/j.1530-0277.2011.01545.xGoogle Scholar
Ifland, J. R., Preuss, H. G., Marcus, M. T., et al. (2009). Refined food addiction: A classic substance use disorder. Medical Hypotheses, 72(5), 518526. doi:10.1016/j.mehy.2008.11.035Google Scholar
Ifland, J. R., Preuss, H. G., Marcus, M. T., et al. (2015). Clearing the confusion around processed food addiction. Journal of the American College of Nutrition, 34(3), 240243. doi:10.1080/07315724.2015.1022466Google Scholar
Johnson, P. M. & Kenny, P. J. (2010). Dopamine D2 receptors in addiction-like reward dysfunction and compulsive eating in obese rats. Nature Neuroscience, 13(5), 635641.Google Scholar
Kadden, R. (1995). Cognitive-Behavioral Coping Skills Therapy Manual: A Clinical Research Guide for therapists treating Individuals with Alcohol Abuse and Dependence. DIANE Publishing.Google Scholar
Keys, A., Brožek, J., Henschel, A., Mickelsen, O. & Taylor, H. L. (1950). The Biology of Human Starvation. (Two volumes.) University of Minnesota Press.Google Scholar
Kim, S., Shou, J., Abera, S. & Ziff, E. B. (2017). Sucrose withdrawal induces depression and anxiety-like behavior by Kir2.1 upregulation in the nucleus accumbens. Neuropharmacology, 130, 1017. doi:10.1016/j.neuropharm.2017.11.041Google Scholar
Klatsky, A. L., Armstrong, M. A. & Kipp, H. (1990). Correlates of alcoholic beverage preference: Traits of persons who choose wine, liquor or beer. British Journal of Addiction, 85(10), 12791289.Google Scholar
Koob, G. F. & Kreek, M. J. (2007). Stress, dysregulation of drug reward pathways, and the transition to drug dependence. American Journal of Psychiatry, 164(8), 11491159. doi:10.1176/appi.ajp.2007.05030503Google Scholar
Krystal, J. H., Cramer, J. A., Krol, W. F., Kirk, G. F. & Rosenheck, R. A. (2001). Naltrexone in the treatment of alcohol dependence. New England Journal of Medicine, 345(24), 17341739.Google Scholar
Latner, J. D., Puhl, R. M., Murakami, J. M. & O'Brien, K. S. (2014). Food addiction as a causal model of obesity. Effects on stigma, blame, and perceived psychopathology. Appetite, 77, 7782. doi:10.1016/j.appet.2014.03.004Google Scholar
Lee, N. M., Hall, W. D., Lucke, J., Forlini, C. & Carter, A. (2014). Food addiction and its impact on weight-based stigma and the treatment of obese individuals in the U.S. and Australia. Nutrients, 6(11), 53125326. doi:10.3390/nu6115312Google Scholar
Levy, D. T., Chaloupka, F. & Gitchell, J. (2004). The effects of tobacco control policies on smoking rates: A tobacco control scorecard. Journal of Public Health Management and Practice, 10(4), 338353.Google Scholar
Lile, J. A. & Nader, M. A. (2003). The abuse liability and therapeutic potential of drugs evaluated for cocaine addiction as predicted by animal models. Current Neuropharmacology, 1(1), 2146.Google Scholar
Magill, M. & Ray, L. A. (2009). Cognitive-behavioral treatment with adult alcohol and illicit drug users: A meta-analysis of randomized controlled trials. Journal of Studies on Alcohol and Drugs, 70(4), 516527.Google Scholar
Marlatt, G. A. & Witkiewitz, K. (2002). Harm reduction approaches to alcohol use: Health promotion, prevention, and treatment. Addictive Behaviors, 27(6), 867886.Google Scholar
Miller, W. R. & Rollnick, S. (2012). Motivational Interviewing: Helping People Change. Guilford Press.Google Scholar
Niaura, R. (2000). Cognitive social learning and related perspectives on drug craving. Addiction, 95(8s2), 155163.Google Scholar
O'Brien, C. P. & Gardner, E. L. (2005). Critical assessment of how to study addiction and its treatment: human and non-human animal models. Pharmacology & Therapeutics, 108(1), 1858.Google Scholar
Oliver, G. & Wardle, J. (1999). Perceived effects of stress on food choice. Physiology & Behavoir, 66(3), 511515.Google Scholar
Oliver, G., Wardle, J. & Gibson, E. L. (2000). Stress and food choice: A laboratory study. Psychosomatic Medicine, 62(6), 853865.Google Scholar
Oser, M. L., McKellar, J., Moos, B. S. & Moos, R. H. (2010). Changes in ambivalence mediate the relation between entering treatment and change in alcohol use and problems. Addictive Behaviors, 35(4), 367369.Google Scholar
Oswald, K. D., Murdaugh, D. L., King, V. L. & Boggiano, M. M. (2011). Motivation for palatable food despite consequences in an animal model of binge eating. International Journal of Eating Disorders, 44(3), 203211.Google Scholar
Petry, N. M., Ammerman, Y., Bohl, J., et al. (2006). Cognitive-behavioral therapy for pathological gamblers. Journal of Consulting and Clinical Psychology, 74(3), 555.Google Scholar
Polk, S. E., Schulte, E. M., Furman, C. R. & Gearhardt, A. N. (2017). Wanting and liking: Separable components in problematic eating behavior? Appetite, 115, 4553. doi:10.1016/j.appet.2016.11.015Google Scholar
Potenza, M. N. (2008). Review. The neurobiology of pathological gambling and drug addiction: an overview and new findings. Philosophical Transactions of the Royal Society, London B, 363(1507), 31813189. doi:10.1098/rstb.2008.0100Google Scholar
Pursey, K. M., Collins, C. E., Stanwell, P. & Burrows, T. L. (2015). Foods and dietary profiles associated with ‘food addiction’ in young adults. Addictive Behaviors Reports, 2, 4148.Google Scholar
Robinson, M. J., Burghardt, P. R., Patterson, C. M., et al. (2015). Individual differences in cue-induced motivation and striatal systems in rats susceptible to diet-induced obesity. Neuropsychopharmacology, 40(9), 21132123. doi:10.1038/npp.2015.71Google Scholar
Rosen, J. C., Leitenberg, H., Fisher, C. & Khazam, C. (1986). Binge‐eating episodes in bulimia nervosa: The amount and type of food consumed. International Journal of Eating Disorders, 5(2), 255267.Google Scholar
Ruddock, H. K., Christiansen, P., Halford, J. C. G. & Hardman, C. A. (2017). The development and validation of the Addiction-like Eating Behaviour Scale. International Journal of Obesity (London), 41(11), 17101717. doi:10.1038/ijo.2017.158Google Scholar
Russell‐Mayhew, S., von Ranson, K. M. & Masson, P. C. (2010). How does overeaters anonymous help its members? A qualitative analysis. European Eating Disorders Review, 18(1), 3342.Google Scholar
Scherbaum, N., Kluwig, J., Specka, M., et al. (2005). Group psychotherapy for opiate addicts in methadone maintenance treatment – A controlled trial. European Addiction Research, 11(4), 163171.Google Scholar
Schulte, E. M., Avena, N. M. & Gearhardt, A. N. (2015). Which foods may be addictive? The roles of processing, fat content, and glycemic load. PLoS ONE, 10(2), e0117959.Google Scholar
Schulte, E. M., Potenza, M. N. & Gearhardt, A. N. (2017a). A commentary on the “eating addiction” versus “food addiction” perspectives on addictive-like food consumption. Appetite, 115, 915. doi:10.1016/j.appet.2016.10.033Google Scholar
Schulte, E. M., Potenza, M. N. & Gearhardt, A. N. (2017b). How much does the addiction-like eating behaviour scale add to the debate regarding food versus eating addictions? International Journal of Obesity, 42(4), 946.Google Scholar
Schulte, E. M., Smeal, J. K. & Gearhardt, A. N. (2017). Foods are differentially associated with subjective effect report questions of abuse liability. PLoS ONE, 12(8), e0184220. doi:10.1371/journal.pone.0184220Google Scholar
Seidell, J. C. & Halberstadt, J. (2015). The global burden of obesity and the challenges of prevention. Annals of Nutrition and Metabolism, 66 (Supplement 2), 712. doi:10.1159/000375143Google Scholar
Sinha, R. (2001). How does stress increase risk of drug abuse and relapse? Psychopharmacology (Berlin), 158(4), 343359. doi:10.1007/s002130100917Google Scholar
Smith, D. G. & Robbins, T. W. (2013). The neurobiological underpinnings of obesity and binge eating: A rationale for adopting the food addiction model. Biological Psychiatry, 73(9), 804810. doi:10.1016/j.biopsych.2012.08.026Google Scholar
Sorenson, M. (2014). Food Addiction: Current Understanding and Implications for Regulation and Research. https://dash.harvard.edu/handle/1/11938740Google Scholar
Stice, E., Burger, K. S. & Yokum, S. (2013). Relative ability of fat and sugar tastes to activate reward, gustatory, and somatosensory regions. American Journal of Clinical Nutrition, 98(6), 13771384. doi:10.3945/ajcn.113.069443Google Scholar
Sussman, S. (2017). Substance and Behavioral Addictions: Concepts, Causes, and Cures. Cambridge: Cambridge University Press.Google Scholar
Sylvain, C., Ladouceur, R. & Boisvert, J.-M. (1997). Cognitive and behavioral treatment of pathological gambling: A controlled study. Journal of Consulting and Clinical Psychology, 65(5), 727.Google Scholar
Toneatto, T. & Dragonetti, R. (2008). Effectiveness of community‐based treatment for problem gambling: A quasi‐experimental evaluation of cognitive‐behavioral vs. twelve‐step therapy. American Journal on Addictions, 17(4), 298303.Google Scholar
Tryon, M. S., Stanhope, K. L., Epel, E. S., et al. (2015). Excessive sugar consumption may be a difficult habit to break: A view from the brain and body. Journal of Clinical Endocrinology and Metabolism, 100(6), 22392247. doi:10.1210/jc.2014-4353Google Scholar
Vanderlinden, J., Dalle Grave, R., Vandereycken, W. & Noorduin, C. (2001). Which factors do provoke binge-eating? An exploratory study in female students. Eating Behaviors, 2(1), 7983.Google Scholar
Volkow, N. D. & Wise, R. A. (2005). How can drug addiction help us understand obesity? Nature Neuroscience, 8(5), 555560. doi:10.1038/nn1452Google Scholar
Volkow, N. D., Wang, G. J., Fowler, J. S. & Telang, F. (2008). Overlapping neuronal circuits in addiction and obesity: Evidence of systems pathology. Philosophical Transactions of the Royal Society, London B, 363(1507), 31913200. doi:10.1098/rstb.2008.0107Google Scholar
Volkow, N. D., Wang, G. J., Fowler, J. S., Tomasi, D. & Baler, R. (2012). Food and drug reward: Overlapping circuits in human obesity and addiction. Current Topics in Behavioral Neurosciences, 11, 124. doi:10.1007/7854_2011_169Google Scholar
Wadden, T. A., Foster, G. D., Sarwer, D. B., et al. (2004). Dieting and the development of eating disorders in obese women: Results of a randomized controlled trial. American Journal of Clinical Nutrition, 80(3), 560568.Google Scholar
Walsh, B. T., Kissileff, H. R., Cassidy, S. M. & Dantzic, S. (1989). Eating behavior of women with bulimia. Archives of General Psychiatry, 46(1), 5458.Google Scholar
Wang, G. J., Volkow, N. D., Thanos, P. K. & Fowler, J. S. (2004). Similarity between obesity and drug addiction as assessed by neurofunctional imaging: A concept review. Journal of Addictive Diseases, 23(3), 3953. doi:10.1300/J069v23n03_04Google Scholar
Waters, A., Hill, A. & Waller, G. (2001). Internal and external antecedents of binge eating episodes in a group of women with bulimia nervosa. International Journal of Eating Disorders, 29(1), 1722.Google Scholar
Weingarten, H. P. & Elston, D. (1991). Food cravings in a college population. Appetite, 17(3), 167175.Google Scholar
Welte, J. W., Barnes, G. M., Wieczorek, W. F., Tidwell, M. C. & Parker, J. C. (2004). Risk factors for pathological gambling. Addictive Behaviors, 29(2), 323335.Google Scholar
White, M. A. & Grilo, C. M. (2005). Psychometric properties of the Food Craving Inventory among obese patients with binge eating disorder. Eating Behaviors, 6(3), 239245. doi:10.1016/j.eatbeh.2005.01.001Google Scholar
Wilson, G. T. (2000). Eating disorders and addiction. Drugs & Society, 15(1–2), 87101.Google Scholar
Yanovski, S. Z. (2003). Sugar and fat: Cravings and aversions. Journal of Nutrition, 133(3), 835S837S.Google Scholar
Yanovski, S. Z., Leet, M., Yanovski, J. A., et al. (1992). Food selection and intake of obese women with binge-eating disorder. American Journal of Clinical Nutrition, 56(6), 975980.Google Scholar
Zellner, D. A., Loaiza, S., Gonzalez, Z., et al. (2006). Food selection changes under stress. Physiology & Behavior, 87(4), 789793. doi:10.1016/j.physbeh.2006.01.014Google Scholar
Ziauddeen, H. & Fletcher, P. C. (2013). Is food addiction a valid and useful concept? Obesity Reviews, 14(1), 1928. doi:10.1111/j.1467-789X.2012.01046.xGoogle Scholar
Ziauddeen, H., Farooqi, I. S. & Fletcher, P. C. (2012). Obesity and the brain: How convincing is the addiction model? Nature Reviews Neuroscience, 13(4), 279286.Google Scholar

References

Adams, J. & Kirkby, R. J. (2002). Excessive exercise as an addiction: A review. Addiction Research and Theory, 10, 415437.Google Scholar
Adams, J. M., Miller, T. W. & Kraus, R. F. (2003). Exercise dependence: Diagnostic and therapeutic issues for patients in psychotherapy. Journal of Contemporary Psychotherapy, 33, 93107.Google Scholar
American Psychiatric Association [APA] (2000). Diagnostic and Statistical Manual of Mental Disorders (4th edition, text revision). Washington, DC: American Psychiatric Publishing.Google Scholar
American Psychiatric Association [APA] (2013). Diagnostic and Statistical Manual of Mental Disorders (5th edition). Washington, DC: American Psychiatric Publishing.Google Scholar
American Psychological Association [APA] (2017). Personality. www.apa.org/topics/personality/Google Scholar
Anandkumar, S., Manivasagam, K., Kee, T. V. S. & Meyding-Lamade, U. (2018). Effect of physical therapy management of nonspecific low back pain with exercise addiction behaviors: A case series. Physiotherapy Theory and Practice, 34, 316328. doi: 10.1080/09593985.2017.1394410Google Scholar
Andreassen, C. S., Griffiths, M. D., Gjertsen, S. R., et al. (2013). The relationship between behavioral addictions and the five-factor model of personality. Journal of Behavioral Addictions, 2, 9099. doi: 10.1556/JBA.2.2013.003Google Scholar
Anderson, S. J., Basson, C. J. & Geils, C. (1997). Personality style and mood states associated with a negative addiction to running. Sports Medicine, 4, 611.Google Scholar
Baekeland, F. (1970). Exercise deprivation. Sleep and psychological reactions. Archives of General Psychiatry, 22, 365369. doi: 10.1001/archpsyc.1970.01740280077014Google Scholar
Bamber, D., Cockerill, I. M. & Carroll, D. (2000). The pathological status of exercise dependence British Journal of Sports Medicine, 34, 125132. doi: dx.doi.org/10.1136/bjsm.34.2.125Google Scholar
Berger, N., Muller, A., Brahler, E., Philipsen, A. & de Zwaan, M. (2014). Association of symptoms of attention-deficit/hyperactivity disorder with symptoms of excessive exercising in an adult general population sample. BMC Psychiatry, 14, 250. doi:10.1186/s12888-014-0250-7Google Scholar
Besser, A., Flett, G. L. & Hewitt, P. L. (2004). Perfectionism, cognition, and affect in response to performance failure vs. successJournal of Rational-Emotive & Cognitive-Behavior Therapy22, 297324. doi:10.1023/b:jore.0000047313.35872.5cGoogle Scholar
Blaydon, M. J. & Lindner, K. J. (2002). Eating disorders and exercise dependence in triathletes. Eating Disorder, 10(1), 4960. doi: 10.1080/106402602753573559Google Scholar
Carmack, M. A. & Martens, R. (1979). Measuring commitment to running: A survey of runners’ attitudes and mental states. Journal of Sport Psychology, 1, 2542. doi:10.1123/jsp.1.1.25Google Scholar
Chapman, C. L. & DeCastro, J. M. (1990). Running addiction: Measurement and associated psychological characteristics. The Journal of Sports Medicine and Physical Fitness, 30, 283290.Google Scholar
Coen, S. P. & Ogles, B. M. (1993). Psychological characteristics of the obligatory runner: A critical examination of the anorexia analogue hypothesisJournal of Sport & Exercise Psychology15, 338354. doi:10.1123/jsep.15.3.338Google Scholar
Cook, B. J. & Hausenblas, H. A. (2011). Eating disorder specific health-related quality of life and exercise in college females. Quality of Life Research, 20, 13851390. doi:10.1007/s11136-011-9879-6Google Scholar
Cook, B. J., Hausenblas, H. A., Crosby, R. D., Cao, L. & Wonderlich, S. A. (2015). Exercise dependence as a mediator of the exercise and eating disorders relationship: A pilot study. Eating Behaviors, 16, 912. doi: 10.1016/j.eatbeh.2014.10.012Google Scholar
Cook, B. J., Hausenblas, H. A., Tuccitto, D. & Giacobbi, P. (2011). Eating disorders and exercise: A structural equation modeling analysis of a conceptual model. European Eating Disorders Review, 19, 216225. doi: 10.1002/erv.1111Google Scholar
Cooke, L. M., Liardi, V. L. & Hall, C. R. (2011). Does the shoe FIT? An examination of the relationship of exercise identity with exercise frequency, intensity, and duration. Journal of Sport & Exercise Psychology, 33, 138148.Google Scholar
Costa, S. & Oliva, P. (2011). Attività fisica e benessere: percezione del sé fisico e motivazione all’esercizio. [Physical activity and well-being: Physical self-perception and exercise motivation]”. GIPS, 12, 37.Google Scholar
Costa, S., Hausenblas, H. A., Oliva, P., Cuzzocrea, F. & Larcan, R. (2013). The role of age, gender, mood states and exercise frequency on exercise dependenceJournal of Behavioral Addictions2, 216223. doi:10.1556/jba.2.2013.014Google Scholar
Cunningham, H. E., Pearman, S. & Brewerton, T. D. (2016). Conceptualizing primary and secondary pathological exercise using available measures of excessive exercise. International Journal of Eating Disorders, 49(8), 778792. doi: 10.1002/eat.22551Google Scholar
Davis, C. & Fox, J. (1993). Excessive exercise and weight preoccupation in womenAddictive Behaviors18, 201211. doi:10.1016/0306-4603(93)90050-jGoogle Scholar
Di Nicola, M., Martinotti, G., Mazza, M., et al. (2010). Quetiapine as add-on treatment for bipolar I disorder with comorbid compulsive buying and physical exercise addiction. Progress in Neuropsychopharmacology and Biological Psychiatry, 34, 713714.Google Scholar
Di Nicola, M., Tedeschi, D., De Risio, L., et al. (2015). Co-occurrence of alcohol use disorder and behavioral addictions: Relevance of impulsivity and craving. Drug and Alcohol Dependence, 148, 118125. doi:10.1016/j.drugalcdep.2014.12.028Google Scholar
Egorov, A. Y. & Szabo, A. (2013). The exercise paradox: An interactional model for a clearer conceptualization of exercise addictionJournal of Behavioral Addictions2, 199208. doi:10.1556/jba.2.2013.4.2Google Scholar
Flett, G. L. & Hewitt, P. L. (2005). The perils of perfectionism in sports and exerciseCurrent Directions in Psychological Science14, 1418. doi:10.1111/j.0963-7214.2005.00326.xGoogle Scholar
Flett, G. L. & Hewitt, P. L. (2002). Perfectionism and maladjustment: An overview of theoretical, definitional, and treatment issues. In Flett, G. L. & Hewitt, P. L. (Eds.), Perfectionism: Theory, Research, and Treatment. American Psychological Association, pp. 531https://doi.org/10.1037/10458-001Google Scholar
