Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-m9pkr Total loading time: 0 Render date: 2024-07-11T15:27:42.663Z Has data issue: false hasContentIssue false

Bibliography

Published online by Cambridge University Press:  28 October 2009

John S. Barlow
Affiliation:
Massachusetts General Hospital and Harvard Medical School
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, J. C. (1986). Neuronal morphology in the human cochlear nucleus. Arch. Otolarnyngo. 112: 1253–1261CrossRefGoogle ScholarPubMed
Aiba, A., Kano, M., Chen, C., Stanton, M. E., Fox, G. D., Herrup, K., Zwingman, T. A., and Tonegawa, S. (1994). Deficient cerebellar long-term depression and impaired motor learning in mGluR1 mutant mice. Cel. 79: 377–388Google ScholarPubMed
Akshoomoff, N. A., and Courchesne, E., (1992). A new role for the cerebellum in cognitive operations. Behav. Neurosc. 106: 731–738CrossRefGoogle ScholarPubMed
Albus, J. S. (1971). A theory of cerebellar function. Math. Biosc. 10: 25–61CrossRefGoogle Scholar
Albus, J. S. (1975a). A new approach to manipulator control: the cerebellar model articulation controller (CMAC). J. Dyn. Sys. Meas. Cont. 97: 220–227CrossRefGoogle Scholar
Albus, J. S. (1975b). Data storage in the cerebellar model articulation controller (CMAC). J. Dyn. Sys. Meas. Con. 97: 228–233CrossRefGoogle Scholar
Allen, G. I., and Tsukahara, N. (1974). Cerebrocerebellar communication systems. Physiol. Re. 54: 957–1006CrossRefGoogle ScholarPubMed
Altman, J., and Bayer, S. A. (1997). Development of the Cerebellar System in Relation to Its Evolution, Structure, and Functions. New York: CRC Press, pp. 20–22
Anastasio, T. J. (1992). Simulating vestibular compensation using recurrent back-propagation. Biol. Cyber. 66: 389–397CrossRefGoogle ScholarPubMed
Anastasio, T. J., and Robinson, D. A. (1989a). The distributed representation of vestibulo-oculomotor signals by brain-stem neurons. Biol. Cybern. 61: 79–88CrossRefGoogle Scholar
Anastasio, T. J., and Robinson, D. A. (1989b). Distributed parallel processing in the vestibulo-oculomotor system. Neural Comput. 1: 230–241CrossRefGoogle Scholar
Anastasio, T. J., and Robinson, D. A. (1990). Distributed parallel processing in the vertical vestibulo-ocular reflex: learning networks compared to tensor theory. Biol. Cyber. 63: 161–167CrossRefGoogle ScholarPubMed
Andersen, R. A., Snyder, L. H., Li, C.-S., and Stricanne, B. (1993). Coordinate transformation in the representation of spatial information. Curr. Opin. Neurobio. 3: 171–176CrossRefGoogle Scholar
Andersson, G., and Oscarsson, O. (1978). Climbing fiber microzones in cerebellar vermis and their projection to different groups of cells in the lateral vestibular nucleus. Exp. Brain Re. 32: 565–579Google ScholarPubMed
Apps, R. (2000). Gating of climbing fibre input to cerebellar cortical zones. Progr. Brain Re. 124: 199–211Google ScholarPubMed
Apps, R., and Garwicz, M. (2000). Precise matching of olivo-cortical divergence and cortico-nuclear convergence between somatotopically corresponding areas in the medial C1 and medial C3 zones of the paravermal cerebellum. Eur. J. Neurosci. 12: 205–214CrossRefGoogle ScholarPubMed
Apps, R., and Lee, S. (1999). Gating of transmission in climbing fibre paths to cerebellar cortical C1 and C3 zones in the rostral paramedian lobule during locomotion in the cat. J. Physio. 5163: 875–883CrossRefGoogle Scholar
Arbib, M. A. (ed.). (1998). Handbook of Brain Theory and Neural Networks. Cambridge, MA: MIT Press
Arbib, M. A., and Amari, S.-I. (1985). Sensori-motor transformations in the brain (with a critique of the tensor theory of cerebellum). J. Theoret. Bio. 112: 123–155CrossRefGoogle Scholar