Flett, G. L. & Hewitt, P. L. (2006). Positive versus negative perfectionism in psychopathologyBehavior Modification, 30, 472495. doi:10.1177/0145445506288026Google Scholar
Flett, G. L., Pole-Langdon, L. & Hewitt, P. L. (2003). Trait perfectionism and perfectionistic self-presentation in compulsive exercise. Unpublished manuscript. York University, Toronto, Ontario, Canada.Google Scholar
Fairburn, C. G. & Beglin, S. J. (1994). Assessment of eating disorders: Interview or self-report questionnaire? International Journal of Eating Disorders, 16, 363370. doi:10.1037/t03974-000Google Scholar
Freimuth, M. (2008). Addicted? Recognizing Destructive Behavior Before It’s Too Late. Lanham, MD: Rowman & Littlefield Publishers.Google Scholar
Freimuth, M., Moniz, S. & Kim, S. R. (2011). Clarifying exercise addiction: Differential diagnosis, co-occurring disorders, and phases of addiction. International Journal of Environmental Research and Public Health8, 40694081.Google Scholar
Garner, D. M., Olmstead, M.P. & Polivy, J. (1983). Development and validation of a multidimensional eating disorder inventory for anorexia nervosa and bulimia. International Journal of Eating Disorders, 2, 1534. doi:10.1002/1098-108x(198321)2:2<15::aid-eat2260020203>3.0.co;2-6Google Scholar
Gayton, W. F., Loignon, A. C. & Porta, W. (2016). Exercise dependence: The dark side of exercise. Annals of Sports Medicine and Research, 3(7), 1085.Google Scholar
Glasser, W. (1976). Positive Addiction. New York, NY: Harper & Row.Google Scholar
Griffiths, M. (1996). Behavioural addiction: An issue for everybody? Employee Counselling Today, 8, 1925. doi: 10.1108/13665629610116872Google Scholar
Griffiths, M., Szabo, A. & Terry, A. (2005). The exercise addiction inventory: A quick and easy screening tool for health practitioners. British Journal of Sports Medicine, 39, 346347. doi: 10.1136/bjsm.2004.017020Google Scholar
Hagan, A. L. & Hausenblas, H. A. (2003). The relationship between exercise dependence symptoms and perfectionism. American Journal of Health Studies, 18, 133137.Google Scholar
Hailey, B. J. & Bailey, L. A. (1982). Negative addiction in runners: A quantitative approach. Journal of Sport Behavior, 5, 150154.Google Scholar
Hall, H. K., Hill, A. P., Appleton, P. R. & Kozub, S. A. (2009). The mediating influence of unconditional self-acceptance and labile self-esteem on the relationship between multidimensional perfectionism and exercise dependencePsychology of Sport and Exercise,10, 3544. doi:10.1016/j.psychsport.2008.05.003Google Scholar
Hart, E. A., Leary, M. R. & Rejeski, W. J. (1989). The measurement of social physique anxiety. Journal of Sport and Exercise Psychology, 11, 94104.Google Scholar
Hausenblas, H. A. & Fallon, E. A. (2002). Relationship among body image, exercise behavior, and exercise dependence symptomsInternational Journal of Eating Disorders32, 179185. doi:10.1002/eat.10071Google Scholar
Hausenblas, H. A. & Giacobbi, P. R. Jr. (2004). Relationship between exercise dependence symptoms and personality. Personality and Individual Differences, 36, 12651273. doi:10.1016/s0191-8869(03)00214-9Google Scholar
Hausenblas, H. A. & Symons Downs, D. (2002). Exercise dependence: A systematic review. Psychology of Sport and Exercise, 3, 8923. doi: 10.1016/s1469-0292(00)00015-7Google Scholar
Hausenblas, H. A., Cook, B. J. & Chittester, N. I. (2008). Can exercise treat eating disorders? Exercise and Sport Sciences Reviews, 36, 4347. doi: 10.1097/jes.0b013e31815e4040Google Scholar
Hausenblas, H. A., Schreiber, K. & Smoliga, J. M. (2017). Practice pointer: Exercise addiction. BMJ, 26, 357. doi: 10.1136/bmj.j1745Google Scholar
Hewitt, P. L. & Flett, G. L. (1996). Personality traits and the coping process. In Zeidner, M. & Endler, N. S. (Eds.), Handbook of Coping: Theory, Research, Applications. Oxford, England: John Wiley & Sons, pp. 410433.Google Scholar
Hewitt, P. L., Flett, G. L. & Ediger, E. (1996). Perfectionism and depression: Longitudinal assessment of a specific vulnerability hypothesisJournal of Abnormal Psychology105, 276280. doi:10.1037//0021-843x.105.2.276Google Scholar
Jee, Y.-S. (2016). Exercise addiction and rehabilitation. Journal of Exercise Rehabilitation, 12, 6768.Google Scholar
Jibaja-Rusth, M. L. (1989). The development of a psycho-social risk profile for becoming an obligatory runner. Unpublished doctoral dissertation, University of Houston, Houston.Google Scholar
Korolenko, T. P. (1991). Addictive behavior: Its general traits and regular developmentThe Bekhterev Review of Psychiatry and Medical Psychology, 1, 815.Google Scholar
Lejoyeux, M., Avril, M., Embouazza, H. & Nivoli, F. (2008). Prevalence of exercise dependence and other behavioral addictions among clients of a Parisian fitness room. Comprehensive Psychiatry, 49, 353358. doi: 10.1016/j.comppsych.2007.12.005Google Scholar
Lichtenstein, M. B., Christiansen, E., Elklit, A., Bilenberg, N. & Støving, R. K. (2014). Exercise addiction: A study of eating disorder symptoms, quality of life, personality traits and attachment stylesPsychiatry Research215, 410416. doi:10.1016/j.psychres.2013.11.010Google Scholar
Lichtenstein, M. B., Hinze, C. J., Emborg, B., Thomsen, F. & Hemmingsen, S. D. (2017). Compulsive exercise: Links, risks and challenges faced. Psychology Research and Behavior Management, 30, 8595. doi: 10.2147/PRBM.S113093.Google Scholar
Lu, F. J., Hsu, E. Y., Wang, J. M., et al. (2012). Exercisers’ identities and exercise dependence: The mediating effect of exercise commitment. Perceptual and Motor Skills, 115, 618631. doi:10.2466/06.13.21.pms.115.5.618-631Google Scholar
Meulemans, S., Pribis, P., Grajales, T. & Krivak, G. (2014). Gender differences in exercise dependence and eating disorders in young adults: A path analysis of a conceptual model. Nutrients, 6, 48954905. doi: 10.3390/nu6114895Google Scholar
Miller, K. J. & Mesagno, C. (2014). Personality traits and exercise dependence: Exploring the role of narcissism and perfectionism. International Journal of Sport and Exercise Psychology12, 368381. doi:10.1080/1612197x.2014.932821Google Scholar
Monok, K., Berczik, K., Urban, R., et al. (2012). Psychometric properties and concurrent validity of two exercise addiction measures: A population wide study. Psychology of Sport and Exercise, 13, 387404. doi:10.1016/j.psychsport.2012.06.003Google Scholar
Morgan, W. P. (1979). Negative addiction in runners. The Physician and Sportsmedicine, 7, 5777. doi:10.1080/00913847.1979.11948436Google Scholar
Murray, A. L., McKenzie, K., Newman, E. & Brown, E. (2013). Exercise identity as a risk factor for exercise dependence. British Journal of Health Psychology, 18, 369382. doi: 10.1111/j.2044-8287.2012.02091Google Scholar
O’Connor, R. C. (2007). The relations between perfectionism and suicidality: A systematic reviewSuicide and Life-Threatening Behavior37, 698714. doi:10.1521/suli.2007.37.6.698Google Scholar
O’Connor, P. J. & Smith, J. C. (1999). Physical activity and eating disorders. In Rippe, J. M. (Ed.), Lifestyle Medicine. Cambridge, MA: Blackwell Science, pp. 10051015.Google Scholar
Oliva, P., Costa, S. & Rosalba, L. (2013). Physical self-concept and its relationship to exercise dependence symptoms in young regular physical exercisers. American Journal of Sports Science and Medicine, 1, 16.Google Scholar
Rudy, E. B. & Estok, P. J. (1989). Measurement and significance of negative addiction in runnersWestern Journal of Nursing Research11, 548558. doi:10.1177/019394598901100504Google Scholar
Sherry, S. B., Hewitt, P. L., Flett, G. L. & Harvey, M. (2003). Perfectionism dimensions, perfectionistic attitudes, dependent attitudes, and depression in psychiatric patients and university studentsJournal of Counseling Psychology50, 373386. doi:10.1037/0022-0167.50.3.373Google Scholar
Smith, D., Hale, B. D. & Collins, D. J. (1998). Measurement of exercise dependence in bodybuilders. Journal of Sports Medicine and Physical Fitness, 8, 19.Google Scholar
Spano, L. (2001). The relationship between exercise and anxiety, obsessive-compulsiveness, and narcissismPersonality and Individual Differences30, 8793. doi:10.1016/s0191-8869(00)00012-xGoogle Scholar
Stets, J. E. & Burke, P. J. (2000). Identity theory and social identity theorySocial Psychology Quarterly63, 224. doi:10.2307/2695870Google Scholar
Stice, E., Presnell, K. & Spangler, D. (2002). Risk factors for binge eating onset in adolescent girls: A 2-year prospective investigationHealth Psychology21, 131138. doi:10.1037//0278-6133.21.2.131Google Scholar
Symons Downs, D., Hausenblas, H. A. & Nigg, C. R. (2004). Factorial validity and psychometric examination of the exercise dependence scale-revised. Measurement in Physical Education and Exercise Science, 8(4), 183201. doi: 10.1207/s15327841mpee0804_1Google Scholar
Szabo, A., Griffiths, M. D., de la Vega Marcos, R., Mervó, B. & Demetrovics, Z. (2015). Methodological and conceptual limitations in exercise addiction research. Yale Journal of Biology and Medicine, 88, 303308.Google Scholar
Szabo, A., Griffiths, M. D., Høglid, R. A. & Demetrovics, Z. (2018). Drug, nicotine, and alcohol use among exercisers: Does substance addiction co-occur with exercise addiction? Addictive Behaviors Reports7, 2631. doi:10.1016/j.abrep.2017.12.001Google Scholar
Terry, A., Szabo, A. & Griffiths, M. (2004). The exercise addiction inventory: A new brief screening tool. Addiction Research and Theory, 12, 489499. doi:10.1080/16066350310001637363Google Scholar
Thornton, E. W. & Scott, S. E. (1995). Motivation in the committed runner: Correlations between self-report scales and behaviour. Health Promotion International, 10, 177184.Google Scholar
Veale, D. (1987). Exercise dependence. British Journal of Addiction, 82, 735740. doi:10.1111/j.1360-0443.1987.tb01539.xGoogle Scholar
Veale, D. (1995). Does primary exercise dependence really exist? In Annett, J., Cripps, B. & Steinberg, H. (Eds.), Exercise Addiction: Motivation for Participation in Sport and Exercise. Leicester, UK: British Psychological Society, pp. 15.Google Scholar
Villella, C., et al. (2010). Behavioural addictions in adolescents and young adults: Results from a prevalence study. Journal of Gambling Studies, 27, 203214. doi: 10.1007/s10899-010-9206-0Google Scholar

References

American Psychiatric Association [APA] (2000). Diagnostic and Statistical Manual of Mental Disorders (4th edition). Washington, DC: American Psychiatric Association.Google Scholar
American Psychiatric Association [APA] (2013). Diagnostic and Statistical Manual of Mental Disorders (5th edition). Washington, DC: American Psychiatric Association.Google Scholar
Ashrafioun, L. & Bonar, E. E. (2014a). Development of a brief scale to assess frequency of symptoms and problems associated with tanning. Journal of the American Academy of Dermatology, 70(3), 588-589. doi:10.1016/j.jaad.2013.11.041Google Scholar
Ashrafioun, L. & Bonar, E. E. (2014b). Tanning addiction and psychopathology: Further evaluation of anxiety disorders and substance abuse. Journal of the American Academy of Dermatology, 70(3), 473480. doi:10.1016/j.jaad.2013.10.057Google Scholar
Ashrafioun, L. & Bonar, E. E. (2015). Psychometric assessment of the craving to tan questionnaire. American Journal of Drug and Alcohol Abuse, 41(1), 7481. doi:10.3109/00952990.2014.939754Google Scholar
Aubert, P. M., Seibyl, J. P., Price, J. L., et al. (2016). Dopamine efflux in response to ultraviolet radiation in addicted sunbed users. Psychiatry Research, 251, 714. doi:10.1016/j.pscychresns.2016.04.001Google Scholar
Aumann, T. D., Raabus, M., Tomas, D., et al. (2016). Differences in number of midbrain dopamine neurons associated with summer and winter photoperiods in humans. PLoS ONE, 11(7), e0158847. doi:10.1371/journal.pone.0158847Google Scholar
Baler, R. D. & Volkow, N. D. (2006). Drug addiction: the neurobiology of disrupted self-control. Trends in Molecular Medicine, 12(12), 559566. doi:10.1016/j.molmed.2006.10.005Google Scholar
Banerjee, S. C., Hay, J. L. & Greene, K. (2013). Cognitive rationalizations for tanning-bed use: a preliminary exploration. American Journal of Health Behavior, 37(5), 577586. doi:10.5993/ajhb.37.5.1Google Scholar
Berridge, K. C. & Robinson, T. E. (2016). Liking, wanting, and the incentive-sensitization theory of addiction. American Psychologist, 71(8), 670679. doi:10.1037/amp0000059Google Scholar
Blum, K. et al. (2020). Precision Behavioral Management (PBM): a novel genetically guided therapy to combat Reward Deficiency Syndrome (RDS) relevant to the opiate crisis. In Sussman, S. (Ed.) The Cambridge Handbook of Substance and Behavioral Addictions. Cambridge, UK: Cambridge University Press, pp. 297306Google Scholar
Boniol, M., Autier, P., Boyle, P. & Gandini, S. (2012). Cutaneous melanoma attributable to sunbed use: systematic review and meta-analysis. BMJ, 345, e4757. doi:10.1136/bmj.e4757Google Scholar
Cartmel, B., Dewan, A., Ferrucci, L. M., et al. (2014). Novel gene identified in an exome-wide association study of tanning dependence. Experimental Dermatology, 23(10), 757759. doi:10.1111/exd.12503Google Scholar
Chait, S. R., Thompson, J. K. & Jacobsen, P. B. (2015). Preliminary development and evaluation of an appearance-based dissonance induction intervention for reducing UV exposure. Body Image, 12, 6872. doi:10.1016/j.bodyim.2014.09.004Google Scholar
Dulcis, D., Jamshidi, P., Leutgeb, S. & Spitzer, N. C. (2013). Neurotransmitter switching in the adult brain regulates behavior. Science, 340(6131), 449453. doi:10.1126/science.1234152Google Scholar
Earleywine, M., LaBrie, J. W. & Pedersen, E. R. (2008). A brief Rutgers Alcohol Problem Index with less potential for bias. Addictive Behaviors, 33(9), 12491253. doi:10.1016/j.addbeh.2008.05.006Google Scholar
FDA (2014). General and plastic surgery devices: reclassification of ultraviolet lamps for tanning, henceforth to be known as sunlamp products and ultraviolet lamps intended for use in sunlamp products. Final order. Federal Registister, 79(105), 3120531214.Google Scholar
FDA (2015). General and plastic surgery devices: restricted sale, distribution, and use of sunlamp products. Retrieved from www.federalregister.gov/documents/2015/12/22/2015-32024/general-and-plastic-surgery-devices-restricted-sale-distribution-and-use-of-sunlamp-productsGoogle Scholar
Feldman, S. R., Liguori, A., Kucenic, M., et al. (2004). Ultraviolet exposure is a reinforcing stimulus in frequent indoor tanners. Journal of the American Academy of Dermatology, 51(1), 4551. doi:10.1016/j.jaad.2004.01.053Google Scholar
Fell, G. L., Robinson, K. C., Mao, J., Woolf, C. J. & Fisher, D. E. (2014). Skin beta-endorphin mediates addiction to UV light. Cell, 157(7), 15271534. doi:10.1016/j.cell.2014.04.032Google Scholar
Feng, J., Frisard, C., Nahar, V. K., et al. (2017). Gender differences in indoor tanning habits and location. Journal of the American Academy of Dermatology. doi:10.1016/j.jaad.2017.10.015Google Scholar
First, M., Spitzer, R., Gibbon, M. & Williams, J. (1995). Structured Clinical Interview for DSM-IV Axis I Disorders (SCID). New York: New York State Psychiatric Institute Biometrics Research Department.Google Scholar
Fisher, D. E. & James, W. D. (2010). Indoor tanning – science, behavior, and policy. New England Journal of Medicine, 363(10), 901903. doi:10.1056/NEJMp1005999Google Scholar
Flannery, B. A., Volpicelli, J. R. & Pettinati, H. M. (1999). Psychometric properties of the Penn Alcohol Craving Scale. Alcoholism: Clinical and Experimental Research, 23(8), 12891295.Google Scholar
Flight, M. H. (2013). Synaptic transmission: summer blues. Nature Reviews Neuroscience, 14(6), 378. doi:10.1038/nrn3517Google Scholar
Flores, K. G., Erdei, E., Luo, L., et al. (2013). A pilot study of genetic variants in dopamine regulators with indoor tanning and melanoma. Experimental Dermatology, 22(9), 576581. doi:10.1111/exd.12200Google Scholar
Gambichler, T., Bader, A., Vojvodic, M., et al. (2002). Plasma levels of opioid peptides after sunbed exposures. British Journal of Dermatology, 147(6), 12071211.Google Scholar
Gibbons, F. X., Gerrard, M., Lane, D. J., Mahler, H. I. & Kulik, J. A. (2005). Using UV photography to reduce use of tanning booths: a test of cognitive mediation. Health Psychology, 24(4), 358363. doi:10.1037/0278-6133.24.4.358Google Scholar
Gillen, M. M. & Markey, C. N. (2012). The role of body image and depression in tanning behaviors and attitudes. Journal of Behavioral Medicine, 38(3), 7482. doi:10.1080/08964289.2012.685499Google Scholar
Guy, G. P. Jr., Berkowitz, Z., Everett Jones, S., et al. (2015). Trends in indoor tanning among US high school students, 2009–2013. JAMA Dermatology, 151(4), 448450. doi:10.1001/jamadermatol.2014.4677Google Scholar
Guy, G. P. Jr., Berkowitz, Z., Everett Jones, S., Watson, M. & Richardson, L. C. (2017). Prevalence of indoor tanning and association with sunburn among youth in the United States. JAMA Dermatology, 153(5), 387390. doi:10.1001/jamadermatol.2016.6273Google Scholar
Guy, G. P. Jr., Berkowitz, Z., Jones, S. E., et al. (2014). State indoor tanning laws and adolescent indoor tanning. American Journal of Public Health, 104(4), e6974. doi:10.2105/ajph.2013.301850Google Scholar
Guy, G. P. Jr., Berkowitz, Z., Watson, M., Holman, D. M. & Richardson, L. C. (2013). Indoor tanning among young non-Hispanic white females. JAMA Internal Medicine, 173(20), 19201922. doi:10.1001/jamainternmed.2013.10013Google Scholar
Guy, G. P. Jr., Watson, M., Richardson, L. C. & Lushniak, B. D. (2016). Reducing indoor tanning – an opportunity for melanoma prevention. JAMA Dermatology, 152(3), 257259. doi:10.1001/jamadermatol.2015.3007Google Scholar
Harrington, C. R., Beswick, T. C., Graves, M., et al. (2012). Activation of the mesostriatal reward pathway with exposure to ultraviolet radiation (UVR) vs. sham UVR in frequent tanners: a pilot study. Addiction Biology, 17(3), 680686. doi:10.1111/j.1369-1600.2010.00312.xGoogle Scholar
Harrington, C. R., Beswick, T. C., Leitenberger, J., et al. (2011). Addictive-like behaviours to ultraviolet light among frequent indoor tanners. Clinical and Experimental Dermatology, 36(1), 3338. doi:10.1111/j.1365-2230.2010.03882.xGoogle Scholar
Heckman, C. J. & Manne, S. L. (2012). Shedding Light on Indoor Tanning. Dordrecht; New York: Springer.Google Scholar
Heckman, C. J., Cohen-Filipic, J., Darlow, S., et al. (2014a). Psychiatric and addictive symptoms of young adult female indoor tanners. American Journal of Health Promotion, 28(3), 168174. doi:10.4278/ajhp.120912-QUAN-442Google Scholar