Arbib, M. A., Schweighofer, N., and Thach, W. T. (1995). Modeling the cerebellum: from adaptation to coordination. In: D. J. Glencross and J. P. Pick (eds.), Motor Control and Sensory Motor Integration: Issues and Directions. Amsterdam: Elsevier, pp. 11–36CrossRef
Ariëns Kappers, C. U., Huber, G. C., and Crosby, E. C. (1960). The Comparative Anatomy of the Nervous System of Vertebrates, Including Man, 3 vols. New York: Hafner
Armstrong, D. M. (1974). Functional significance of connections of the inferior olive. Physiol. Re. 54: 358–417CrossRefGoogle ScholarPubMed
Arnold, D. B., and Robinson, D. A. (1991). A learning network model of the neural integrator of the oculomotor system. Biol. Cybern. 64: 447–454CrossRefGoogle ScholarPubMed
Arnold, D. B., and Robinson, D. A. (1992). A neural network model of the vestibular-ocular reflex using a local synaptic learning rule. Philos. Trans. R. Soc. Lond. B, Biol. Sci. 337: 327–330CrossRefGoogle Scholar
Arnold, D. B., and Robinson, D. A. (1997). The oculomotor integrator: testing of a neural network model. Exp. Brain Res. 113: 57–74CrossRefGoogle ScholarPubMed
Asanuma, H. (1996). Neuronal mechanisms subserving the acquisition of new skilled movements in mammals. In: J. R. Bloedel, T. J. Ebner, and S. P. Wise (eds.), The Acquisition of Motor Behavior in Vertebrates. Cambridge, MA: MIT Press, pp. 387–390
Asanuma, C., Thach, W. T., and Jones, E. G. (1983a). Distribution of cerebellar terminations and their relation to other afferent terminations in the ventral lateral thalamic region of the monkey. Brain Res. Rev. 5: 237–265CrossRefGoogle Scholar
Asanuma, C., Thach, W. T., and Jones, E. G. (1983b). Brainstem and spinal projections of the deep cerebellar nuclei in the monkey, with observations on the brainstem projections of the dorsal column nuclei. Brain Res. Re. 5: 299–322CrossRefGoogle Scholar
Åström, K. J. (1995). Adaptive control: general methodology. In M. A. Arbib (ed.), The Handbook of Brain Theory and Neural Networks. Cambridge, MA: MIT Press, pp. 66–69
Åström, K. J., and Wittenmark, B. (1995). Adaptive Control (2nd ed.). Reading, MA: Addison-Wesley
Azizi, S. A., and Woodward, D. J. (1987). Inferior olivary nuclear complex of the rat: morphology and comments on the principles of organization within the olivocerebellar system. J. Comp. Neuro. 263: 467–484CrossRefGoogle ScholarPubMed
Baker, R., and Gilland, E. (1996). The evolution of hindbrain visual and vestibular innovations responsible for oculomotor function. In J. R. Bloedel, T. J. Ebner, and S. P. Wise (eds.), The Acquisition of Motor Behavior in Vertebrates. Cambridge, MA: MIT Press, pp. 29–55
Balaban, C. D., and Beryozkin, G. (1994). Organization of vestibular nucleus projections to the caudal dorsal cap of Kooy in rabbits. Neuroscienc. 62: 1217–1236CrossRefGoogle ScholarPubMed
Balaban, C. D., Kawaguchi, Y., and Watanabe, E. (1981). Evidence of a collateralized climbing fiber projection from the inferior olive to the flocculus and vestibular nuclei in rabbits. Neurosci. Lett. 22: 23–29CrossRefGoogle ScholarPubMed
Barinaga, M. (1996). The cerebellum: movement coordinator or much more?Scienc. 272: 482–483CrossRefGoogle ScholarPubMed
Barlow, J. S. (1964). Inertial navigation as a basis for animal navigation. J. Theoret. Bio. 6: 76–117CrossRefGoogle ScholarPubMed
Barlow, J. S. (1966). Inertial navigation in relation to animal navigation. J. Inst. Navigation (Lond.) 19: 302–316CrossRefGoogle Scholar
Barlow, J. S. (1985). Methods of analysis of nonstationary EEGs, with emphasis on segmentation techniques: a comparative review. J. Clin. Neurophysio. 2: 267–364CrossRefGoogle ScholarPubMed
Barlow, J. S. (1993). The Electroencephalogram: Its Patterns and Origins. Cambridge, MA: MIT Press
Barto, A. G., Buckingham, J. T., and Houk, J. C. (1996). In D. S. Touretsky, M. C. Mozer, and M. E. Hasselmo (eds.), Advances in Neural Information Processing Systems 8. Cambridge, MA: MIT Press, pp. 138–144
Barto, A. G., Fagg, A. H., Sitkoff, N., and Houk, J. C. (1999). A cerebellar model of timing and prediction in the control of reaching. Neural Compu. 11: 565–594CrossRefGoogle ScholarPubMed
Bastian, A. J., and Thach, W. T. (1995). Cerebellar outflow lesions: a comparison of movement deficits resulting from lesions at the levels of the cerebellum and thalamus. Ann. Neuro. 38: 881–892CrossRefGoogle ScholarPubMed
Bastian, A. J., Martin, T. A., Keating, J. G., and Thach, W. T. (1996). Cerebellar ataxia: abnormal control of interaction torques across multiple joints. J. Neurophysio. 76: 492–509CrossRefGoogle ScholarPubMed
Bastian, A. J., Zackowski, K. M., and Thach, W. T. (2000). Cerebellar ataxia: torque deficiency or torque mismatch between joints?J. Neurophysio. 83: 3019–3030CrossRefGoogle ScholarPubMed
Bastian, J. (1993). Descending control of electroreception in gymnotid fish: contrasting properties of direct and indirect feedback pathways. J. Comp. Physiol. A. 173: 670–673Google Scholar
Batini, C., Buisseret-Delmas, C., Compoint, C., and Daniel, H. (1989). The GABAergic neurones of the cerebellar nuclei in the rat: projections to the cerebellar cortex. Neurosci. Lett. 99: 251–256CrossRefGoogle ScholarPubMed
Batini, C., Compoint, C., Buisseret-Delmas, , Daniel, H., and Guegan, M. (1992). Cerebellar nuclei and the nucleocortical projections in the rat: retrograde tracing coupled to GABA and glutamate immunohistochemistry. J. Comp. Neurol. 315: 74–84CrossRefGoogle ScholarPubMed
Bäurle, J., Helmchen, C., and Grüsser-Cornehls, U. (1997). Diverse effects of Purkinje cell loss on deep cerebellar and vestibular nuclei neurons in Purkinje cell degeneration mutant mice: a possible compensatory mechanism. J. Comp. Neuro. 384: 580–5963.0.CO;2-Z>CrossRefGoogle ScholarPubMed
Bell, C., Bodznick, D., Montgomery, J., and Bastian, J. (1997). The generation and subtraction of sensory expectations within cerebellum-like structures. Brain Behav. Evol. 50 (suppl. 1): 17–31CrossRefGoogle ScholarPubMed
Bell, C., Cordo, P., and Harnad, S. (1996). Controversies in neuroscience IV: motor learning and synaptic plasticity in the cerebellum: introduction. Behav. Brain Sci. 19: ⅴ–ⅵCrossRefGoogle Scholar
Bell, C. C. (1986). Electroreception in mormyrid fish: central physiology. In: T. H. Bullock and W. Heiligenberg (eds.), Electroreception. New York: Wiley, pp. 423–452
Bell, C. C. (1993). The generation of expectations in the electrosensory lobe of mormyrid fish. J. Comp. Physiol. A. 173: 677–680Google Scholar
Bell, C. C., and Szabo, T. (1986). Electroreception in mormyrid fish: central anatomy. In: T. H. Bullock and W. Heiligenberg (eds.), Electroreception. New York: John Wiley, pp. 375–421
Bell, C. C., Han, V. Z., Sugawara, Y., and Grant, K., (1997). Synaptic plasticity in a cerebellum-like structure depends on temporal order. Natur. 387: 278–281CrossRefGoogle Scholar
Bennett, M., (1969). Discussion of Oscarsson (1969), In R. Llinás (ed.), Neurobiology of Cerebellar Evolution and Development. Chicago: American Medical Association Educational and Research Foundation, p. 536
Berkley, K. J., and Worden, I. G. (1978). Projections to the inferior olive of the cat: comparisons of input from the dorsal column nuclei, the lateral cervical nucleus, the spino-olivary pathways, the cerebral cortex and the cerebellum. J. Comp. Neurol. 180: 237–252CrossRefGoogle ScholarPubMed
Berrebi, A. S., and Mugnaini, E. (1991). Distribution and targets of the cartwheel cell axon in the dorsal cochlear nucleus of the guinea pig. Anat. Embryol. 183: 427–454CrossRefGoogle ScholarPubMed