Heckman, C., Darlow, S., Cohen-Filipic, J. & Kloss, J. (2016). Mood changes after indoor tanning among college women: associations with psychiatric/addictive symptoms. Health Psychol Res, 4(1), 5453. doi:10.4081/hpr.2016.5453Google Scholar
Heckman, C. J., Darlow, S., Kloss, J. D., et al. (2014b). Measurement of tanning dependence. Journal of the European Academy of Dermatology and Venereology, 28(9), 11791185. doi:10.1111/jdv.12243Google Scholar
Heckman, C. J., Darlow, S. D., Kloss, J. D., Munshi, T. & Manne, S. L. (2015). Contextual factors, indoor tanning, and tanning dependence in young women. American Journal of Health Behavior, 39(3), 372379. doi:10.5993/ajhb.39.3.10Google Scholar
Heckman, C. J., Egleston, B. L., Wilson, D. B. & Ingersoll, K. S. (2008). A preliminary investigation of the predictors of tanning dependence. American Journal of Health Behavior, 32(5), 451464. doi:10.5555/ajhb.2008.32.5.451Google Scholar
Hillhouse, J. J. & Turrisi, R. (2002). Examination of the efficacy of an appearance-focused intervention to reduce UV exposure. Journal of Behavioral Medicine, 25(4), 395409.Google Scholar
Hillhouse, J. J., Baker, M. K., Turrisi, R., et al. (2012). Evaluating a measure of tanning abuse and dependence. Archives of Dermatology, 148(7), 815819. doi:10.1001/archdermatol.2011.2929Google Scholar
Hillhouse, J., Stapleton, J. & Turrisi, R. (2005). Association of frequent indoor UV tanning with seasonal affective disorder. Archives of Dermatology, 141(11), 1465. doi:10.1001/archderm.141.11.1465Google Scholar
Hillhouse, J., Turrisi, R. & Shields, A. L. (2007). Patterns of indoor tanning use: implications for clinical interventions. Archives of Dermatology, 143(12), 15301535. doi:10.1001/archderm.143.12.1530Google Scholar
Hillhouse, J., Turrisi, R., Stapleton, J. & Robinson, J. (2008). A randomized controlled trial of an appearance-focused intervention to prevent skin cancer. Cancer, 113(11), 32573266. doi:10.1002/cncr.23922Google Scholar
Hillhouse, J., Turrisi, R., Stapleton, J. & Robinson, J. (2010). Effect of seasonal affective disorder and pathological tanning motives on efficacy of an appearance-focused intervention to prevent skin cancer. Archives of Dermatology, 146(5), 485491. doi:10.1001/archdermatol.2010.85Google Scholar
Holman, D. M., Fox, K. A., Glenn, J. D., et al. (2013). Strategies to reduce indoor tanning: current research gaps and future opportunities for prevention. American Journal of Preventative Medicine, 44(6), 672681. doi:10.1016/j.amepre.2013.02.014Google Scholar
Jussila, A., Huotari-Orava, R., Ylianttila, L., Partonen, T. & Snellman, E. (2016). Narrow-band ultraviolet B radiation induces the expression of beta-endorphin in human skin in vivo. Journal of Photochemistry and Photobiology B, 155, 104108. doi:10.1016/j.jphotobiol.2016.01.007Google Scholar
Kaur, M., Liguori, A., Lang, W., et al. (2006). Induction of withdrawal-like symptoms in a small randomized, controlled trial of opioid blockade in frequent tanners. Journal of the American Academy of Dermatology, 54(4), 709711. doi:10.1016/j.jaad.2005.11.1059Google Scholar
Kourosh, A. S., Harrington, C. R. & Adinoff, B. (2010). Tanning as a behavioral addiction. American Journal of Drug and Alcohol Abuse, 36(5), 284290. doi:10.3109/00952990.2010.491883Google Scholar
Le Foll, B., Gallo, A., Le Strat, Y., Lu, L. & Gorwood, P. (2009). Genetics of dopamine receptors and drug addiction: a comprehensive review. Behavioral Pharmacology, 20(1), 117. doi:10.1097/FBP.0b013e3283242f05Google Scholar
Leary, M. R., Saltzman, J. L. & Georgeson, J. C. (1997). Appearance motivation, obsessive-compulsive tendencies and excessive suntanning in a community sample. Journal of Health Psychology, 2(4), 493499. doi:10.1177/135910539700200406Google Scholar
Levins, P. C., Carr, D. B., Fisher, J. E., Momtaz, K. & Parrish, J. A. (1983). Plasma beta-endorphin and beta-lipoprotein response to ultraviolet radiation. The Lancet, 2(8342), 166.Google Scholar
Levran, O., Yuferov, V. & Kreek, M. J. (2012). The genetics of the opioid system and specific drug addictions. Human Genetics, 131(6), 823842. doi:10.1007/s00439-012-1172-4Google Scholar
Lim, H. W., James, W. D., Rigel, D. S., et al. (2011). Adverse effects of ultraviolet radiation from the use of indoor tanning equipment: time to ban the tan. Journal of the American Academy of Dermatology, 64(5), 893902. doi:10.1016/j.jaad.2011.03.007Google Scholar
Mays, D., Atkins, M. B., Ahn, J. & Tercyak, K. P. (2017). Indoor tanning dependence in young adult women. Cancer Epidemiology, Biomarkers & Preention, 26(11), 16361643. doi:10.1158/1055-9965.EPI-17-0403Google Scholar
Miller, K. A., Piombo, S. E., Cho, J., et al. (2018). Prevalence of tanning addiction and behavioral health conditions among ethnically and racially diverse adolescents. Journal of Investigative Dermatology, 138(7), 15111517. doi:10.1016/j.jid.2018.02.018Google Scholar
Mosher, C. E. & Danoff-Burg, S. (2010a). Addiction to indoor tanning: relation to anxiety, depression, and substance use. Archives of Dermatology, 146(4), 412417. doi:10.1001/archdermatol.2009.385Google Scholar
Mosher, C. E. & Danoff-Burg, S. (2010b). Indoor tanning, mental health, and substance use among college students: the significance of gender. Journal of Health Psychology, 15(6), 819827. doi:10.1177/1359105309357091Google Scholar
Nilsen, L. T., Hannevik, M. & Veierod, M. B. (2016). Ultraviolet exposure from indoor tanning devices: a systematic review. British Journal of Dermatology, 174(4), 730740. doi:10.1111/bjd.14388Google Scholar
NIMH (2018). Seasonal Affective Disorder. Retrieved from www.nimh.nih.gov/health/topics/seasonal-affective-disorder/index.shtmlGoogle Scholar
Petit, A., Lejoyeux, M., Reynaud, M. & Karila, L. (2014). Excessive indoor tanning as a behavioral addiction: a literature review. Current Pharmaceutical Design, 20(25), 40704075.Google Scholar
Poorsattar, S. P. & Hornung, R. L. (2007). UV light abuse and high-risk tanning behavior among undergraduate college students. Journal of the American Academy of Dermatology, 56(3), 375379. doi:10.1016/j.jaad.2006.08.064Google Scholar
Poorsattar, S. P. & Hornung, R. L. (2010). Tanning addiction: current trends and future treatment. Expert Review of Dermatology, 5(2), 123125. doi:10.1586/edm.10.14Google Scholar
Rozin, P. & Stoess, C. (1993). Is there a general tendency to become addicted? Addictive Behavior, 18(1), 8187.Google Scholar
Schneider, S., Schirmbeck, F., Bock, C., et al. (2015). Casting shadows on the prevalence of tanning dependence: an assessment of mCAGE criteria. Acta Dermato-Venereologica, 95(2), 162168. doi:10.2340/00015555-1907Google Scholar
Seidenberg, A. B., Mahalingam-Dhingra, A., Weinstock, M. A., Sinclair, C. & Geller, A. C. (2015). Youth indoor tanning and skin cancer prevention: lessons from tobacco control. American Journal of Preventative Medicine, 48(2), 188194. doi:10.1016/j.amepre.2014.08.034Google Scholar
Skobowiat, C., Dowdy, J. C., Sayre, R. M., Tuckey, R. C. & Slominski, A. (2011). Cutaneous hypothalamic-pituitary-adrenal axis homolog: regulation by ultraviolet radiation. American Journal of Physiology Endocrinology and Metabolism, 301(3), E484–493. doi:10.1152/ajpendo.00217.2011.10.1152/ajpendo.00217.2011Google Scholar
Spiro, J., Parker, S., Oliver, I., et al. (1987). Effect of PUVA on plasma and skin immunoreactive alpha-melanocyte stimulating hormone concentrations. British Journal of Dermatology, 117(6), 703707.Google Scholar
Stapleton, J. L., Hillhouse, J., Levonyan-Radloff, K. & Manne, S. L. (2017). Review of interventions to reduce ultraviolet tanning: need for treatments targeting excessive tanning, an emerging addictive behavior. Psychology of Addictive Behaviors, 31(8), 962978. doi:10.1037/adb0000289Google Scholar
Stapleton, J. L., Hillhouse, J. J., Turrisi, R., et al. (2016). The Behavioral Addiction Indoor Tanning Screener (BAITS): an evaluation of a brief measure of behavioral addictive symptoms. Acta Dermato-Venereologica, 96(4), 552553. doi:10.2340/00015555-2290Google Scholar
Sussman, S. (2017). Substance and Behavioral Addictions: Concepts, Causes, and Cures. Cambridge, UK; New York, NY: Cambridge University Press.Google Scholar
Sussman, S. & Sussman, A. N. (2011). Considering the definition of addiction. International Journal of Environmental Research and Public Health, 8(10), 40254038. doi:10.3390/ijerph8104025Google Scholar
Turrisi, R., Mastroleo, N. R., Stapleton, J. & Mallett, K. (2008). A comparison of 2 brief intervention approaches to reduce indoor tanning behavior in young women who indoor tan very frequently. Archives of Dermatology, 144(11), 15211524. doi:10.1001/archderm.144.11.1521Google Scholar
US Congress, t. C., 2nd Session (2010). Compilation of patient protection and affordable care act, as amended through May 1, 2010. Chapter 49, Section 5000B. Imposition of tax on indoor tanning services. Retrieved from http://housedocs.house.gov/energycommerce/ppacacon.pdfGoogle Scholar
US Department of Health and Human Services (2014). The Surgeon General’s Call to Action to Prevent Skin Cancer. Washington, DC.Google Scholar
Volkow, N. D., Fowler, J. S., Wang, G. J. & Swanson, J. M. (2004). Dopamine in drug abuse and addiction: results from imaging studies and treatment implications. Molecular Psychiatry, 9(6), 557569. doi:10.1038/sj.mp.4001507Google Scholar
Warlow, S. M. et al. (2020). Sensitization of incentive salience and the transition to addiction. In Sussman, S. (Ed.) The Cambridge Handbook of Substance and Behavioral Addictions. Cambridge, UK: Cambridge University Press, pp. 2337.Google Scholar
Warthan, M. M., Uchida, T. & Wagner, R. F. Jr. (2005). UV light tanning as a type of substance-related disorder. Archives of Dermatology, 141(8), 963966. doi:10.1001/archderm.141.8.963Google Scholar
Wintzen, M., de Winter, S., Out-Luiting, J. J., van Duinen, S. G. & Vermeer, B. J. (2001a). Presence of immunoreactive beta-endorphin in human skin. Experimental Dermatology, 10(5), 305311.Google Scholar
Wintzen, M., Ostijn, D. M., Polderman, M. C., et al. (2001b). Total body exposure to ultraviolet radiation does not influence plasma levels of immunoreactive beta-endorphin in man. Photodermatology, Photoimmunology & Photomedicine, 17(6), 256260.Google Scholar
World Health Organization (2018). Ultraviolet Radiation (UV). Retrieved from www.who.int/uv/en/Google Scholar

References

Abudy, A., Juven-Wetzler, A. & Zohar, J. (2011). Pharmacological management of treatment-resistant obsessive-compulsive disorder. CNS Drugs, 25(7), 585596. https://doi.org/10.2165/11587860-000000000-00000Google Scholar
Adler, L. A., Spencer, T. J., Milton, D. R., Moore, R. J. & Michelson, D. (2005). Long-term, open-label study of the safety and efficacy of atomoxetine in adults with attention-deficit/hyperactivity disorder: an interim analysis. The Journal of Clinical Psychiatry, 66(3), 294299.Google Scholar
Alexander, B. K. & Schweighofer, A. R. F. (1988). Defining “addiction.” Canadian Psychology/Psychologie Canadienne, 29(2), 151162. https://doi.org/10.1037/h0084530Google Scholar
Alonso, P., Cuadras, D., Gabriëls, L., et al. (2015). Deep brain stimulation for obsessive-compulsive disorder: a meta-analysis of treatment outcome and predictors of response. PLoS ONE, 10(7), e0133591. https://doi.org/10.1371/journal.pone.0133591Google Scholar
American Psychiatric Association (2013). Diagnostic and Statistical Manual of Mental Disorders (5th edition). Washington, DC: American Psychiatric Publishing.Google Scholar
Amiri, S., Farhang, S., Ghoreishizadeh, M. A., Malek, A. & Mohammadzadeh, S. (2012). Double-blind controlled trial of venlafaxine for treatment of adults with attention deficit/hyperactivity disorder. Human Psychopharmacology, 27(1), 7681. https://doi.org/10.1002/hup.1274Google Scholar
Anholt, G. E., van Oppen, P., Emmelkamp, P. M. G., et al. (2009). Measuring obsessive-compulsive symptoms: Padua Inventory-Revised vs. Yale-Brown Obsessive Compulsive Scale. Journal of Anxiety Disorders, 23(6), 830835. https://doi.org/10.1016/j.janxdis.2009.04.004Google Scholar
Argo, T. R. & Black, D. W. (2004). Clinical characteristics. In Pathological Gambling: A Clinical Guide to Treatment. Arlington, VA, US: American Psychiatric Publishing, Inc., pp. 3953.Google Scholar
Arnsten, A. F. T. (2006a). Fundamentals of attention-deficit/hyperactivity disorder: circuits and pathways. The Journal of Clinical Psychiatry, 67 (Supplement 8), 712.Google Scholar
Arnsten, A. F. T. (2006b). Stimulants: therapeutic actions in ADHD. Neuropsychopharmacology, 31(11), 23762383. https://doi.org/10.1038/sj.npp.1301164Google Scholar
Aron, A. R. & Poldrack, R. A. (2005). The cognitive neuroscience of response inhibition: relevance for genetic research in attention-deficit/hyperactivity disorder. Biological Psychiatry, 57(11), 12851292. https://doi.org/10.1016/j.biopsych.2004.10.026Google Scholar
Aron, A. R., Dowson, J. H., Sahakian, B. J. & Robbins, T. W. (2003a). Methylphenidate improves response inhibition in adults with attention-deficit/hyperactivity disorder. Biological Psychiatry, 54(12), 14651468.Google Scholar
Aron, A. R., Fletcher, P. C., Bullmore, E. T., Sahakian, B. J. & Robbins, T. W. (2003b). Stop-signal inhibition disrupted by damage to right inferior frontal gyrus in humans. Nature Neuroscience, 6(2), 115116. https://doi.org/10.1038/nn1003Google Scholar
Aron, A. R., Robbins, T. W. & Poldrack, R. A. (2014). Inhibition and the right inferior frontal cortex: one decade on. Trends in Cognitive Sciences, 18(4), 177185. https://doi.org/10.1016/j.tics.2013.12.003Google Scholar
Avena, N. M., Gearhardt, A. N., Gold, M. S., Wang, G.-J. & Potenza, M. N. (2012). Tossing the baby out with the bathwater after a brief rinse? The potential downside of dismissing food addiction based on limited data. Nature Reviews Neuroscience, 13(7), 514; author reply 514. https://doi.org/10.1038/nrn3212-c1Google Scholar
Band, G. P. & van Boxtel, G. J. (1999). Inhibitory motor control in stop paradigms: review and reinterpretation of neural mechanisms. Acta Psychologica, 101(2–3), 179211.Google Scholar
Bandelow, B., Zohar, J., Hollander, E. & WFSBP Task Force on Treatment Guidelines for Anxiety, Obsessive-Compulsive and Post-Traumatic Stress Disoders (2008). World Federation of Societies of Biological Psychiatry (WFSBP) guidelines for the pharmacological treatment of anxiety, obsessive-compulsive and post-traumatic stress disorders – first revision. The World Journal of Biological Psychiatry, 9(4), 248312. https://doi.org/10.1080/15622970802465807Google Scholar
Bari, A. & Robbins, T. W. (2013). Inhibition and impulsivity: behavioral and neural basis of response control. Progress in Neurobiology, 108, 4479. https://doi.org/10.1016/j.pneurobio.2013.06.005Google Scholar
Barkley, R. A. (1997). Behavioral inhibition, sustained attention, and executive functions: constructing a unifying theory of ADHD. Psychological Bulletin, 121(1), 6594. https://doi.org/10.1037/0033-2909.121.1.65Google Scholar
Barkley, R. A. & Fischer, M. (2010). The unique contribution of emotional impulsiveness to impairment in major life activities in hyperactive children as adults. Journal of the American Academy of Child and Adolescent Psychiatry, 49(5), 503513.Google Scholar
Bechara, A., Damasio, A. R., Damasio, H. & Anderson, S. W. (1994). Insensitivity to future consequences following damage to human prefrontal cortex. Cognition, 50(1–3), 715.Google Scholar
Bechara, A., Damasio, H., Tranel, D. & Anderson, S. W. (1998). Dissociation of working memory from decision making within the human prefrontal cortex. Journal of Neuroscience, 18(1), 428437. https://doi.org/10.1523/JNEUROSCI.18-01-00428.1998Google Scholar
Belin, D., Mar, A. C., Dalley, J. W., Robbins, T. W. & Everitt, B. J. (2008). High impulsivity predicts the switch to compulsive cocaine-taking. Science, 320(5881), 13521355. https://doi.org/10.1126/science.1158136Google Scholar
Belin-Rauscent, A., Everitt, B. J. & Belin, D. (2012). Intrastriatal shifts mediate the transition from drug-seeking actions to habits. Biological Psychiatry, 72(5), 343345. https://doi.org/10.1016/j.biopsych.2012.07.001Google Scholar
Bernardi, S. & Pallanti, S. (2009). Internet addiction: a descriptive clinical study focusing on comorbidities and dissociative symptoms. Comprehensive Psychiatry, 50(6), 510516. https://doi.org/10.1016/j.comppsych.2008.11.011Google Scholar
Berns, G. S., Laibson, D. & Loewenstein, G. (2007). Intertemporal choice – toward an integrative framework. Trends in Cognitive Sciences, 11(11), 482488. doi.org/10.1016/j.tics.2007.08.011Google Scholar
Biederman, J. (2005). Attention-deficit/hyperactivity disorder: a selective overview. Biological Psychiatry, 57(11), 12151220. https://doi.org/10.1016/j.biopsych.2004.10.020Google Scholar
Biederman, J., Spencer, T. & Wilens, T. (2004). Evidence-based pharmacotherapy for attention-deficit hyperactivity disorder. The International Journal of Neuropsychopharmacology, 7(1), 7797. https://doi.org/10.1017/S1461145703003973Google Scholar
Bienvenu, O. J., Samuels, J. F., Wuyek, L. A., et al. (2012). Is obsessive-compulsive disorder an anxiety disorder, and what, if any, are spectrum conditions? A family study perspective. Psychological Medicine, 42(1), 113. https://doi.org/10.1017/S0033291711000742Google Scholar
Billieux, J., Schimmenti, A., Khazaal, Y., Maurage, P. & Heeren, A. (2015). Are we overpathologizing everyday life? A tenable blueprint for behavioral addiction research. Journal of Behavioral Addictions, 4(3), 119123. https://doi.org/10.1556/2006.4.2015.009Google Scholar
Black, D. W. & Moyer, T. (1998). Clinical features and psychiatric comorbidity of subjects with pathological gambling behavior. Psychiatric Services, 49(11), 14341439. https://doi.org/10.1176/ps.49.11.1434Google Scholar
Black, D. W., Moyer, T. & Schlosser, S. (2003). Quality of life and family history in pathological gambling. The Journal of Nervous and Mental Disease, 191(2), 124126. https://doi.org/10.1097/01.NMD.0000050942.86352.47Google Scholar
Blanco, C., Petkova, E., Ibáñez, A. & Sáiz-Ruiz, J. (2002). A pilot placebo-controlled study of fluvoxamine for pathological gambling. Annals of Clinical Psychiatry, 14(1), 915.Google Scholar
Boonstra, A. M., Kooij, J. J. S., Oosterlaan, J., Sergeant, J. A. & Buitelaar, J. K. (2005). Does methylphenidate improve inhibition and other cognitive abilities in adults with childhood-onset ADHD? Journal of Clinical and Experimental Neuropsychology, 27(3), 278298. https://doi.org/10.1080/13803390490515757Google Scholar