Berrebi, A. S., and Mugnaini, E. (1993). Alterations in the dorsal cochlear nucleus of cerebellar mutant mice. In M. A. Merchán, J. M. Juiz, D. A. Godfrey, and E. Mugnaini (eds.), The Mammalian Cochlear Nuclei: Organization and Function. New York: Plenum, pp. 107–119CrossRef
Berrebi, A. S., Morgan, J. I., and Mugnaini, E. (1990). The Purkinje cell class may extend beyond the cerebellum. J. Neurocytol. 19: 643–654CrossRefGoogle ScholarPubMed
Berthier, N. E., Singh, S. P., and Barto, A. G. (1993). Distributed representation of limb motor programs in arrays of adjustable pattern generators. J. Cogn. Neurosci. 5: 56–78CrossRefGoogle ScholarPubMed
Berthier, N. E., Singh, S. P., Barto, A. G., and Houk, J. C. (1992). A cortico-cerebellar model that learns to generate distributed motor commands to control a kinematic arm. In J. E. Moody, S. J. Hanson, and R. P. Lippmann (eds.), Advances in Neural Information Processing Systems 4. San Mateo, CA: Morgan Kaufmann, pp. 611–618
Blakemore, S.-J., Frith, C. D., and Wolpert, D. M. (1999). Spatio-temporal prediction modulates the perception of self-produced stimuli. J. Cogn. Neurosci. 11: 551–559CrossRefGoogle ScholarPubMed
Blakemore, S.-J., Wolpert, D. M., and Frith, C. D. (1999). The cerebellum contributes to somatosensory cortical activity during self-produced tactile stimulation. Neuroimag. 10: 448–459CrossRefGoogle ScholarPubMed
Bloedel, J. R. (1992). Functional heterogeneity with structural homogeneity: how does the cerebellum operate?Behav. Brain Sci. 15: 666–678Google Scholar
Bloedel, J. R. (1993). ‘Involvement in’ versus ‘storage of.’ Trends Neurosci. 16: 451–452CrossRefGoogle ScholarPubMed
Bloedel, J. R., and Bracha, V. (1995). On the cerebellum, cutaneomuscular reflexes, movement control and the elusive engrams of memory. Behavi. Brain Res. 68: 1–44CrossRefGoogle Scholar
Bloedel, J. R., and Bracha, V. (1998). Current concepts of climbing fiber function. Anat. Rec. 253: 118–1263.0.CO;2-P>CrossRef
Bloedel, J. R., and Courville, J. (1981). Cerebellar afferent systems. In V. B. Brooks (ed.), Handbook of Physiology Vol. II, Motor Control, Part 2. Bethesda: American Physiological Society, pp. 735–829
Bloedel, J. R., and Kelly, T. M. (1992). The dynamic selection hypothesis: a proposed function for cerebellar sagittal zones. In: R. Llinás and C. Sotelo (eds.), The Cerebellum Revisited. New York: Springer-Verlag, pp. 267–282CrossRef
Bloedel, J. R., and Roberts, W. J. (1971). Action of climbing fibers in cerebellar cortex of the cat. J. Neurophysiol. 34: 17–31CrossRefGoogle ScholarPubMed
Bloedel, J. R., Bracha, V., and Larson, P. S. (1993). Real time operations of the cerebellar cortex. Can. J. Neurol. Sc. 20(suppl. 3): S7–S18Google ScholarPubMed
Bloedel, J. R., Bracha, V., and Milak, M. S. (1993). Role of the cerebellar nuclei in the learning and performance of forelimb movement in the cat. In N. Mano, I. Hamada, and M. R. DeLong (eds.), Role of the Cerebellum and Basal Ganglia in Voluntary Movement. Amsterdam: Elsevier, pp. 21–31
Bloedel, J. R., Bracha, V., Shimansky, Y., and Milak, M. S. (1996). The role of the cerebellum in the acquisition of complex volitional forelimb movements. In J. R. Bloedel, T. J. Ebner, and S. P. Wise (eds.), The Acquisition of Motor Behavior in Vertebrates. Cambridge, MA: MIT Press, pp. 320–330
Blomfield, S., and Marr, D. (1970). How the cerebellum may be used. Natur. 227: 1224–1228CrossRefGoogle Scholar
Blond, O., and Crépel, F. (1996). Letter to the editor. Trends Neurosci. 19: 11Google Scholar
Bodznick, D., and Montgomery, J. C. (1993). The physiology of the dorsal nucleus of elasmobranchs and its descending control. J. Comp. Physiol. A. 173: 680–682Google Scholar