Bottesi, G., Ghisi, M., Ouimet, A. J., Tira, M. D. & Sanavio, E. (2015). Compulsivity and impulsivity in pathological gambling: does a dimensional-transdiagnostic approach add clinical utility to DSM-5 classification? Journal of Gambling Studies, 31(3), 825847. https://doi.org/10.1007/s10899-014-9470-5Google Scholar
Bowers, M. S., Chen, B. T. & Bonci, A. (2010). AMPA receptor synaptic plasticity induced by psychostimulants: the past, present, and therapeutic future. Neuron, 67(1), 1124. https://doi.org/10.1016/j.neuron.2010.06.004Google Scholar
Brady, K. T. & Randall, C. L. (1999). Gender differences in substance use disorders. The Psychiatric Clinics of North America, 22(2), 241252.Google Scholar
Brewer, J. A. & Potenza, M. N. (2008). The neurobiology and genetics of impulse control disorders: relationships to drug addictions. Biochemical Pharmacology, 75(1), 6375. https://doi.org/10.1016/j.bcp.2007.06.043Google Scholar
Breyer, J. L., Botzet, A. M., Winters, K. C., et al. (2009). Young adult gambling behaviors and their relationship with the persistence of ADHD. Journal of Gambling Studies, 25(2), 227238. https://doi.org/10.1007/s10899-009-9126-zGoogle Scholar
Burns, G. L., Keortge, S. G., Formea, G. M. & Sternberger, L. G. (1996). Revision of the Padua Inventory of obsessive compulsive disorder symptoms: distinctions between worry, obsessions, and compulsions. Behaviour Research and Therapy, 34(2), 163173.Google Scholar
Carli, V., Durkee, T., Wasserman, D., et al. (2013). The association between pathological internet use and comorbid psychopathology: a systematic review. Psychopathology, 46(1), 113. https://doi.org/10.1159/000337971Google Scholar
Chamberlain, S. & Fineberg, N. A. (2013). The neurobiology of obsessive-compulsive disorder. In Ochsner, K. N. & Kosslyn, S. (Eds.), The Oxford Handbook of Cognitive Neuroscience: Volume 2: The Cutting Edges. New York, NY: Oxford University Press. https://doi.org/10.1093/oxfordhb/9780199988709.013.0029Google Scholar
Chamberlain, S. R. & Grant, J. E. (2018). Initial validation of a transdiagnostic compulsivity questionnaire: the Cambridge–Chicago Compulsivity Trait Scale. CNS Spectrums, 1–7. https://doi.org/10.1017/S1092852918000810Google Scholar
Chamberlain, S. R., Müller, U., Blackwell, A. D., et al. (2006). Neurochemical modulation of response inhibition and probabilistic learning in humans. Science, 311(5762), 861863. https://doi.org/10.1126/science.1121218Google Scholar
Chambers, C. D., Bellgrove, M. A., Stokes, M. G., et al. (2006). Executive “brake failure” following deactivation of human frontal lobe. Journal of Cognitive Neuroscience, 18(3), 444455. https://doi.org/10.1162/089892906775990606Google Scholar
Chambers, R. A. & Potenza, M. N. (2003). Neurodevelopment, impulsivity, and adolescent gambling. Journal of Gambling Studies, 19(1), 5384.Google Scholar
Chambers, R. A., Taylor, J. R. & Potenza, M. N. (2003). Developmental neurocircuitry of motivation in adolescence: a critical period of addiction vulnerability. The American Journal of Psychiatry, 160(6), 10411052. https://doi.org/10.1176/appi.ajp.160.6.1041Google Scholar
Clark, L. (2014). Disordered gambling: the evolving concept of behavioral addiction. Annals of the New York Academy of Sciences, 1327, 4661. https://doi.org/10.1111/nyas.12558Google Scholar
Clark, L. & Limbrick-Oldfield, E. H. (2013). Disordered gambling: a behavioral addiction. Current Opinion in Neurobiology, 23(4), 655659. https://doi.org/10.1016/j.conb.2013.01.004Google Scholar
Conversano, C., Marazziti, D., Carmassi, C., et al. (2012). Pathological gambling: a systematic review of biochemical, neuroimaging, and neuropsychological findings. Harvard Review of Psychiatry, 20(3), 130148. https://doi.org/10.3109/10673229.2012.694318Google Scholar
Corbisiero, S., Stieglitz, R.-D., Retz, W. & Rösler, M. (2013). Is emotional dysregulation part of the psychopathology of ADHD in adults? Attention Deficit and Hyperactivity Disorders, 5(2), 8392. https://doi.org/10.1007/s12402-012-0097-zGoogle Scholar
Corbit, L. H., Nie, H. & Janak, P. H. (2012). Habitual alcohol seeking: time course and the contribution of subregions of the dorsal striatum. Biological Psychiatry, 72(5), 389395. https://doi.org/10.1016/j.biopsych.2012.02.024Google Scholar
Cuthbert, B. N. & Insel, T. R. (2013). Toward the future of psychiatric diagnosis: the seven pillars of RDoC. BMC Medicine, 11, 126. https://doi.org/10.1186/1741-7015-11-126Google Scholar
Dalley, J. W., Everitt, B. J. & Robbins, T. W. (2011). Impulsivity, compulsivity, and top-down cognitive control. Neuron, 69(4), 680694. https://doi.org/10.1016/j.neuron.2011.01.020Google Scholar
Dalley, J. W., Mar, A. C., Economidou, D. & Robbins, T. W. (2008). Neurobehavioral mechanisms of impulsivity: fronto-striatal systems and functional neurochemistry. Pharmacology, Biochemistry, and Behavior, 90(2), 250260. https://doi.org/10.1016/j.pbb.2007.12.021Google Scholar
Daruna, J. H. & Barnes, P. A. (1993). A neurodevelopmental view of impulsivity. In The Impulsive Client: Theory, Research, and Treatment. Washington, DC: American Psychological Association, pp. 2337. https://doi.org/10.1037/10500-002Google Scholar
de Ruiter, M. B., Veltman, D. J., Goudriaan, A. E., et al. (2009). Response perseveration and ventral prefrontal sensitivity to reward and punishment in male problem gamblers and smokers. Neuropsychopharmacology, 34(4), 10271038. https://doi.org/10.1038/npp.2008.175Google Scholar
Denys, D., Mantione, M., Figee, M., et al. (2010). Deep brain stimulation of the nucleus accumbens for treatment-refractory obsessive-compulsive disorder. Archives of General Psychiatry, 67(10), 10611068. https://doi.org/10.1001/archgenpsychiatry.2010.122Google Scholar
Dodds, C. M., Morein-Zamir, S. & Robbins, T. W. (2011). Dissociating inhibition, attention, and response control in the frontoparietal network using functional magnetic resonance imaging. Cerebral Cortex, 21(5), 11551165. https://doi.org/10.1093/cercor/bhq187Google Scholar
Eisen, J. L., Pinto, A., Mancebo, M. C., et al. (2010). A 2-year prospective follow-up study of the course of obsessive-compulsive disorder. The Journal of Clinical Psychiatry, 71(8), 10331039. https://doi.org/10.4088/JCP.08m04806bluGoogle Scholar
Ettelt, S., Ruhrmann, S., Barnow, S., et al. (2007). Impulsiveness in obsessive-compulsive disorder: results from a family study. Acta Psychiatrica Scandinavica, 115(1), 4147. https://doi.org/10.1111/j.1600-0447.2006.00835.xGoogle Scholar
Evenden, J. L. (1999). Varieties of impulsivity. Psychopharmacology, 146(4), 348361.Google Scholar
Everitt, B. J., Dickinson, A. & Robbins, T. W. (2001). The neuropsychological basis of addictive behaviour. Brain Research. Brain Research Reviews, 36(2–3), 129138.Google Scholar
Everitt, B. J. & Robbins, T. W. (2005). Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nature Neuroscience, 8(11), 14811489. https://doi.org/10.1038/nn1579Google Scholar
Everitt, B. J. & Robbins, T. W. (2013). From the ventral to the dorsal striatum: devolving views of their roles in drug addiction. Neuroscience & Biobehavioral Reviews, 37(9, Part A), 19461954. https://doi.org/10.1016/j.neubiorev.2013.02.010Google Scholar
Eysenck, S. B. G., Pearson, P. R., Easting, G. & Allsopp, J. F. (1985). Age norms for impulsiveness, venturesomeness and empathy in adults. Personality and Individual Differences, 6(5), 613619. https://doi.org/10.1016/0191-8869(85)90011-XGoogle Scholar
Faraone, S. V., Biederman, J., Spencer, T., et al. (2005). Efficacy of atomoxetine in adult attention-deficit/hyperactivity disorder: a drug-placebo response curve analysis. Behavioral and Brain Functions, 1, 16. https://doi.org/10.1186/1744-9081-1-16Google Scholar
Faregh, N. & Derevensky, J. (2011). Gambling behavior among adolescents with attention deficit/hyperactivity disorder. Journal of Gambling Studies, 27(2), 243256. https://doi.org/10.1007/s10899-010-9211-3Google Scholar
Fayyad, J., De Graaf, R., Kessler, R., et al. (2007). Cross-national prevalence and correlates of adult attention-deficit hyperactivity disorder. The British Journal of Psychiatry, 190, 402409. https://doi.org/10.1192/bjp.bp.106.034389Google Scholar
Fineberg, N. A., Apergis-Schoute, A. M., Vaghi, M. M., et al. (2018). Mapping compulsivity in the DSM-5 obsessive compulsive and related disorders: cognitive domains, neural circuitry, and treatment. The International Journal of Neuropsychopharmacology, 21(1), 4258. https://doi.org/10.1093/ijnp/pyx088Google Scholar
Fineberg, N. A., Brown, A., Reghunandanan, S. & Pampaloni, I. (2012). Evidence-based pharmacotherapy of obsessive-compulsive disorder. The International Journal of Neuropsychopharmacology, 15(8), 11731191. https://doi.org/10.1017/S1461145711001829Google Scholar
Fineberg, N. A., Chamberlain, S. R., Goudriaan, A. E., et al. (2014). New developments in human neurocognition: clinical, genetic, and brain imaging correlates of impulsivity and compulsivity. CNS Spectrums, 19(1), 6989. https://doi.org/10.1017/S1092852913000801Google Scholar
Fineberg, N. A., Day, G. A., de Koenigswarter, N., et al. (2015). The neuropsychology of obsessive-compulsive personality disorder: a new analysis. CNS Spectrums, 20(5), 490499. https://doi.org/10.1017/S1092852914000662Google Scholar
Fineberg, N. A., Potenza, M. N., Chamberlain, S. R., et al.B (2010). Probing compulsive and impulsive behaviors, from animal models to endophenotypes: a narrative review. Neuropsychopharmacology, 35(3), 591604. https://doi.org/10.1038/npp.2009.185Google Scholar
Fineberg, N. A., Stein, D. J., Premkumar, P., et al. (2006). Adjunctive quetiapine for serotonin reuptake inhibitor-resistant obsessive-compulsive disorder: a meta-analysis of randomized controlled treatment trials. International Clinical Psychopharmacology, 21(6), 337343. https://doi.org/10.1097/01.yic.0000215083.57801.11Google Scholar
Foa, E. B. (2010). Cognitive behavioral therapy of obsessive-compulsive disorder. Dialogues in Clinical Neuroscience, 12(2), 199207.Google Scholar
Fong, T. W., Reid, R. C. & Parhami, I. (2012). Behavioral addictions: where to draw the lines? The Psychiatric Clinics of North America, 35(2), 279296. https://doi.org/10.1016/j.psc.2012.03.001Google Scholar
Fontenelle, L. F., Oostermeijer, S., Harrison, B. J., Pantelis, C. & Yücel, M. (2011). Obsessive-compulsive disorder, impulse control disorders and drug addiction: common features and potential treatments. Drugs, 71(7), 827840. https://doi.org/10.2165/11591790-000000000-00000Google Scholar
Geller, D. A. (2006). Obsessive-compulsive and spectrum disorders in children and adolescents. The Psychiatric Clinics of North America, 29(2), 353370. https://doi.org/10.1016/j.psc.2006.02.012Google Scholar
Ghanizadeh, A., Freeman, R. D. & Berk, M. (2013). Efficacy and adverse effects of venlafaxine in children and adolescents with ADHD: a systematic review of non-controlled and controlled trials. Reviews on Recent Clinical Trials, 8(1), 28.Google Scholar
Gillan, C. M., Robbins, T. W., Sahakian, B. J., van den Heuvel, O. A. & van Wingen, G. (2016). The role of habit in compulsivity. European Neuropsychopharmacology, 26(5), 828840. https://doi.org/10.1016/j.euroneuro.2015.12.033Google Scholar
Grall-Bronnec, M., Wainstein, L., Augy, J., et al. (2011). Attention deficit hyperactivity disorder among pathological and at-risk gamblers seeking treatment: a hidden disorder. European Addiction Research, 17(5), 231240. https://doi.org/10.1159/000328628Google Scholar
Grant, J. E. (2008). Impulse Control Disorders: A Clinician’s Guide to Understanding and Treating Behavioral Addictions. New York: W. W. Norton.Google Scholar
Grant, J. E. (2014). Clinical practice: obsessive-compulsive disorder. The New England Journal of Medicine, 371(7), 646653. https://doi.org/10.1056/NEJMcp1402176Google Scholar
Grant, J. E. & Chamberlain, S. R. (2014). Impulsive action and impulsive choice across substance and behavioral addictions: cause or consequence? Addictive Behaviors, 39(11), 16321639. https://doi.org/10.1016/j.addbeh.2014.04.022Google Scholar
Grant, J. E. & Chamberlain, S. R. (2016). Expanding the definition of addiction: DSM-5 vs. ICD-11. CNS Spectrums, 21(4), 300303. https://doi.org/10.1017/S1092852916000183Google Scholar
Grant, J. E. & Kim, S. W. (2001). Demographic and clinical features of 131 adult pathological gamblers. The Journal of Clinical Psychiatry, 62(12), 957962.Google Scholar
Grant, J. E. & Kim, S. W. (2005). Quality of life in kleptomania and pathological gambling. Comprehensive Psychiatry, 46(1), 3437. https://doi.org/10.1016/j.comppsych.2004.07.022Google Scholar
Grant, J. E. & Potenza, M. N. (2006a). Compulsive aspects of impulse-control disorders. The Psychiatric Clinics of North America, 29(2), 539551. https://doi.org/10.1016/j.psc.2006.02.002Google Scholar
Grant, J. E. & Potenza, M. N. (2006b). Escitalopram treatment of pathological gambling with co-occurring anxiety: an open-label pilot study with double-blind discontinuation. International Clinical Psychopharmacology, 21(4), 203209.Google Scholar
Grant, J. E., Brewer, J. A. & Potenza, M. N. (2006). The neurobiology of substance and behavioral addictions. CNS Spectrums, 11(12), 924930.Google Scholar
Grant, J. E., Chamberlain, S. R., Odlaug, B. L., Potenza, M. N. & Kim, S. W. (2010a). Memantine shows promise in reducing gambling severity and cognitive inflexibility in pathological gambling: a pilot study. Psychopharmacology, 212(4), 603612. https://doi.org/10.1007/s00213-010-1994-5Google Scholar
Grant, J. E., Kim, S. W. & Odlaug, B. L. (2007). N-acetyl cysteine, a glutamate-modulating agent, in the treatment of pathological gambling: a pilot study. Biological Psychiatry, 62(6), 652657. https://doi.org/10.1016/j.biopsych.2006.11.021Google Scholar
Grant, J. E., Kim, S. W. & Odlaug, B. L. (2009). A double-blind, placebo-controlled study of the opiate antagonist, naltrexone, in the treatment of kleptomania. Biological Psychiatry, 65(7), 600606. https://doi.org/10.1016/j.biopsych.2008.11.022Google Scholar
Grant, J. E., Kim, S. W., Potenza, M. N., et al. (2003). Paroxetine treatment of pathological gambling: a multi-centre randomized controlled trial. International Clinical Psychopharmacology, 18(4), 243249. https://doi.org/10.1097/01.yic.0000073881.93678.21Google Scholar
Grant, J. E., Odlaug, B. L. & Mooney, M. E. (2012). Telescoping phenomenon in pathological gambling: association with gender and comorbidities. The Journal of Nervous and Mental Disease, 200(11), 996998. https://doi.org/10.1097/NMD.0b013e3182718a4dGoogle Scholar
Grant, J. E., Odlaug, B. L., Potenza, M. N., Hollander, E. & Kim, S. W. (2010b). Nalmefene in the treatment of pathological gambling: multicentre, double-blind, placebo-controlled study. The British Journal of Psychiatry, 197(4), 330331. https://doi.org/10.1192/bjp.bp.110.078105Google Scholar
Grant, J. E., Potenza, M. N., Hollander, E., et al. (2006). Multicenter investigation of the opioid antagonist nalmefene in the treatment of pathological gambling. The American Journal of Psychiatry, 163(2), 303312. https://doi.org/10.1176/appi.ajp.163.2.303Google Scholar
Grant, J. E., Potenza, M. N., Weinstein, A. & Gorelick, D. A. (2010c). Introduction to behavioral addictions. The American Journal of Drug and Alcohol Abuse, 36(5), 233241. https://doi.org/10.3109/00952990.2010.491884Google Scholar
Greenberg, B. D., Price, L. H., Rauch, S. L., et al. (2003). Neurosurgery for intractable obsessive-compulsive disorder and depression: critical issues. Neurosurgery Clinics of North America, 14(2), 199212.Google Scholar
Greenberg, B. D., Rauch, S. L. & Haber, S. N. (2010). Invasive circuitry-based neurotherapeutics: stereotactic ablation and deep brain stimulation for OCD. Neuropsychopharmacology, 35(1), 317336. https://doi.org/10.1038/npp.2009.128Google Scholar
Greenhill, L. L., Biederman, J., Boellner, S. W., et al. (2006). A randomized, double-blind, placebo-controlled study of modafinil film-coated tablets in children and adolescents with attention-deficit/hyperactivity disorder. Journal of the American Academy of Child and Adolescent Psychiatry, 45(5), 503511. https://doi.org/10.1097/01.chi.0000205709.63571.c9Google Scholar
Gunstad, J. & Phillips, K. A. (2003). Axis I comorbidity in body dysmorphic disorder. Comprehensive Psychiatry, 44(4), 270276. https://doi.org/10.1016/S0010-440X(03)00088-9Google Scholar
Hasler, G., Kazuba, D. & Murphy, D. L. (2006). Factor analysis of obsessive-compulsive disorder YBOCS-SC symptoms and association with 5-HTTLPR SERT polymorphism. American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics, 141B(4), 403408. https://doi.org/10.1002/ajmg.b.30309Google Scholar
Hasler, G., LaSalle-Ricci, V. H., Ronquillo, J. G., et al. (2005). Obsessive-compulsive disorder symptom dimensions show specific relationships to psychiatric comorbidity. Psychiatry Research, 135(2), 121132. https://doi.org/10.1016/j.psychres.2005.03.003Google Scholar
Hodgins, D. C., Stea, J. N. & Grant, J. E. (2011). Gambling disorders. The Lancet, 378(9806), 18741884. https://doi.org/10.1016/S0140-6736(10)62185-XGoogle Scholar
Hogarth, L. & Chase, H. W. (2011). Parallel goal-directed and habitual control of human drug-seeking: implications for dependence vulnerability. Journal of Experimental Psychology: Animal Behavior Processes, 37(3), 261276. https://doi.org/10.1037/a0022913Google Scholar
Hogarth, L., Chase, H. W. & Baess, K. (2012). Impaired goal-directed behavioural control in human impulsivity. Quarterly Journal of Experimental Psychology, 65(2), 305316. https://doi.org/10.1080/17470218.2010.518242Google Scholar
Holden, C. (2001). “Behavioral” addictions: do they exist? Science, 294(5544), 980982. https://doi.org/10.1126/science.294.5544.980Google Scholar
Hollander, E. & Wong, C. M. (1995). Body dysmorphic disorder, pathological gambling, and sexual compulsions. The Journal of Clinical Psychiatry, 56 (Supplement 4), 712; discussion 13.Google Scholar
Hollander, E., DeCaria, C. M., Finkell, J. N., et al. (2000). A randomized double-blind fluvoxamine/placebo crossover trial in pathologic gambling. Biological Psychiatry, 47(9), 813817.Google Scholar
Hollander, E., Doernberg, E., Shavitt, R., et al.W (2016). The cost and impact of compulsivity: a research perspective. European Neuropsychopharmacology, 26(5), 800809. https://doi.org/10.1016/j.euroneuro.2016.02.006Google Scholar
Hong, S.-I., Sacco, P. & Cunningham-Williams, R. M. (2009). An empirical typology of lifetime and current gambling behaviors: association with health status of older adults. Aging & Mental Health, 13(2), 265273. https://doi.org/10.1080/13607860802459849Google Scholar
Insel, T., Cuthbert, B., Garvey, M., et al. (2010). Research domain criteria (RDoC): toward a new classification framework for research on mental disorders. The American Journal of Psychiatry, 167(7), 748751. https://doi.org/10.1176/appi.ajp.2010.09091379Google Scholar
Jaffe, J. (1990). Drug addiction and drug abuse. In Gilman, A. G., Goodman, L. & Gilman, A. (Eds.), Goodman & Gilman’s The Pharmacological Basis of Therapeutics (6th edition). New York: Macmillan.Google Scholar
Jentsch, J. D. & Taylor, J. R. (1999). Impulsivity resulting from frontostriatal dysfunction in drug abuse: implications for the control of behavior by reward-related stimuli. Psychopharmacology, 146(4), 373390.Google Scholar
Kable, J. W. & Glimcher, P. W. (2007). The neural correlates of subjective value during intertemporal choice. Nature Neuroscience, 10(12), 16251633. https://doi.org/10.1038/nn2007Google Scholar
Kable, J. W. & Glimcher, P. W. (2009). The neurobiology of decision: consensus and controversy. Neuron, 63(6), 733745. https://doi.org/10.1016/j.neuron.2009.09.003Google Scholar
Kable, J. W. & Glimcher, P. W. (2010). An “as soon as possible” effect in human intertemporal decision making: behavioral evidence and neural mechanisms. Journal of Neurophysiology, 103(5), 25132531. https://doi.org/10.1152/jn.00177.2009Google Scholar
Kalivas, P. W., Lalumiere, R. T., Knackstedt, L. & Shen, H. (2009). Glutamate transmission in addiction. Neuropharmacology, 56 (Supplement 1), 169173. https://doi.org/10.1016/j.neuropharm.2008.07.011Google Scholar
Kashyap, H., Fontenelle, L. F., Miguel, E. C., et al. (2012). “Impulsive compulsivity” in obsessive-compulsive disorder: a phenotypic marker of patients with poor clinical outcome. Journal of Psychiatric Research, 46(9), 11461152. https://doi.org/10.1016/j.jpsychires.2012.04.022Google Scholar
Kenny, P. J. (2011). Reward mechanisms in obesity: new insights and future directions. Neuron, 69(4), 664679. https://doi.org/10.1016/j.neuron.2011.02.016Google Scholar
Kessler, R. C., Adler, L., Ames, M., et al. (2005). The World Health Organization Adult ADHD Self-Report Scale (ASRS): a short screening scale for use in the general population. Psychological Medicine, 35(2), 245256.Google Scholar
Kessler, R. C., Adler, L., Barkley, R., et al. (2006). The prevalence and correlates of adult ADHD in the United States: results from the National Comorbidity Survey Replication. The American Journal of Psychiatry, 163(4), 716723. https://doi.org/10.1176/ajp.2006.163.4.716Google Scholar
Kessler, R. C., Berglund, P. A., Chiu, W. T., et al. (2013). The prevalence and correlates of binge eating disorder in the World Health Organization World Mental Health Surveys. Biological Psychiatry, 73(9), 904914. https://doi.org/10.1016/j.biopsych.2012.11.020Google Scholar
Kessler, R. C., Hwang, I., LaBrie, R., et al. (2008). DSM-IV pathological gambling in the National Comorbidity Survey Replication. Psychological Medicine, 38(9), 13511360. https://doi.org/10.1017/S0033291708002900Google Scholar
Kessler, R. C., McGonagle, K. A., Zhao, S., et al. (1994). Lifetime and 12-month prevalence of DSM-III-R psychiatric disorders in the United States: Results from the National Comorbidity Survey. Archives of General Psychiatry, 51(1), 819.Google Scholar
Keyes, K. M., Martins, S. S., Blanco, C. & Hasin, D. S. (2010). Telescoping and gender differences in alcohol dependence: new evidence from two national surveys. The American Journal of Psychiatry, 167(8), 969976. https://doi.org/10.1176/appi.ajp.2009.09081161Google Scholar
Kim, S. W. (1998). Opioid antagonists in the treatment of impulse-control disorders. The Journal of Clinical Psychiatry, 59(4), 159164. https://doi.org/10.4088/JCP.v59n0403Google Scholar
Kim, S. W., Grant, J. E., Adson, D. E. & Shin, Y. C. (2001). Double-blind naltrexone and placebo comparison study in the treatment of pathological gambling. Biological Psychiatry, 49(11), 914921. https://doi.org/10.1016/S0006-3223(01)01079-4Google Scholar
Kim, S. W., Grant, J. E., Adson, D. E., Shin, Y. C. & Zaninelli, R. (2002). A double-blind placebo-controlled study of the efficacy and safety of paroxetine in the treatment of pathological gambling. The Journal of Clinical Psychiatry, 63(6), 501507.Google Scholar
Koob, G. F. & Le Moal, M. (2005). Plasticity of reward neurocircuitry and the “dark side” of drug addiction. Nature Neuroscience, 8(11), 14421444. https://doi.org/10.1038/nn1105-1442Google Scholar
Koob, G. F. & Volkow, N. D. (2010). Neurocircuitry of addiction. Neuropsychopharmacology, 35(1), 217238. https://doi.org/10.1038/npp.2009.110Google Scholar
Kooij, J. J. S., Huss, M., Asherson, P., et al. (2012). Distinguishing comorbidity and successful management of adult ADHD. Journal of Attention Disorders, 16(5 Supplement), 3S19S. https://doi.org/10.1177/1087054711435361Google Scholar
Kor, A., Fogel, Y., Reid, R. C. & Potenza, M. N. (2013). Should hypersexual disorder be classified as an addiction? Sexual Addiction & Compulsivity, 20(1–2). https://doi.org/10.1080/10720162.2013.768132Google Scholar
Laibson, D. (1997). Golden eggs and hyperbolic discounting. The Quarterly Journal of Economics, 112(2), 443478. https://doi.org/10.1162/003355397555253Google Scholar
Leckman, J. F., Denys, D., Simpson, H. B., et al. (2010). Obsessive-compulsive disorder: a review of the diagnostic criteria and possible subtypes and dimensional specifiers for DSM-V. Depression and Anxiety, 27(6), 507527. https://doi.org/10.1002/da.20669Google Scholar
Leckman, J. F., Grice, D. E., Boardman, J., et al. (1997). Symptoms of obsessive-compulsive disorder. The American Journal of Psychiatry, 154(7), 911917. https://doi.org/10.1176/ajp.154.7.911Google Scholar
Leeman, R. F. & Potenza, M. N. (2012). Similarities and differences between pathological gambling and substance use disorders: a focus on impulsivity and compulsivity. Psychopharmacology, 219(2), 469490. https://doi.org/10.1007/s00213-011-2550-7Google Scholar
Leeman, R. F. & Potenza, M. N. (2013). A targeted review of the neurobiology and genetics of behavioural addictions: an emerging area of research. Canadian Journal of Psychiatry, 58(5), 260273. https://doi.org/10.1177/070674371305800503Google Scholar
Leppink, E. W. & Grant, J. E. (2017). Pharmacological augmentations of SRIs for obsessive compulsive disorder. In The Wiley Handbook of Obsessive Compulsive Disorders. Wiley-Blackwell, pp. 311340. https://doi.org/10.1002/9781118890233.ch16Google Scholar
Limbrick-Oldfield, E. H., van Holst, R. J. & Clark, L. (2013). Fronto-striatal dysregulation in drug addiction and pathological gambling: consistent inconsistencies? NeuroImage Clinical, 2, 385393. https://doi.org/10.1016/j.nicl.2013.02.005Google Scholar
Lochner, C. & Stein, D. J. (2010). Obsessive-compulsive spectrum disorders in obsessive-compulsive disorder and other anxiety disorders. Psychopathology, 43(6), 389396. https://doi.org/10.1159/000321070Google Scholar
Logan, G. D., Cowan, W. B. & Davis, K. A. (1984). On the ability to inhibit simple and choice reaction time responses: a model and a method. Journal of Experimental Psychology: Human Perception and Performance, 10(2), 276291.Google Scholar
Lopes, A. C., Greenberg, B. D., Norén, G., et al. (2009). Treatment of resistant obsessive-compulsive disorder with ventral capsular/ventral striatal gamma capsulotomy: a pilot prospective study. The Journal of Neuropsychiatry and Clinical Neurosciences, 21(4), 381392. https://doi.org/10.1176/jnp.2009.21.4.381Google Scholar
MacKillop, J., Weafer, J., Gray, J. C., et al. (2016). The latent structure of impulsivity: impulsive choice, impulsive action, and impulsive personality traits. Psychopharmacology, 233(18), 33613370. https://doi.org/10.1007/s00213-016-4372-0Google Scholar
Maclaren, V. V., Fugelsang, J. A., Harrigan, K. A. & Dixon, M. J. (2011). The personality of pathological gamblers: a meta-analysis. Clinical Psychology Review, 31(6), 10571067. https://doi.org/10.1016/j.cpr.2011.02.002Google Scholar
Madaan, V., Kinnan, S., Daughton, J. & Kratochvil, C. J. (2006). Innovations and recent trends in the treatment of ADHD. Expert Review of Neurotherapeutics, 6(9), 13751385. https://doi.org/10.1586/14737175.6.9.1375Google Scholar
Makris, N., Rathi, Y., Mouradian, P., et al. (2016). Variability and anatomical specificity of the orbitofrontothalamic fibers of passage in the ventral capsule/ventral striatum (VC/VS): precision care for patient-specific tractography-guided targeting of deep brain stimulation (DBS) in obsessive compulsive disorder (OCD). Brain Imaging and Behavior, 10(4), 10541067. https://doi.org/10.1007/s11682-015-9462-9Google Scholar
Malloy-Diniz, L., Fuentes, D., Leite, W. B., Correa, H. & Bechara, A. (2007). Impulsive behavior in adults with attention deficit/ hyperactivity disorder: characterization of attentional, motor and cognitive impulsiveness. Journal of the International Neuropsychological Society, 13(4), 693698. https://doi.org/10.1017/S1355617707070889Google Scholar
Mancebo, M. C., Eisen, J. L., Pinto, A., et al. (2006). The Brown Longitudinal Obsessive Compulsive Study: treatments received and patient impressions of improvement. The Journal of Clinical Psychiatry, 67(11), 17131720.Google Scholar
Martin, P. R. & Petry, N. M. (2005). Are non-substance-related addictions really addictions? The American Journal on Addictions, 14(1), 17. https://doi.org/10.1080/10550490590899808Google Scholar
Mataix-Cols, D., Marks, I. M., Greist, J. H., Kobak, K. A. & Baer, L. (2002). Obsessive-compulsive symptom dimensions as predictors of compliance with and response to behaviour therapy: results from a controlled trial. Psychotherapy and Psychosomatics, 71(5), 255262. https://doi.org/10.1159/000064812Google Scholar
Mataix-Cols, D., Rauch, S. L., Manzo, P. A., Jenike, M. A. & Baer, L. (1999). Use of factor-analyzed symptom dimensions to predict outcome with serotonin reuptake inhibitors and placebo in the treatment of obsessive-compulsive disorder. The American Journal of Psychiatry, 156(9), 14091416. https://doi.org/10.1176/ajp.156.9.1409Google Scholar
Mataix-Cols, D., Rosario-Campos, M. C. do & Leckman, J. F. (2005). A multidimensional model of obsessive-compulsive disorder. The American Journal of Psychiatry, 162(2), 228238. https://doi.org/10.1176/appi.ajp.162.2.228Google Scholar
Mataix-Cols, D., Wooderson, S., Lawrence, N., et al. (2004). Distinct neural correlates of washing, checking, and hoarding symptom dimensions in obsessive-compulsive disorder. Archives of General Psychiatry, 61(6), 564576. https://doi.org/10.1001/archpsyc.61.6.564Google Scholar
Michelson, D., Adler, L., Spencer, T., et al. (2003). Atomoxetine in adults with ADHD: two randomized, placebo-controlled studies. Biological Psychiatry, 53(2), 112120. https://doi.org/10.1016/S0006-3223(02)01671-2Google Scholar
Moeller, F. G., Barratt, E. S., Dougherty, D. M., Schmitz, J. M. & Swann, A. C. (2001). Psychiatric aspects of impulsivity. The American Journal of Psychiatry, 158(11), 17831793. https://doi.org/10.1176/appi.ajp.158.11.1783Google Scholar
Monterosso, J. R. & Luo, S. (2010). An argument against dual valuation system competition: cognitive capacities supporting future orientation mediate rather than compete with visceral motivations. Journal of Neuroscience, Psychology, and Economics, 3(1), 114. https://doi.org/10.1037/a0016827Google Scholar
Morasco, B. J. & Petry, N. M. (2006). Gambling problems and health functioning in individuals receiving disability. Disability and Rehabilitation, 28(10), 619623. https://doi.org/10.1080/09638280500242507Google Scholar
Mortier, P., Demyttenaere, K., Nock, M. K., et al. (2015). [The epidemiology of ADHD in first-year university students]. Tijdschrift Voor Psychiatrie, 57(9), 635644.Google Scholar
Narayanaswamy, J. C., Viswanath, B., Veshnal Cherian, A., et al. (2012). Impact of age of onset of illness on clinical phenotype in OCD. Psychiatry Research, 200(2–3), 554559. https://doi.org/10.1016/j.psychres.2012.03.037Google Scholar
Neal, D. T., Wood, W. & Quinn, J. M. (2006). Habits – a repeat performance. Current Directions in Psychological Science, 15(4), 198202. https://doi.org/10.1111/j.1467-8721.2006.00435.xGoogle Scholar
Nelson, A. & Killcross, S. (2006). Amphetamine exposure enhances habit formation. The Journal of Neuroscience, 26(14), 38053812. https://doi.org/10.1523/JNEUROSCI.4305-05.2006Google Scholar
Nigg, J. T. (2013). Attention-deficit/hyperactivity disorder and adverse health outcomes. Clinical Psychology Review, 33(2), 215228. https://doi.org/10.1016/j.cpr.2012.11.005Google Scholar
Nordin, C., Gupta, R. C. & Sjödin, I. (2007). Cerebrospinal fluid amino acids in pathological gamblers and healthy controls. Neuropsychobiology, 56(2–3), 152158. https://doi.org/10.1159/000115782Google Scholar
O’Brien, C. P., Volkow, N. & Li, T.-K. (2006). What’s in a word? Addiction versus dependence in DSM-V. The American Journal of Psychiatry, 163(5), 764765. https://doi.org/10.1176/ajp.2006.163.5.764Google Scholar
Odlaug, B. L., Lust, K., Schreiber, L. R. N., et al. (2013). Compulsive sexual behavior in young adults. Annals of Clinical Psychiatry, 25(3), 193200.Google Scholar
Olive, M. F., Cleva, R. M., Kalivas, P. W. & Malcolm, R. J. (2012). Glutamatergic medications for the treatment of drug and behavioral addictions. Pharmacology, Biochemistry, and Behavior, 100(4), 801810. https://doi.org/10.1016/j.pbb.2011.04.015Google Scholar
Oquendo, M. A. & Mann, J. J. (2000). The biology of impulsivity and suicidality. The Psychiatric Clinics of North America, 23(1), 1125.Google Scholar
Owen, A. M., Roberts, A. C., Polkey, C. E., Sahakian, B. J. & Robbins, T. W. (1991). Extra-dimensional versus intra-dimensional set shifting performance following frontal lobe excisions, temporal lobe excisions or amygdalo-hippocampectomy in man. Neuropsychologia, 29(10), 9931006.Google Scholar
Pallesen, S., Molde, H., Arnestad, H. M., et al. (2007). Outcome of pharmacological treatments of pathological gambling: a review and meta-analysis. Journal of Clinical Psychopharmacology, 27(4), 357364. https://doi.org/10.1097/jcp.013e3180dcc304dGoogle Scholar
Patton, J. H., Stanford, M. S. & Barratt, E. S. (1995). Factor structure of the Barratt Impulsiveness Scale. Journal of Clinical Psychology, 51(6), 768774.Google Scholar
Peters, J. & Büchel, C. (2011). The neural mechanisms of inter-temporal decision-making: understanding variability. Trends in Cognitive Sciences, 15(5), 227239. https://doi.org/10.1016/j.tics.2011.03.002Google Scholar
Petry, N. M. (2006). Should the scope of addictive behaviors be broadened to include pathological gambling? Addiction, 101 (Supplement 1), 152160. https://doi.org/10.1111/j.1360-0443.2006.01593.xGoogle Scholar
Petry, N. M. & Kiluk, B. D. (2002). Suicidal ideation and suicide attempts in treatment-seeking pathological gamblers. The Journal of Nervous and Mental Disease, 190(7), 462469. https://doi.org/10.1097/01.NMD.0000022447.27689.96Google Scholar
Petry, N. M. & O’Brien, C. P. (2013). Internet gaming disorder and the DSM-5. Addiction, 108(7), 11861187. https://doi.org/10.1111/add.12162Google Scholar
Petry, N. M., Stinson, F. S. & Grant, B. F. (2005). Comorbidity of DSM-IV pathological gambling and other psychiatric disorders: results from the National Epidemiologic Survey on Alcohol and Related Conditions. The Journal of Clinical Psychiatry, 66(5), 564574.Google Scholar
Phillips, K. A., Menard, W., Fay, C. & Weisberg, R. (2005). Demographic characteristics, phenomenology, comorbidity, and family history in 200 individuals with body dysmorphic disorder. Psychosomatics, 46(4), 317325. https://doi.org/10.1176/appi.psy.46.4.317Google Scholar
Phillips, K. A., Stein, D. J., Rauch, S., et al. (2010). Should an obsessive-compulsive spectrum grouping of disorders be included in DSM-V? Depression and Anxiety, 27(6), 528555. https://doi.org/10.1002/da.20705Google Scholar
Pittenger, C., Bloch, M. H. & Williams, K. (2011). Glutamate abnormalities in obsessive compulsive disorder: neurobiology, pathophysiology, and treatment. Pharmacology & Therapeutics, 132(3), 314332. https://doi.org/10.1016/j.pharmthera.2011.09.006Google Scholar
Potenza, M. N. (2006). Should addictive disorders include non-substance-related conditions? Addiction, 101 (Supplement 1), 142151. https://doi.org/10.1111/j.1360-0443.2006.01591.xGoogle Scholar
Potenza, M. N. (2007). Impulsivity and compulsivity in pathological gambling and obsessive-compulsive disorder. Revista Brasileira De Psiquiatria, 29(2), 105106.Google Scholar
Potenza, M. N. (2008). Review. The neurobiology of pathological gambling and drug addiction: an overview and new findings. Philosophical Transactions of the Royal Society of London, Series B, Biological Sciences, 363(1507), 31813189. https://doi.org/10.1098/rstb.2008.0100Google Scholar
Potenza, M. N. (2014). Non-substance addictive behaviors in the context of DSM-5. Addictive Behaviors, 39(1), 12. https://doi.org/10.1016/j.addbeh.2013.09.004Google Scholar
Potenza, M. N., Balodis, I. M., Franco, C. A., et al. (2013). Neurobiological considerations in understanding behavioral treatments for pathological gambling. Psychology of Addictive Behaviors, 27(2), 380392. https://doi.org/10.1037/a0032389Google Scholar
Reddy, Y. C. J., Alur, A. M., Manjunath, S., Kandavel, T. & Math, S. B. (2010). Long-term follow-up study of patients with serotonin reuptake inhibitor-nonresponsive obsessive-compulsive disorder. Journal of Clinical Psychopharmacology, 30(3), 267272. https://doi.org/10.1097/JCP.0b013e3181dbfb53Google Scholar
Reed, D. D. et al. (2020). Behavioral economic considerations of novel addictions and nonaddictive behavior: research and analytic methods. In Sussman, S. (Ed.) The Cambridge Handbook of Substance and Behavioral Addictions. Cambridge, UK: Cambridge University Press, pp. 7386.Google Scholar
Reghunandanan, S., Fineberg, N. A. & Stein, D. J. (2015). Pathogenesis. In Reghunandanan, S., Fineberg, N. A. & Stein, D. J. (Eds.), Obsessive-Compulsive and Related Disorders. New York, NY: Oxford University Press, pp. 1335.Google Scholar
Reid, R. C. (2013). Personal perspectives on hypersexual disorder. Sexual Addiction & Compulsivity, 20(1–2), 418. https://doi.org/10.1080/10720162.2013.772876Google Scholar