Boose, A., Dichgans, J., and Topka, H. (1999). Deficits in phasic muscle force generation explain insufficient compensation for interaction torque in cerebellar patients. Neurosci. Let. 26: 53–56CrossRefGoogle Scholar
Botez, M. I. (1992). The neuropsychology of the cerebellum: an emerging concept. Arch. Neurol. 49: 321–324CrossRefGoogle Scholar
Bower, J. M. (1995). The cerebellum as sensory acquisition controller: commentary on the underestimated cerebellum by Leiner et al. Hum. Brain Mapp. 2: 255–256CrossRefGoogle Scholar
Bower, J. M. (1997). Is the cerebellum sensory for motor's sake, or motor for sensory's sake: the view from the whiskers of a rat. Progr. Brain Res. 114: 463–496CrossRefGoogle ScholarPubMed
Box, G. E. P., and Jenkins, G. M. (1970). Time Series Analysis: Forecasting and Control. San Francisco: Holden Day
Boxall, A. R., Lancaster, B., and Garthwaite, J. (1996). Tyrosine kinase is required for long-term depression in the cerebellum. Neuro. 16: 805–813Google ScholarPubMed
Boylls, C. C. (1975a). A Theory of Cerebellar Function with Applications to Locomotion. I. The Physiological Role of Climbing Fiber Inputs in Anterior Lobe Operation. Amherst: University of Massachusetts (COINS Tech. Rep. 75C-6)
Boylls, C. C. (1975b). A Theory of Cerebellar Function with Applications to Locomotion. II. The Relation of Anterior Lobe Climbing Fiber Function to Locomotor Behavior in the Cat. Amherst: University of Massachusetts (COINS Tech. Rep. 76–1)
Boylls, C. C. (1980). Cerebellar strategies for movement coordination. In G. E. Stelmach and J. Requin (eds.), Tutorials in Motor Behavior. Amsterdam: North Holland, pp. 83–94CrossRef
Braak, H., and Braak, E. (1984). Local circuit neurons in the cerebellar dentate nucleus of man. In J. R. Bloedel, J. Dichgans, and W. Precht (eds.), Cerebellar Functions. New York: Springer-Verlag, pp. 324–325
Bracha, V., Zhao, L., Wunderlich, D. A., Morrissy, S. J., and Bloedel, J. R. (1997). Patients with cerebellar lesions cannot acquire but are able to retain conditioned eyeblink reflexes. Brai. 120: 1401–1413CrossRefGoogle ScholarPubMed
Braitenberg, V. (1961). Functional interpretation of cerebellar histology. Natur. 190: 539–540CrossRefGoogle Scholar
Braitenberg, V. (1967). Is the cerebellar cortex a biological clock in the millisecond range?Progr. Brain Res. 25: 334–346CrossRefGoogle ScholarPubMed
Braitenberg, V. (1977). On the Texture of Brains (Chapter 7: Analysis of the cerebellum). New York: Springer-Verlag
Braitenberg, V. (1983). The cerebellum revisited. J. Theor. Neurobio. 2: 237–241Google Scholar
Braitenberg, V. (1987). The cerebellum and the physics of movement: some speculations. In M. Glickstein, C. Yeo, and J. Stein (eds.), Cerebellum and Neuronal Plasticity. New York: Plenum, pp. 193–207CrossRef
Braitenberg, V. (1990). Reading the structure of brains. Network: Comput. Neural Syst. 1: 1–11CrossRefGoogle Scholar
Braitenberg, V. (1993). The cerebellar network: attempt at a formalization of its structure. Networ. 4: 11–17CrossRefGoogle Scholar
Braitenberg, V., and Atwood, R. P. (1958). Morphological observations on the cerebellar cortex. J. Comp. Neuro. 109: 1–27CrossRefGoogle ScholarPubMed
Braitenberg, V., and Preissl, H. (1992). Why is the output of the cerebellum inhibitory?Behav. Brain Sci. 15: 715–717Google Scholar
Braitenberg, V., Heck, D., and Sultan, F. (1997). The detection and generation of sequences as a key to cerebellar function: experiments and theory. Behav. Brain Sci. 20: 229–245CrossRefGoogle ScholarPubMed