Reid, R. C., Carpenter, B. N., Hook, J. N., et al. (2012). Report of findings in a DSM-5 field trial for hypersexual disorder. The Journal of Sexual Medicine, 9(11), 28682877. https://doi.org/10.1111/j.1743-6109.2012.02936.xGoogle Scholar
Robbins, T. W. (2017). Cross-species studies of cognition relevant to drug discovery: a translational approach. British Journal of Pharmacology, 174(19), 31913199. https://doi.org/10.1111/bph.13826Google Scholar
Robbins, T. W., Gillan, C. M., Smith, D. G., de Wit, S. & Ersche, K. D. (2012). Neurocognitive endophenotypes of impulsivity and compulsivity: towards dimensional psychiatry. Trends in Cognitive Sciences, 16(1), 8191. https://doi.org/10.1016/j.tics.2011.11.009Google Scholar
Rodriguez, C. I., Kegeles, L. S., Levinson, A., et al. (2013). Randomized controlled crossover trial of ketamine in obsessive-compulsive disorder: proof-of-concept. Neuropsychopharmacology, 38(12), 24752483. https://doi.org/10.1038/npp.2013.150Google Scholar
Rogers, R. D., Everitt, B. J., Baldacchino, A., et al. (1999). Dissociable deficits in the decision-making cognition of chronic amphetamine abusers, opiate abusers, patients with focal damage to prefrontal cortex, and tryptophan-depleted normal volunteers: evidence for monoaminergic mechanisms. Neuropsychopharmacology, 20(4), 322339. https://doi.org/10.1016/S0893-133X(98)00091-8Google Scholar
Ruscio, A. M., Stein, D. J., Chiu, W. T. & Kessler, R. C. (2010). The epidemiology of obsessive-compulsive disorder in the National Comorbidity Survey Replication. Molecular Psychiatry, 15(1), 5363. https://doi.org/10.1038/mp.2008.94Google Scholar
Saiz-Ruiz, J., Blanco, C., Ibáñez, A., et al. (2005). Sertraline treatment of pathological gambling: a pilot study. The Journal of Clinical Psychiatry, 66(1), 2833.Google Scholar
Samuel, D. B. & Widiger, T. A. (2011). Conscientiousness and obsessive-compulsive personality disorder. Personality Disorders, 2(3), 161174. https://doi.org/10.1037/a0021216Google Scholar
Sanavio, E. (1988). Obsessions and compulsions: the Padua Inventory. Behaviour Research and Therapy, 26(2), 169177.Google Scholar
Scherrer, J. F., Xian, H., Slutske, W. S., Eisen, S. A. & Potenza, M. N. (2015). Associations between obsessive-compulsive classes and pathological gambling in a national cohort of male twins. JAMA Psychiatry, 72(4), 342349. https://doi.org/10.1001/jamapsychiatry.2014.2497Google Scholar
Schultz, W. (2011). Potential vulnerabilities of neuronal reward, risk, and decision mechanisms to addictive drugs. Neuron, 69(4), 603617. https://doi.org/10.1016/j.neuron.2011.02.014Google Scholar
Shaffer, H. J. (1999). On the nature and meaning of addiction. National Forum, 79(4), 914.Google Scholar
Sica, C., Bottesi, G., Orsucci, A., et al. (2015). “Not Just Right Experiences” are specific to obsessive-compulsive disorder: further evidence from Italian clinical samples. Journal of Anxiety Disorders, 31, 7383. https://doi.org/10.1016/j.janxdis.2015.02.002Google Scholar
Simpson, H. B., Maher, M. J., Wang, Y., et al. (2011). Patient adherence predicts outcome from cognitive behavioral therapy in obsessive-compulsive disorder. Journal of Consulting and Clinical Psychology, 79(2), 247252. https://doi.org/10.1037/a0022659Google Scholar
Simpson, H. B., Shungu, D. C., Bender, J., et al. (2012). Investigation of cortical glutamate–glutamine and γ-aminobutyric acid in obsessive–compulsive disorder by proton magnetic resonance spectroscopy. Neuropsychopharmacology, 37(12), 26842692. https://doi.org/10.1038/npp.2012.132Google Scholar
Skoog, G. & Skoog, I. (1999). A 40-year follow-up of patients with obsessive-compulsive disorder. Archives of General Psychiatry, 56(2), 121127.Google Scholar
Slutske, W. S. (2006). Natural recovery and treatment-seeking in pathological gambling: results of two U.S. national surveys. The American Journal of Psychiatry, 163(2), 297302. https://doi.org/10.1176/appi.ajp.163.2.297Google Scholar
Stanford, M. S., Mathias, C. W., Dougherty, D. M., et al. (2009). Fifty years of the Barratt Impulsiveness Scale: an update and review. Personality and Individual Differences, 47(5), 385395. https://doi.org/10.1016/j.paid.2009.04.008Google Scholar
Starcevic, V., Berle, D., Brakoulias, V., et al. (2013). Obsessive-compulsive personality disorder co-occurring with obsessive-compulsive disorder: conceptual and clinical implications. The Australian and New Zealand Journal of Psychiatry, 47(1), 6573. https://doi.org/10.1177/0004867412450645Google Scholar
Stein, D. J., Hollander, E., Simeon, D. & Cohen, L. (1994). Impulsivity scores in patients with obsessive-compulsive disorder. The Journal of Nervous and Mental Disease, 182(4), 240241.Google Scholar
Sulzer, D. (2011). How addictive drugs disrupt presynaptic dopamine neurotransmission. Neuron, 69(4), 628649. https://doi.org/10.1016/j.neuron.2011.02.010Google Scholar
Swann, A. C., Lijffijt, M., Lane, S. D., Steinberg, J. L. & Moeller, F. G. (2009). Trait impulsivity and response inhibition in antisocial personality disorder. Journal of Psychiatric Research, 43(12), 10571063. https://doi.org/10.1016/j.jpsychires.2009.03.003Google Scholar
van den Heuvel, O. A., Remijnse, P. L., Mataix-Cols, D., et al. (2009). The major symptom dimensions of obsessive-compulsive disorder are mediated by partially distinct neural systems. Brain, 132(4), 853868. https://doi.org/10.1093/brain/awn267Google Scholar
van den Heuvel, O. A., van Wingen, G., Soriano-Mas, C., et al. (2016). Brain circuitry of compulsivity. European Neuropsychopharmacology, 26(5), 810827. https://doi.org/10.1016/j.euroneuro.2015.12.005Google Scholar
van Emmerik-van Oortmerssen, K., van de Glind, G., van den Brink, W., et al. (2012). Prevalence of attention-deficit hyperactivity disorder in substance use disorder patients: a meta-analysis and meta-regression analysis. Drug and Alcohol Dependence, 122(1–2), 1119. https://doi.org/10.1016/j.drugalcdep.2011.12.007Google Scholar
van Holst, R. J., van den Brink, W., Veltman, D. J. & Goudriaan, A. E. (2010a). Brain imaging studies in pathological gambling. Current Psychiatry Reports, 12(5), 418425. https://doi.org/10.1007/s11920-010-0141-7Google Scholar
van Holst, R. J., van den Brink, W., Veltman, D. J. & Goudriaan, A. E. (2010b). Why gamblers fail to win: a review of cognitive and neuroimaging findings in pathological gambling. Neuroscience & Biobehavioral Reviews, 34(1), 87107. https://doi.org/10.1016/j.neubiorev.2009.07.007Google Scholar
Vanes, L. D., van Holst, R. J., Jansen, J. M., et al. (2014). Contingency learning in alcohol dependence and pathological gambling: learning and unlearning reward contingencies. Alcoholism, Clinical and Experimental Research, 38(6), 16021610. https://doi.org/10.1111/acer.12393Google Scholar
Volkow, N. D. & Li, T.-K. (2004). Drug addiction: the neurobiology of behaviour gone awry. Nature Reviews Neuroscience, 5(12), 963970. https://doi.org/10.1038/nrn1539Google Scholar
Voon, V., Derbyshire, K., Rück, C., et al. (2015). Disorders of compulsivity: a common bias towards learning habits. Molecular Psychiatry, 20(3), 345352. https://doi.org/10.1038/mp.2014.44Google Scholar
Wareham, J. D. & Potenza, M. N. (2010). Pathological gambling and substance use disorders. The American Journal of Drug and Alcohol Abuse, 36(5), 242247. https://doi.org/10.3109/00952991003721118Google Scholar
Wilens, T. E. (2006). Mechanism of action of agents used in attention-deficit/hyperactivity disorder. The Journal of Clinical Psychiatry, 67 (Supplement 8), 3238.Google Scholar
Winstanley, C. A., Eagle, D. M. & Robbins, T. W. (2006). Behavioral models of impulsivity in relation to ADHD: translation between clinical and preclinical studies. Clinical Psychology Review, 26(4), 379395. https://doi.org/10.1016/j.cpr.2006.01.001Google Scholar
Wood, W., Quinn, J. M. & Kashy, D. A. (2002). Habits in everyday life: thought, emotion, and action. Journal of Personality and Social Psychology, 83(6), 12811297.Google Scholar
Wu, K., Hanna, G. L., Rosenberg, D. R. & Arnold, P. D. (2012). The role of glutamate signaling in the pathogenesis and treatment of obsessive-compulsive disorder. Pharmacology, Biochemistry, and Behavior, 100(4), 726735. https://doi.org/10.1016/j.pbb.2011.10.007Google Scholar
Ziauddeen, H. & Fletcher, P. C. (2013). Is food addiction a valid and useful concept? Obesity Reviews, 14(1), 1928. https://doi.org/10.1111/j.1467-789X.2012.01046.xGoogle Scholar
Ziauddeen, H., Farooqi, I. S. & Fletcher, P. C. (2012a). Food addiction: is there a baby in the bathwater? Nature Reviews Neuroscience, 13(7), 514. https://doi.org/10.1038/nrn3212-c2Google Scholar
Ziauddeen, H., Farooqi, I. S. & Fletcher, P. C. (2012b). Obesity and the brain: how convincing is the addiction model? Nature Reviews Neuroscience, 13(4), 279286. https://doi.org/10.1038/nrn3212Google Scholar
Zohar, J. & Insel, T. R. (1987). Obsessive-compulsive disorder: psychobiological approaches to diagnosis, treatment, and pathophysiology. Biological Psychiatry, 22(6), 667687.Google Scholar

References

Albertella, L., Le Pelley, M. E., Yücel, M. & Copeland, J. (2018). Age moderates the association between frequent cannabis use and negative schizotypy over timeAddictive Behaviors87, 183189.Google Scholar
Bersani, G., Orlandi, V., Gherardelli, S. & Pancheri, P. (2002). Cannabis and neurological soft signs in schizophrenia: absence of relationship and influence on psychopathologyPsychopathology35(5), 289295.Google Scholar
Bickel, W. K., Jarmolowicz, D. P., Mueller, E. T. & Gatchalian, K. M. (2011). The behavioral economics and neuroeconomics of reinforcer pathologies: implications for etiology and treatment of addictionCurrent Psychiatry Reports13(5), 406.Google Scholar
Bovasso, G. B. (2001). Cannabis abuse as a risk factor for depressive symptomsAmerican Journal of Psychiatry158(12), 20332037.Google Scholar
Brikmanis, K., Petersen, A. & Doran, N. (2017). Do personality traits related to affect regulation predict other tobacco product use among young adult non-daily smokers? Addictive Behaviors75, 7984.Google Scholar
Bruijnzeel, A. W. & Markou, A. (2003). Characterization of the effects of bupropion on the reinforcing properties of nicotine and food in ratsSynapse50(1), 2028.Google Scholar
Cano, M. Á., de Dios, M. A., Correa-Fernández, V., et al. (2017). Depressive symptom domains and alcohol use severity among Hispanic emerging adults: examining moderating effects of genderAddictive Behaviors72, 7278.Google Scholar
Carleton, R. N., Thibodeau, M. A., Teale, M. J., et al. (2013). The center for epidemiologic studies depression scale: a review with a theoretical and empirical examination of item content and factor structurePLoS ONE8(3), e58067.Google Scholar
Carroll, K. M., Nich, C., Frankforter, T. L., et al. (2018). Accounting for the uncounted: physical and affective distress in individuals dropping out of oral naltrexone treatment for opioid use disorderDrug and Alcohol Dependence192, 264270.Google Scholar
Carton, L., Pignon, B., Baguet, A., et al. (2018). Influence of comorbid alcohol use disorders on the clinical patterns of major depressive disorder: a general population-based studyDrug and Alcohol Dependence187, 4047.Google Scholar
Chuang, C. W. I., Chan, C. & Leventhal, A. M. (2016). Adolescent emotional pathology and lifetime history of alcohol or drug use with and without comorbid tobacco useJournal of Dual Diagnosis12(1), 2735.Google Scholar
Cho, J., Stone, M. D. & Leventhal, A. M. (2019). Anhedonia as a phenotypic marker of familial transmission of polysubstance use trajectories across midadolescencePsychology of Addictive Behaviors, 33(1), 1525.Google Scholar
Cobb, N. K., Byron, M. J., Abrams, D. B. & Shields, P. G. (2010). Novel nicotine delivery systems and public health: the rise of the “e-cigarette”. American Journal of Public Health, 100(12), 23402342.Google Scholar
Cohen, A. S., Najolia, G. M., Brown, L. A. & Minor, K. S. (2011). The state-trait disjunction of anhedonia in schizophrenia: potential affective, cognitive and social-based mechanismsClinical Psychology Review31(3), 440448.Google Scholar
Cook, J. W., Lanza, S. T., Chu, W., Baker, T. B. & Piper, M. E. (2017). Anhedonia: its dynamic relations with craving, negative affect, and treatment during a quit smoking attempt. Nicotine & Tobacco Research19(6), 703709.Google Scholar
Cook, J. W., Piper, M. E., Leventhal, A. M., et al. (2015). Anhedonia as a component of the tobacco withdrawal syndromeJournal of Abnormal Psychology124(1), 215.Google Scholar
Creamer, M. R., Perry, C. L., Harrell, M. B. & Diamond, P. M. (2015). Trends in multiple tobacco product use among high school studentsTobacco Regulatory Science1(3), 204214.Google Scholar
Crits-Christoph, P., Wadden, S., Gaines, A., et al. (2018). Symptoms of anhedonia, not depression, predict the outcome of treatment of cocaine dependenceJournal of Substance Abuse Treatment92, 4650.Google Scholar
Cryan, J. F., Dalvi, A., Jin, , et al. (2001). Use of dopamine-β-hydroxylase-deficient mice to determine the role of norepinephrine in the mechanism of action of antidepressant drugsJournal of Pharmacology and Experimental Therapeutics298(2), 651657.Google Scholar
Cryan, J. F., O'Leary, O. F., Jin, S. H., et al. (2004). Norepinephrine-deficient mice lack responses to antidepressant drugs, including selective serotonin reuptake inhibitorsProceedings of the National Academy of Sciences101(21), 81868191.Google Scholar
Curtin, S. C., Tejada-Vera, B. & Warmer, M. (2017). Drug overdose deaths among adolescents aged 15–19 in the United States: 1999-2015NCHS Data Brief, 282, 18.Google Scholar
Daughters, S. B., Magidson, J. F., Anand, D., et al. (2018). The effect of a behavioral activation treatment for substance use on post‐treatment abstinence: a randomized controlled trialAddiction113(3), 535544.Google Scholar
D’Souza, M. S. & Markou, A. (2010). Neural substrates of psychostimulant withdrawal-induced anhedonia. In Behavioral Neuroscience of Drug Addiction. Berlin, Heidelberg: Springer, pp. 119178.Google Scholar
Davis, C. & Woodside, D. B. (2002). Sensitivity to the rewarding effects of food and exercise in the eating disordersComprehensive Psychiatry43(3), 189194.Google Scholar
Deng, Y., Chang, L., Yang, M., Huo, M. & Zhou, R. (2016). Gender differences in emotional response: inconsistency between experience and expressivityPLoS ONE11(6), e0158666.Google Scholar
Dervaux, A., Laqueille, X., Bourdel, M. C., Olié, J. P. & Krebs, M. O. (2010). Impulsivity and sensation seeking in alcohol abusing patients with schizophreniaFrontiers in Psychiatry1, 135.Google Scholar
Dorard, G., Berthoz, S., Phan, O., Corcos, M. & Bungener, C. (2008). Affect dysregulation in cannabis abusersEuropean Child & Adolescent Psychiatry17(5), 274282.Google Scholar
Dumas, P., Saoud, M., Bouafia, S., et al. (2002). Cannabis use correlates with schizotypal personality traits in healthy studentsPsychiatry Research109(1), 2735.Google Scholar
Dutra, L., Stathopoulou, G., Basden, S. L., et al. (2008). A meta-analytic review of psychosocial interventions for substance use disordersAmerican Journal of Psychiatry165(2), 179187.Google Scholar
Eiber, R., Berlin, I., de Brettes, B., Foulon, C. & Guelfi, J. D. (2002). Hedonic response to sucrose solutions and the fear of weight gain in patients with eating disordersPsychiatry Research113(1–2), 173180.Google Scholar
Erwin, M. C., Charak, R., Durham, T. A., et al. (2017). The 7-factor hybrid model of DSM-5 PTSD symptoms and alcohol consumption and consequences in a national sample of trauma-exposed veteransJournal of Anxiety Disorders51, 1421.Google Scholar
Fawcett, J., Clark, D. C., Scheftner, W. A. & Gibbons, R. D. (1983). Assessing anhedonia in psychiatric patients: the pleasure scaleArchives of General Psychiatry40(1), 7984.Google Scholar
Feingold, D., Rehm, J. & Lev-Ran, S. (2017). Cannabis use and the course and outcome of major depressive disorder: a population based longitudinal studyPsychiatry Research251, 225234.Google Scholar
Fiore, M. C., Jaen, C. R., Baker, T. B., et al. (2008). Treating Tobacco Use and Dependence: 2008 UpdateRockville, MD: US Department of Health and Human Services.Google Scholar
Fiorito, E. R. & Simons, R. F. (1994). Emotional imagery and physical anhedoniaPsychophysiology31(5), 513521.Google Scholar
Franken, I. H., Zijlstra, C. & Muris, P. (2006). Are nonpharmacological induced rewards related to anhedonia? A study among skydiversProgress in Neuro-psychopharmacology and Biological Psychiatry30(2), 297300.Google Scholar
Gard, D. E., Gard, M. G., Kring, A. M. & John, O. P. (2006). Anticipatory and consummatory components of the experience of pleasure: a scale development studyJournal of Research in Personality40(6), 10861102.Google Scholar
Garfield, J. B., Cotton, S. M., Allen, N. B., et al. (2017). Evidence that anhedonia is a symptom of opioid dependence associated with recent useDrug and Alcohol Dependence177, 2938.Google Scholar
Garfield, J. B., Lubman, D. I. & Yücel, M. (2014). Anhedonia in substance use disorders: a systematic review of its nature, course and clinical correlatesAustralian & New Zealand Journal of Psychiatry48(1), 3651.Google Scholar
Garland, E. L., Froeliger, B. & Howard, M. O. (2014). Effects of Mindfulness-Oriented Recovery Enhancement on reward responsiveness and opioid cue-reactivityPsychopharmacology231(16), 32293238.Google Scholar
Garland, E. L., Froeliger, B. & Howard, M. O. (2015). Neurophysiological evidence for remediation of reward processing deficits in chronic pain and opioid misuse following treatment with Mindfulness-Oriented Recovery Enhancement: exploratory ERP findings from a pilot RCTJournal of Behavioral Medicine38(2), 327336.Google Scholar
Geschwind, N., Peeters, F., Drukker, M., van Os, J. & Wichers, M. (2011). Mindfulness training increases momentary positive emotions and reward experience in adults vulnerable to depression: a randomized controlled trialJournal of Consulting and Clinical Psychology79(5), 618.Google Scholar
Guillot, C. R., Halliday, T. M., Kirkpatrick, M. G., Pang, R. D. & Leventhal, A. M. (2017). Anhedonia and abstinence as predictors of the subjective pleasantness of positive, negative, and smoking-related picturesNicotine & Tobacco Research19(6), 743749.Google Scholar
Hall, W. & Lynskey, M. (2016). Evaluating the public health impacts of legalizing recreational cannabis use in the United StatesAddiction111(10), 17641773.Google Scholar
Harvey, P. O., Pruessner, J., Czechowska, Y. & Lepage, M. (2007). Individual differences in trait anhedonia: a structural and functional magnetic resonance imaging study in non-clinical subjectsMolecular Psychiatry12(8), 767.Google Scholar
Haslam, A. K., Correa-Fernández, V., Hoover, D. S., et al. (2018). Anhedonia and smoking cessation among Spanish-speaking Mexican-AmericansHealth Psychology37(9), 814.Google Scholar
Hatzigiakoumis, D. S., Martinotti, G., Di Giannantonio, M. & Janiri, L. (2011). Anhedonia and substance dependence: clinical correlates and treatment optionsFrontiers in Psychiatry2, 10.Google Scholar
Heirene, R. M., Shearer, D., Roderique-Davies, G. & Mellalieu, S. D. (2016). Addiction in extreme sports: an exploration of withdrawal states in rock climbersJournal of Behavioral Addictions5(2), 332341.Google Scholar
Higgins, S. T., Silverman, K. & Heil, S. H. (Eds.) (2007). Contingency Management in Substance Abuse Treatment. Guilford Press.Google Scholar
Hughes, J. R., Budney, A. J., Muellers, S. R., et al. (2017). Does tobacco abstinence decrease reward sensitivity? A human laboratory testNicotine & Tobacco Research19(6), 677685.Google Scholar
Huhn, A. S., Meyer, R. E., Harris, J. D., et al. (2016). Evidence of anhedonia and differential reward processing in prefrontal cortex among post-withdrawal patients with prescription opiate dependenceBrain Research Bulletin123, 102109.Google Scholar
Huys, Q. J., Pizzagalli, D. A., Bogdan, R. & Dayan, P. (2013). Mapping anhedonia onto reinforcement learning: a behavioural meta-analysisBiology of Mood & Anxiety Disorders3(1), 12.Google Scholar
Janiri, L., Martinotti, G., Dario, T., et al. (2005). Anhedonia and substance-related symptoms in detoxified substance-dependent subjects: a correlation studyNeuropsychobiology52(1), 3744.Google Scholar
Johnson, K. A., Bonn-Miller, M. O., Leyro, T. M. & Zvolensky, M. J. (2009). Anxious arousal and anhedonic depression symptoms and the frequency of current marijuana use: testing the mediating role of marijuana-use coping motives among active usersJournal of Studies on Alcohol and Drugs70(4), 543550.Google Scholar
Kahler, C. W., Spillane, N. S., Day, A., et al. (2014). Positive psychotherapy for smoking cessation: treatment development, feasibility, and preliminary resultsThe Journal of Positive Psychology9(1), 1929.Google Scholar
Kahler, C. W., Spillane, N. S., Day, A. M., et al. (2015). Positive psychotherapy for smoking cessation: a pilot randomized controlled trialNicotine & Tobacco Research17(11), 13851392.Google Scholar
Kelley, A. E. & Berridge, K. C. (2002). The neuroscience of natural rewards: relevance to addictive drugsJournal of Neuroscience22(9), 33063311.Google Scholar
Kirkpatrick, M. G., Goldenson, N. I., Kapadia, N., et al. (2016). Emotional traits predict individual differences in amphetamine-induced positive mood in healthy volunteersPsychopharmacology233(1), 8997.Google Scholar
Koob, G. F. & Le Moal, M. (2001). Drug addiction, dysregulation of reward, and allostasisNeuropsychopharmacology24(2), 97.Google Scholar
Krupitsky, E. M., Burakov, A. M., Didenko, T. Y., et al. (2002). Effects of citalopram treatment of protracted withdrawal (syndrome of anhedonia) in patients with heroin addictionAddictive Disorders & Their Treatment1(1), 2933.Google Scholar
Krupitsky, E., Zvartau, E., Blokhina, E., et al. (2016). Anhedonia, depression, anxiety, and craving in opiate dependent patients stabilized on oral naltrexone or an extended release naltrexone implantThe American Journal of Drug and Alcohol Abuse42(5), 614620.Google Scholar
Lawn, W., Freeman, T. P., Pope, R. A., et al. (2016). Acute and chronic effects of cannabinoids on effort-related decision-making and reward learning: an evaluation of the cannabis ‘amotivational’ hypothesesPsychopharmacology233(19–20), 35373552.Google Scholar
Lee, Y. O., Hebert, C. J., Nonnemaker, J. M. & Kim, A. E. (2015). Youth tobacco product use in the United StatesPediatrics135(3), 409415.Google Scholar
Leibenluft, E., Fiero, P. L., Bartko, J. J., Moul, D. E. & Rosenthal, N. E. (1993). Depressive symptoms and the self-reported use of alcohol, caffeine, and carbohydrates in normal volunteers and four groups of psychiatric outpatientsAmerican Journal of Psychiatry150, 294294.Google Scholar
Lejuez, C. W., Hopko, D. R. & Hopko, S. D. (2001). A brief behavioral activation treatment for depression: treatment manualBehavior Modification25(2), 255286.Google Scholar
Leventhal, A. M. & Zvolensky, M. J. (2015). Anxiety, depression, and cigarette smoking: a transdiagnostic vulnerability framework to understanding emotion–smoking comorbidityPsychological Bulletin141(1), 176.Google Scholar
Leventhal, A. M., Brightman, M., Ameringer, K. J., et al. (2010). Anhedonia associated with stimulant use and dependence in a population-based sample of American adultsExperimental and Clinical Psychopharmacology18(6), 562.Google Scholar
Leventhal, A. M., Chasson, G. S., Tapia, E., Miller, E. K. & Pettit, J. W. (2006). Measuring hedonic capacity in depression: a psychometric analysis of three anhedonia scalesJournal of Clinical Psychology62(12), 15451558.Google Scholar
Leventhal, A. M., Cho, J., Stone, M. D., et al. (2017). Associations between anhedonia and marijuana use escalation across mid‐adolescenceAddiction112(12), 21822190.Google Scholar
Leventhal, A. M., Piper, M. E., Japuntich, S. J., Baker, T. B. & Cook, J. W. (2014). Anhedonia, depressed mood, and smoking cessation outcomeJournal of Consulting and Clinical Psychology82(1), 122.Google Scholar
Leventhal, A. M., Ramsey, S. E., Brown, R. A., LaChance, H. R. & Kahler, C. W. (2008). Dimensions of depressive symptoms and smoking cessationNicotine & Tobacco Research10(3), 507517.Google Scholar
Leventhal, A. M., Strong, D. R., Sussman, S., et al. (2016). Psychiatric comorbidity in adolescent electronic and conventional cigarette useJournal of Psychiatric Research73, 7178.Google Scholar
Lichlyter, B., Purdon, S. & Tibbo, P. (2011). Predictors of psychosis severity in individuals with primary stimulant addictionsAddictive Behaviors36(1–2), 137139.Google Scholar
Liverant, G. I., Sloan, D. M., Pizzagalli, D. A., et al. (2014). Associations among smoking, anhedonia, and reward learning in depressionBehavior Therapy45(5), 651663.Google Scholar
Liu, C. H. & Tronick, E. (2014). Prevalence and predictors of maternal postpartum depressed mood and anhedonia by race and ethnicityEpidemiology and Psychiatric Sciences23(2), 201209.Google Scholar
Lubman, D. I., Garfield, J. B., Gwini, S. M., et al. (2018). Dynamic associations between opioid use and anhedonia: a longitudinal study in opioid dependenceJournal of Psychopharmacology32(9), 957964.Google Scholar
Luby, J. L., Agrawal, A., Belden, A., et al. (2018). Developmental trajectories of the orbitofrontal cortex and anhedonia in middle childhood and risk for substance use in adolescence in a longitudinal sample of depressed and healthy preschoolersAmerican Journal of Psychiatry175(10), 10101021.Google Scholar
MacPherson, L., Tull, M. T., Matusiewicz, A. K., et al. (2010). Randomized controlled trial of behavioral activation smoking cessation treatment for smokers with elevated depressive symptomsJournal of Consulting and Clinical Psychology78(1), 55.Google Scholar
Marra, D., Warot, D., Payan, C., et al. (1998). Anhedonia and relapse in alcoholismPsychiatry Research80(2), 187196.Google Scholar
Martinotti, G., Cloninger, C. R. & Janiri, L. (2008a). Temperament and character inventory dimensions and anhedonia in detoxified substance-dependent subjects. American Journal of Drug and Alcohol Abuse, 34(2), 177183. doi:10.1080/00952990701877078Google Scholar
Martinotti, G., Di Nicola, M., Reina, D., et al. (2008b). Alcohol protracted withdrawal syndrome: the role of anhedoniaSubstance Use & Misuse43(3–4), 271284.Google Scholar
Martinotti, G., Andreoli, S., Reina, D., et al. (2011). Acetyl-l-carnitine in the treatment of anhedonia, melancholic and negative symptoms in alcohol dependent subjectsProgress in Neuro-Psychopharmacology and Biological Psychiatry35(4), 953958.Google Scholar
Mathew, A. R., Cook, J. W., Japuntich, S. J. & Leventhal, A. M. (2015). Post‐traumatic stress disorder symptoms, underlying affective vulnerabilities, and smoking for affect regulationThe American Journal on Addictions24(1), 3946.Google Scholar
McClure, E. A., Vandrey, R. G., Johnson, M. W. & Stitzer, M. L. (2012). Effects of varenicline on abstinence and smoking reward following a programmed lapseNicotine & Tobacco Research15(1), 139148.Google Scholar
McGregor, C., Srisurapanont, M., Jittiwutikarn, J., et al. (2005). The nature, time course and severity of methamphetamine withdrawalAddiction100(9), 13201329.Google Scholar
Meehl, P. E. (1975). Hedonic capacity: some conjecturesBulletin of the Menninger Clinic39(4), 295307.Google Scholar
Meshesha, L. Z., Pickover, A. M., Teeters, J. B. & Murphy, J. G. (2017). A longitudinal behavioral economic analysis of non-medical prescription opioid use among college studentsThe Psychological Record67(2), 241251.Google Scholar
Miotto, P., Preti, A. & Frezza, M. (2001). Heroin and schizophrenia: subjective responses to abused drugs in dually diagnosed patientsJournal of Clinical Psychopharmacology21(1), 111113.Google Scholar
Morie, K. P., De Sanctis, P., Garavan, H. & Foxe, J. J. (2014). Executive dysfunction and reward dysregulation: a high-density electrical mapping study in cocaine abusersNeuropharmacology85, 397407.Google Scholar
Newton, T. F., Kalechstein, A. D., Duran, S., Vansluis, N. & Ling, W. (2004). Methamphetamine abstinence syndrome: preliminary findingsThe American Journal on Addictions13(3), 248255.Google Scholar
Noordsy, D. L., Drake, R. E., Teague, G. B., et al. (1991). Subjective experiences related to alcohol use among schizophrenicsJournal of Nervous and Mental Disease, 179(7), 410414.Google Scholar
Nunn, J. A., Rizza, F. & Peters, E. R. (2001). The incidence of schizotypy among cannabis and alcohol usersThe Journal of Nervous and Mental Disease189(11), 741748.Google Scholar
Pang, R. D., Khoddam, R., Guillot, C. R. & Leventhal, A. M. (2014). Depression and anxiety symptoms moderate the relation between negative reinforcement smoking outcome expectancies and nicotine dependenceJournal of Studies on Alcohol and Drugs75(5), 775780.Google Scholar
Parrish, K. H., Atherton, O. E., Quintana, A., Conger, R. D. & Robins, R. W. (2016). Reciprocal relations between internalizing symptoms and frequency of alcohol use: findings from a longitudinal study of Mexican-origin youthPsychology of Addictive Behaviors30(2), 203.Google Scholar
Peechatka, A. L., Whitton, A. E., Farmer, S. L., Pizzagalli, D. A. & Janes, A. C. (2015). Cigarette craving is associated with blunted reward processing in nicotine-dependent smokersDrug and Alcohol Dependence155, 202207.Google Scholar
Peters, E. N., Bae, D., Barrington-Trimis, J. L., Jarvis, B. P. & Leventhal, A. M. (2018). Prevalence and sociodemographic correlates of adolescent use and polyuse of combustible, vaporized, and edible cannabis productsJAMA Network Open1(5), e182765.Google Scholar
Pettorruso, M., Martinotti, G., Fasano, A., et al. (2014). Anhedonia in Parkinson's disease patients with and without pathological gambling: a case-control studyPsychiatry Research215(2), 448452.Google Scholar
Piper, M. E., Vasilenko, S. A., Cook, J. W. & Lanza, S. T. (2017). What a difference a day makes: differences in initial abstinence response during a smoking cessation attemptAddiction112(2), 330339.Google Scholar
Powers, J. M., Carroll, A. J., Veluz-Wilkins, A. K., et al. (2016). Is the effect of anhedonia on smoking cessation greater for women versus men? Nicotine & Tobacco Research19(1), 119123.Google Scholar
Pozzi, G., Martinotti, G., Reina, D., et al. (2008). The assessment of post-detoxification anhedonia: influence of clinical and psychosocial variablesSubstance Use & Misuse43(5), 722732.Google Scholar
Rømer Thomsen, K. (2015). Measuring anhedonia: impaired ability to pursue, experience, and learn about rewardFrontiers in Psychology6, 1409.Google Scholar
Roys, M., Weed, K., Carrigan, M. & MacKillop, J. (2016). Associations between nicotine dependence, anhedonia, urgency and smoking motivesAddictive Behaviors62, 145151.Google Scholar
Schlaepfer, T. E., Cohen, M. X., Frick, C., et al. K (2008). Deep brain stimulation to reward circuitry alleviates anhedonia in refractory major depression. Neuropsychopharmacology33(2), 368.Google Scholar
Schmitz, J. M., Mooney, M. E., Moeller, F. G., et al. (2008). Levodopa pharmacotherapy for cocaine dependence: choosing the optimal behavioral therapy platformDrug and Alcohol Dependence94(1–3), 142150.Google Scholar
Seligman, M. E., Rashid, T. & Parks, A. C. (2006). Positive psychotherapyAmerican Psychologist61(8), 774.Google Scholar
Seney, M. L. & Sibille, E. (2014). Sex differences in mood disorders: perspectives from humans and rodent modelsBiology of Sex Differences5(1), 17.Google Scholar
Seth, P., Rudd, R. A., Noonan, R. K. & Haegerich, T. M. (2018). Quantifying the epidemic of prescription opioid overdose deaths. American Journal of Public Health, 108(4), 500502.Google Scholar
Snaith, P. (1993). Anhedonia: a neglected symptom of psychopathologyPsychological Medicine23(4), 957966.Google Scholar
Snaith, R. P., Hamilton, M., Morley, S., et al. (1995). A scale for the assessment of hedonic tone the Snaith–Hamilton Pleasure ScaleThe British Journal of Psychiatry167(1), 99103.Google Scholar
Stevens, A., Peschk, I. & Schwarz, J. (2007). Implicit learning, executive function and hedonic activity in chronic polydrug abusers, currently abstinent polydrug abusers and controlsAddiction102(6), 937946.Google Scholar
Stone, M. D., Audrain-McGovern, J. & Leventhal, A. M. (2017). Association of anhedonia with adolescent smoking susceptibility and initiationNicotine & Tobacco Research19(6), 738742.Google Scholar
Sussman, N. & DeJong, S. M. (2018). Ethical considerations for mental health clinicians working with adolescents in the digital ageCurrent Psychiatry Reports20(12), 113.Google Scholar
Thomas, E. A. & Garland, E. L. (2017). Mindfulness is associated with increased hedonic capacity among chronic pain patients receiving extended opioid pharmacotherapyThe Clinical Journal of Pain33(2), 166.Google Scholar
Tomarken, A. J., Dichter, G. S., Freid, C., Addington, S. & Shelton, R. C. (2004). Assessing the effects of bupropion SR on mood dimensions of depressionJournal of Affective Disorders78(3), 235241.Google Scholar
Treadway, M. T. & Zald, D. H. (2011). Reconsidering anhedonia in depression: lessons from translational neuroscienceNeuroscience & Biobehavioral Reviews35(3), 537555.Google Scholar
Tremblay, L. K., Naranjo, C. A., Cardenas, L., Herrmann, N. & Busto, U. E. (2002). Probing brain reward system function in major depressive disorder: altered response to dextroamphetamineArchives of General Psychiatry59(5), 409416.Google Scholar
Tremblay, L. K., Naranjo, C. A., Graham, S. J., et al. (2005). Functional neuroanatomical substrates of altered reward processing in major depressive disorder revealed by a dopaminergic probeArchives of General Psychiatry62(11), 12281236.Google Scholar
van Roekel, E., Bennik, E. C., Bastiaansen, J. A., et al. (2016). Depressive symptoms and the experience of pleasure in daily life: an exploration of associations in early and late adolescenceJournal of Abnormal Child Psychology44(5), 9991009.Google Scholar
Vivolo-Kantor, A. M., Seth, P., Gladden, R. M., et al. (2018). Vital signs: trends in emergency department visits for suspected opioid overdoses – United States, July 2016–September 2017Morbidity and Mortality Weekly Report67(9), 279.Google Scholar
Voce, A., McKetin, R., Burns, R., Castle, D. & Calabria, B. (2018). The relationship between illicit amphetamine use and psychiatric symptom profiles in schizophrenia and affective psychosesPsychiatry Research265, 1924.Google Scholar
Wardle, M. C., Vincent, J. N., Suchting, R., et al. (2017). Anhedonia is associated with poorer outcomes in contingency management for cocaine use disorderJournal of Substance Abuse Treatment72, 3239.Google Scholar
Wise, R. A. (2008). Dopamine and reward: the anhedonia hypothesis 30 years onNeurotoxicity Research14(2–3), 169183.Google Scholar
Witkiewitz, K., Bowen, S., Harrop, E. N., et al. (2014). Mindfulness-based treatment to prevent addictive behavior relapse: theoretical models and hypothesized mechanisms of changeSubstance Use & Misuse49(5), 513524.Google Scholar

References

American Psychiatric Association [APA] (2013). Diagnostic and Statistical Manual of Mental Disorders (5th edition). Arlington, VA: American Psychiatric Association.Google Scholar
Avena, N. M. (2011). Food and addiction: implications and relevance to eating disorders and obesity. Current Drug Abuse Reviews, 4(3), 131132.Google Scholar
Avena, N. M. & Bocarsly, M. E. (2012). Dysregulation of brain reward systems in eating disorders: Neurochemical information from animal models of binge eating, bulimia nervosa, and anorexia nervosa. Neuropharmacology, 63(1), 8796.Google Scholar
Avena, N. M. & Gold, M. S. (2011). Food and addiction – sugars, fats and hedonic overeating. Addiction, 106(7), 12141215. doi:10.1111/j.1360-0443.2011.03373.xGoogle Scholar
Avena, N. M., Gold, J. A., Kroll, C. & Gold, M. S. (2012). Further developments in the neurobiology of food and addiction: update on the state of the science. Nutrition, 28(4), 341343. doi:10.1016/j.nut.2011.11.002Google Scholar
Bass, C., Van Nevel, J. & Swart, J. (2014). A comparison between dialectical behavior therapy, mode deactivation therapy, cognitive behavioral therapy, and acceptance and commitment therapy in the treatment of adolescents. The International Journal of Behavioral Consultation and Therapy, 9(2), 4.Google Scholar
Bellg, A. J., Borrelli, B., Resnick, B., et al. (2004). Enhancing treatment fidelity in health behavior change studies: best practices and recommendations from the NIH Behavior Change Consortium. Health Psychology, 23(5), 443451. doi:10.1037/0278-6133.23.5.443Google Scholar
Black, D. S. (2012). Mindfulness and substance use intervention. Substance Use & Misuse, 47(3), 199201. doi:10.3109/10826084.2011.635461Google Scholar
Black, D. S. (2014). Mindfulness-based interventions: an antidote to suffering in the context of substance use, misuse, and addiction. Substance Use & Misuse, 49(5), 487491. doi:10.3109/10826084.2014.860749Google Scholar
Blaszczynski, A., Maccallum, F. & Joukhador, J. (2001). A comparative evaluation of imaginal desensitisation and group cognitive therapy in the treatment of pathological gambling. In Coman, G. (Ed.), Lessons of the Past: Proceedings of the 10th Conference of the National Association for Gambling Studies. Victoria, Australia: National Association for Gambling Studies, pp. 4049.Google Scholar
Borrelli, B. (2011). The assessment, monitoring, and enhancement of treatment fidelity in public health clinical trials. Journal of Public Health Dentistry, 71, S52S63.Google Scholar
Bowen, S., Chawla, N., Collins, S. E., et al. (2009). Mindfulness-based relapse prevention for substance use disorders: a pilot efficacy trial. Substance Abuse, 30(4), 295305. doi:10.1080/08897070903250084Google Scholar
Breitenstein, S. M., Gross, D., Garvey, C. A., et al. (2010). Implementation fidelity in community-based interventions. Research in Nursing & Health, 33(2), 164173. doi:10.1002/nur.20373Google Scholar
Brewer, J. A. (2017). The Craving Mind : From Cigarettes to Smartphones to Love – Why We Get Hooked and How We Can Break Bad Habits. New Haven: Yale University Press.Google Scholar
Brewer, J. A., Elwafi, H. M. & Davis, J. H. (2013). Craving to quit: psychological models and neurobiological mechanisms of mindfulness training as treatment for addictions. Psychology of Addictive Behaviors, 27(2), 366379. doi:10.1037/a0028490Google Scholar
Carroll, C., Patterson, M., Wood, S., et al. (2007). A conceptual framework for implementation fidelity. Implementation Science, 2, 40. doi:10.1186/1748-5908-2-40Google Scholar
Christensen, D. R., Dowling, N. A., Jackson, A. C., et al. (2013). A proof of concept for using brief dialectical behavior therapy as a treatment for problem gambling. Behaviour Change, 30, 117137.Google Scholar
Criscitelli, K. & Avena, N. M. (2016). The neurobiological and behavioral overlaps of nicotine and food addiction. Preventive Medicine, 92, 8289. doi:10.1016/j.ypmed.2016.08.009Google Scholar
de Lisle, S. M., Dowling, N. A. & Allen, J. S. (2011). Mindfulness-based cognitive therapy for problem gambling. Clinical Case Studies, 10, 210228.Google Scholar
Garland, E. L. & Howard, M. O. (2018). Mindfulness-based treatment of addiction: current state of the field and envisioning the next wave of research. Addiction Science & Clinical Practice, 13(1), 14. doi:10.1186/s13722-018-0115-3Google Scholar
Garland, E. L., Froeliger, B. & Howard, M. O. (2014a). Mindfulness training targets neurocognitive mechanisms of addiction at the attention-appraisal-emotion interface. Front Psychiatry, 4, 173. doi:10.3389/fpsyt.2013.00173Google Scholar
Garland, E., Gaylord, S. & Park, J. (2009). The role of mindfulness in positive reappraisal. Explore (NY), 5(1), 3744. doi:10.1016/j.explore.2008.10.001Google Scholar
Garland, E. L., Manusov, E. G., Froeliger, B., et al. (2014b). Mindfulness-oriented recovery enhancement for chronic pain and prescription opioid misuse: results from an early-stage randomized controlled trial. Journal of Consulting and Clinical Psychology, 82(3), 448459. doi:10.1037/a0035798Google Scholar
Godfrey, K., Gallo, M. & Afari, L. . (2015). Mindfulness-based interventions for binge eating: A systematic review and meta-analysis. Journal of Behavioral Medicine, 38(2), 348362.Google Scholar
Gould, L. F., Dariotis, J. K., Greenberg, M. T. & Mendelson, T. (2016). Assessing fidelity of implementation (FOI) for school-based mindfulness and yoga interventions: A systematic review. Mindfulness (NY), 7(1), 533. doi:10.1007/s12671-015-0395-6Google Scholar
Grant, S., Colaiaco, B., Motala, A., et al. (2017). Mindfulness-based relapse prevention for substance use disorders: A systematic review and meta-analysis. Journal of Addiction Medicine, 11(5), 386396.Google Scholar
Greeson, J., Garland, E. L. & Black, D. S. (2014). Mindfulness: A transtherapeutic approach for transdiagnostic mental processes. In Amanda Ie, C. T. N. & Langer, E. J. (Eds.), The Wiley Blackwell Handbook of Mindfulness (1st edition). John Wiley & Sons, Ltd.Google Scholar
Kabat-Zinn, J. (1982). An outpatient program in behavioral medicine for chronic pain patients based on the practice of mindfulness meditation: Theoretical considerations and preliminary resultsGeneral Hospital Psychiatry4(1), 3347. https://doi.org/10.1016/0163-8343(82)90026-3Google Scholar
Kabat-Zinn, J. (2003). Mindfulness-based interventions in context: Past, present, and future. Clinical Psychology: Science and Practice, 10, 144156.Google Scholar
Kabat-Zinn, J. (2013). Full Catastrophe Living : Using the Wisdom of Your Body and Mind to Face Stress, Pain, and Illness – Revised and Updated Edition. New York: Bantam Books.Google Scholar
Katterman, S. N., Kleinman, B. M., Hood, M. M., Nackers, L. M. & Corsica, J. A. (2014). Mindfulness meditation as an intervention for binge eating, emotional eating, and weight loss: A systematic review. Eating Behaviors, 15(2), 197204.Google Scholar
Kechter, A., Amaro, H. & Black, D. S. (2019). Reporting of treatment fidelity in mindfulness-based intervention trials: A review and new tool using NIH behavior change consortium guidelines. Mindfulness, 10(2), 215233.Google Scholar
Kelly, T., Yang, W., Chen, C. S., Reynolds, K. & He, J. (2008). Global burden of obesity in 2005 and projections to 2030. International Journal of Obesity, 32(9), 14311437. doi:10.1038/ijo.2008.102Google Scholar
Kiecolt-Glaser, J. K. (2010). Stress, food, and inflammation: Psychoneuroimmunology and nutrition at the cutting edge. Psychosomatic Medicine, 72(4), 365369. doi:10.1097/PSY.0b013e3181dbf489Google Scholar
Kristeller, J. L. & Wolever, R. Q. (2011). Mindfulness-based eating awareness training for treating binge eating disorder: The conceptual foundation. Eating Disorders, 19(1), 4961. doi:10.1080/10640266.2011.533605Google Scholar
Kristeller, J., Wolever, R. Q. & Sheets, V. (2014). Mindfulness-based eating awareness training (MB-EAT) for binge eating: A randomized clinical trial. Mindfulness. http://dx.doi.org/10.1007/s12671-012-0179-1Google Scholar
Lazarus, R. S. & Folkman, S. . (1984). Stress, Appraisal, and Coping. New York: Springer.Google Scholar
Leventhal, A. M. & Zvolensky, M. J. (2015). Anxiety, depression, and cigarette smoking: A transdiagnostic vulnerability framework to understanding emotion-smoking comorbidity. Psychological Bulletin, 141(1), 176212. doi:10.1037/bul0000003Google Scholar
Li, W., Garland, E. L. & Howard, M. O. (2018). Therapeutic mechanisms of Mindfulness-Oriented Recovery Enhancement for internet gaming disorder: Reducing craving and addictive behavior by targeting cognitive processes. Journal of Addictive Diseases, 37, 513. doi:10.1080/10550887.2018.1442617Google Scholar
Li, W., Howard, M. O., Garland, E. L., McGovern, P. & Lazar, M. (2017). Mindfulness treatment for substance misuse: A systematic review and meta-analysis. Journal of Substance Abuse Treatment, 75, 6296.Google Scholar
Lindsay, E. K. & Creswell, J. D. (2017). Mechanisms of mindfulness training: Monitor and Acceptance Theory (MAT). Clinical Psychology Review, 51, 4859. doi:10.1016/j.cpr.2016.10.011Google Scholar
Maynard, B. R., Wilson, A. N., Labuzienski, E. & Whiting, S. W. (2018). Mindfulness-based approaches in the treatment of disordered gambling: A systematic review and meta-analysis. Research on Social Work Practice, 28(3), 348362.Google Scholar
Murray, S., Kroll, C. & Avena, N. M. (2015). Food and addiction among the ageing population. Ageing Research Reviews, 20, 7985. doi:10.1016/j.arr.2014.10.002Google Scholar
Murray, S., Tulloch, A., Gold, M. S. & Avena, N. M. (2014). Hormonal and neural mechanisms of food reward, eating behaviour and obesity. Nature Reviews Endocrinology, 10(9), 540552. doi:10.1038/nrendo.2014.91Google Scholar
O'Reilly, G., Cook, L., Spruijt‐Metz, D. & Black, D. (2014). Mindfulness‐based interventions for obesity‐related eating behaviours: A literature review. Obesity Reviews, 15(6), 453461.Google Scholar
Resnick, B., Bellg, A. J., Borrelli, B., et al. (2005). Examples of implementation and evaluation of treatment fidelity in the BCC studies: Where we are and where we need to go. Annals of Behavioral Medicine, 29 (Supplement), 4654. doi:10.1207/s15324796abm2902s_8Google Scholar
SAMHSA (2017). Behavioral Health Treatments and Services. Retrieved from https://www.samhsa.gov/treatmentGoogle Scholar
Segal, Z. V., Williams, M. & Teasdale, J. (2018). Mindfulness-Based Cognitive Therapy for Depression. Guilford Publications.Google Scholar
Sinha, R. (2008). Chronic stress, drug use, and vulnerability to addiction. Annals of the New York Academy of Sciences, 1141, 105130.Google Scholar
Sussman, S. (2017). Substance and Behavioral Addictions: Concepts, Causes, and Cures. Cambridge, Great BritainCambridge University Press.Google Scholar
Sussman, S. & Black, D. S. (2008). Substitute addiction: A concern for researchers and practitioners. Journal of Drug Education, 38(2), 167180. doi:10.2190/DE.38.2.eGoogle Scholar
Sussman, S., Reynaud, M., Aubin, H. J. & Leventhal, A. M. (2011). Drug addiction, love, and the higher power. Evaluation & the Health Professions, 34(3), 362370. doi:10.1177/0163278711401002Google Scholar
Van Gordon, W., Shonin, E., Dunn, T. J., et al. (2017). Meditation awareness training for the treatment of workaholism: A controlled trial. Journal of Behavioral Addictions, 6(2), 212220. doi:10.1556/2006.6.2017.021Google Scholar
Van Gordon, W., Shonin, E. & Griffiths, M. D. (2016). Meditation awareness training for the treatment of sex addiction: A case study. Journal of Behavioral Addictions, 5(2), 363372. doi:10.1556/2006.5.2016.034Google Scholar
Volkow, N. D., Wang, G. & Baler, R. D. (2011). Reward, dopamine, and the control of food intake: Implications for obesity. Trends in Cognitive Sciences, 15(1), 3746.Google Scholar
Warlow, S. M., et al. (2020). Sensitization of incentive salience and the transition to addiction. In Sussman, S. (Ed.) The Cambridge Handbook of Substance and Behavioral Addictions. Cambridge, UK: Cambridge University Press, pp. 2337.Google Scholar
Witkiewitz, K. Bowen, S., Harrop, E. N., et al. (2014). Mindfulness-based treatment to prevent addictive behavior relapse: Theoretical models and hypothesized mechanisms of change. Substance Use & Misuse, 49(5), 513524.Google Scholar
Witkiewitz, K. & Marlatt, G. A. (2005). Emphasis on interpersonal factors in a dynamic model of relapse. American Psychologist, 60(4), 341342. doi:10.1037/0003-066X.60.4.341Google Scholar
Yau, Y. H. C., Gottlieb, C. D., Krasna, L. C. & Potenza, M. N. (2014). Food addiction – Chapter 7: Evidence, evaluation, and treatment. In Behavioral Addictions, pp. 143–184.Google Scholar

References

American Psychiatric Association (2013). Diagnostic and Statistical Manual of Mental Disorders (5th edition). Arlington: American Psychiatric Association.Google Scholar
American Psychiatric Association (2018). Position Statement on Inquiries about Diagnosis and Treatment of Mental Disorders in Connection with Professional Credentialing and Licensing.Google Scholar
Americans with Disabilities Act, 42 U.S.C. sections 12101, et seq., 12102(1)(A), 12114, 12210, 12211, 12214.Google Scholar
Azim, A. (2018). Note: Common sense; Rethinking the new Common Rule’s weak protections for human subjects. Vanderbilt Law Review, 71, 17041736.Google Scholar
Belmont Report (1979). National Commission for the Protection of Human Subjects of Biomedical and Behavioral Research. The Belmont Report: Ethical Principles and Guidelines for the Protection of Human Subjects of Research. www.hhs.gov/ohrp/sites/default/files/the-belmont-report-508c_Final.pdf.Google Scholar
Bollas, C. & Sundelson, D. (1995) The New Informants: The Betrayal of Confidentiality in Psychoanalysis and Psychotherapy. Northvale, N.J.: Jason Aronson, Inc.Google Scholar
Bower v. Bower, 758 So.2d 405 (Miss. 2000).Google Scholar
California Business and Professions Code sections 740-742, 2241.5.Google Scholar
California Civil Code sections 43.92, 51, 51.5, 56.10(c)(19), 56.104, 56.35.Google Scholar
California Confidentiality of Medical Information Act, Civil Code sections 56.10(c)(19), 56.104, 56.35.Google Scholar
California Constitution, Article I, sections 1 and 13.Google Scholar
California Evidence Code sections 990-1007. Physician-patient privilege.Google Scholar
California Evidence Code sections 995, 1015.Google Scholar
California Evidence Code sections 1010-1027. Psychotherapist-patient privilege.Google Scholar
California Health and Safety Code sections 11165.4, 11480-11481, 11812, 11845.5, 24170-24179.5, 111515-111545, 123100-123149.5.Google Scholar
California Insurance Code sections 791.01-791.22. California Insurance Information And Privacy Protection Act.Google Scholar
California Penal Code sections 1203.067(b)(3), 3500, 3521-3523.Google Scholar
California Welfare and Institutions Code section 5328-5330. Lanterman, Petris, Short Act confidentiality provisions.Google Scholar
Centers for Disease Control and Prevention (2016), Guideline for Prescribing Opioids for Chronic Pain. www.cdc.gov/drugoverdose/pdf/Guidelines_Factsheet-a.pdf.Google Scholar
Cox v. Miller, 296 F.3d 89 (2d Cir. 2002).Google Scholar
Hason v. Medical Board of California, 279 F.3d 1167 (9th Cir. 2002).Google Scholar
Hedegaard, H., Minino, A. & Warner, M. (2018). Drug Overdose Deaths in the United States, 1999–2017. National Center for Health Statistics Data Brief No. 329, Nov. 2018. www.cdc.gov/nchs/products/databriefs/db329.htm.Google Scholar
In Re: Menna, 11 Cal.4th 975 (1995).Google Scholar
Jaffee v. Redmond, 116 S.Ct. 1923 (1996).Google Scholar
Lewis v. Superior Court, 3 Cal.5th 561 (2017).Google Scholar
Medical Board of California (2010). Guidelines for Prescribing Controlled Substances for Pain.Google Scholar
Medical Board of California (2018). Authorization for Release of Alcohol and Drug Abuse Information.Google Scholar
National Alliance for Model State Drug Laws (2014) Prescription Drug Abuse, Addiction and Diversion, Part 1. www.namsdl.org/library/884CB2C5-1372-636C-DD54DCC00FD31313/.Google Scholar
People v. Ignacio Garcia, 2 Cal.5th 792 (2017).Google Scholar
People v. Gonzales, 56 Cal.4th 353, 371-372 (2013).Google Scholar
Petersen, A., Peters, S. C., Richard, M. H. & Whites, A. (2018). State legislative responses to the opioid crisis: Leading examples. Journal of Health & Life Sciences Law, Feb. 2018, 11, 30.Google Scholar
Powell v. Texas, 392 U.S. 514 (1968).Google Scholar
Robinson v. California, 370 U.S. 660 (1962).Google Scholar
Roe v. Wade, 410 U.S. 113, 93 S.Ct. 705 (1973).Google Scholar
SAMHSA (2017). Substance Abuse Confidentiality Regulations, Frequently Asked Questions (FAQs regarding the Substance Abuse Confidentiality Regulations). September 15, 2017. www.samhsa.gov/about-us/who-we-are/laws-regulations/confidentiality-regulations.htm.Google Scholar
Secretary’s Advisory Committee on Human Research Protection (SACHRP) (2017). Attachment B to December 12, 2017, SACHRP Letter to the HHS Secretary Recommendations on the Interpretation and Application of Exemption §_.104(d)(4), the “HIPAA Exemption”. www.hhs.gov/ohrp/sachrp-committee/recommendations/attachment-b-december-12-2017/index.html.Google Scholar
Seth, P., Scholl, L., Rudd, R. & Bacon, S. (2018). Overdose deaths involving opioids, cocaine, and psychostimulants in United States, 2015–2016. Centers for Disease Control and Prevention, Morbidity, Mortality Weekly Report, March 30, 2018, 67(12), 349358. www.cdc.gov/mmur/volume/67/wr/mm6712al.htm.Google Scholar
Slater, M. (2018) Note: Is Powell still valid? The Supreme Court’s changing stance on cruel and unusual punishment. Virginia Law Review, 104, 547588.Google Scholar
SUPPORT ACT (Public Law No. 115-271).Google Scholar
Surgeon General of the United States (1999). Mental Health – A Report of the Surgeon General, Chapter 7, pp. 440–441. https://profiles.nlm.nih.gov/ps/access/NNBBHS.pdf.Google Scholar
Tarasoff v. Regents of the University of California, 17 Cal.3d 425 (1976).Google Scholar
Unger, D. (2014). Student note: Minding your meds: Balancing the needs for patient privacy and law enforcement in prescription drug monitoring programs. West Virginia Law Review, 117, 345388.Google Scholar
United States Constitution, Fourth Amendment, Eighth Amendment.Google Scholar
United States Sentencing Guidelines (2004) Section 5K2.13.Google Scholar
U.S. v. Brooks, 628 F.3d 79 (6th Cir. 2011).Google Scholar
U.S. v. Caro, 309 F.3d 1348 (11th Cir. 2002).Google Scholar
U.S. v. Carucci, 33 F.Supp.2d 302 (S.D.N.Y. 1999).Google Scholar
U.S. v. Davis, 182 Fed.Appx. 741 (9th Cir. 2006).Google Scholar
U.S. v. Lighthall, 389 F.3d 791 (8th Cir. 2004).Google Scholar
U.S. v. Liu, 267 F.Supp.2d 371 (E.D.N.Y. 2003).Google Scholar
U.S. v. Miller, 178 Fed.Appx. 70 (2d Cir. 2006).Google Scholar
U.S. v. Long, 185 F.Supp.2d 30 (D.D.C. 2001).Google Scholar
U.S. v. Romualdi, 101 F.3d 971 (3d Cir. 1996).Google Scholar
U.S. v. Sadolsky, 234 F.3d 938 (6th Cir. 2000).Google Scholar
Venezia v. U.S., 884 F.Supp. 919 (D.N.J. 1995) affd. without opin., 77 F.3d 465 (3d Cir. 1995).Google Scholar
Webb v. Smart Document Solutions, LLC, 499 F.3d 1078, 1081 (9th Cir. 2007).Google Scholar
Whalen v. Roe, 429 U.S. 589, 97 S.Ct. 869 (1977).Google Scholar
21 C.F.R. Parts 50 and 56.Google Scholar
21 U.S.C. sections 822-824.Google Scholar
42 C.F.R. Part 2.Google Scholar
42 U.S.C. section 280g-3.Google Scholar
42 U.S.C. section 290dd-2.Google Scholar
42 U.S.C. section 300gg-22.Google Scholar
42 U.S.C. sections 1320d, et seq.Google Scholar
42 U.S.C section 12132.Google Scholar
45 C.F.R. Part 46.Google Scholar
45 C.F.R. Parts 160 and 164.Google Scholar
45 C.F.R. sections 164.508 and 164.512.Google Scholar
82 Federal Register 6053, Confidentiality of Substance Use Disorder Patient Records (2017).Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Ongoing and Future Research Directions
  • Edited by Steve Sussman, University of Southern California
  • Book: The Cambridge Handbook of Substance and Behavioral Addictions
  • Online publication: 13 July 2020
  • Chapter DOI: https://doi.org/10.1017/9781108632591.030
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Ongoing and Future Research Directions
  • Edited by Steve Sussman, University of Southern California
  • Book: The Cambridge Handbook of Substance and Behavioral Addictions
  • Online publication: 13 July 2020
  • Chapter DOI: https://doi.org/10.1017/9781108632591.030
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Ongoing and Future Research Directions
  • Edited by Steve Sussman, University of Southern California
  • Book: The Cambridge Handbook of Substance and Behavioral Addictions
  • Online publication: 13 July 2020
  • Chapter DOI: https://doi.org/10.1017/9781108632591.030
Available formats
×