Brand, S., Dahl, A.-L., and Mugnaini, E. (1976). The length of parallel fibers in the cat cerebellar cortex. An experimental light and electron microscopic study. Exp. Brain Re. 26: 39–58Google ScholarPubMed
Bravin, M., Rossi, F., and Strata, P. (1995). Different climbing fibers innervate separate dendritic regions of the same Purkinje cell in hypogranular cerebellum. J. Comp. Neurol. 357: 395–407CrossRefGoogle ScholarPubMed
Brazier, M. A. B. (1988). A History of Neurophysiology in the 19th Century. New York: Raven Press, pp. 131–133
Brindley, G. S. (1964). The use made by the cerebellum of the information that it receives from sense organs (report on symposia and meetings). IBRO Bull. 3(3): 80Google Scholar
Brodal, A. (1967). Anatomical studies of cerebellar fibre connections with special reference to problems of functional localization. Progr. Brain Re. 25: 135–173CrossRefGoogle ScholarPubMed
Brodal, A. (1981). Neurological Anatomy in Relation to Clinical Medicine (3rd ed.). Oxford, England: Oxford University Press
Brodal, A., and Drabl⊘s, P. A. (1963). Two types of mossy fiber terminals in the cerebellum and their regional distribution. J. Comp. Neuro. 121: 173–187CrossRefGoogle ScholarPubMed
Brodal, A., and Jansen, J. (1954). Structural organization of the cerebellum. In J. Jansen and A. Brodal (eds.), Aspects of Cerebellar Anatomy. Oslo: Johan Grundt Tanum Forlag, pp. 285–395
Brodal, A., and Kawamura, K. (1980). Olivocerebellar projections: a review. Adv. Anat. Embryol. Cell Bio. 64: 1–140Google ScholarPubMed
Brodal, P. (1998). The Central Nervous System: Structure and Function (2nd ed.). Oxford, England: Oxford University Press
Brodal, P., and Bjaalie, J. G. (1997). Salient anatomic features of the cortico-ponto-cerebellar pathway. Progr. Brain Res. 114: 227–247CrossRefGoogle ScholarPubMed
Buisseret-Delmas, C., and Angaut, P. E. (1989). Anatomical mapping of the cerebellar nucleocortical projections in the rat: a retrograde labeling study. J. Comp. Neurol. 288: 297–310CrossRefGoogle ScholarPubMed
Bullock, D., Fiala, J. C., and Grossberg, S. (1994). A neural model of timed response learning in the cerebellum. Neural Netw. 7: 1101–1114CrossRefGoogle Scholar
Bullock, T. H. (1969). Discussion of Oscarsson (1969), In R. Llinás (ed.), Neurobiology of Cerebellar Evolution and Development. Chicago: American Medical Association and Research Foundation, p. 536
Bullock, T. H. (1986). Significance of findings on electroreception for general neurobiology. In: T. H. Bullock and W. Heiligenberg (eds.), Electroreception. New York: John Wiley, pp. 651–674
Buonomano, D. V., and Mauk, M. D. (1994). Neural network model of the cerebellum: temporal discrimination and the timing of motor responses. Neural Comput. 6: 38–55CrossRefGoogle Scholar
Butler, A. B., and Hodos, W. (1996). Comparative Vertebrate Neuroanatomy: Evolution and Adaptation. (Chapter 12: The cerebellum.) New York: Wiley-Liss, pp. 180–197
Cabeza, R., and Nyberg, L. (2000). Imaging cognition II: an empirical review of 275 PET and fMRI studies. J. Cogn. Neurosc. 12: 1–47CrossRefGoogle ScholarPubMed
Calne, D. B. (1959). Pathways converging upon Purkinje cells in the frog's cerebellum. J. Physiol. 146: 459–464CrossRefGoogle ScholarPubMed
Calvert, T. W., and Meno, F. (1972). Neural systems modeling applied to the cerebellum. IEEE Trans. Sys. Man Cybern. SMC-. 2: 363–374CrossRefGoogle Scholar
Cant, N. B. (1992). The cochlear nucleus: neuronal types and their synaptic organization. In: D. B. Webster, A. N. Popper, and R. R. Fay (eds.), The Mammalian Auditory Pathway: Neuroanatomy. New York: Springer, pp. 66–116CrossRef
Caroni, P. (1997). Overexpression of growth-associated proteins in the neurons of adult transgenic mice. J. Neurosci. Method. 71: 3–9CrossRefGoogle ScholarPubMed
Casini, L., and Ivry, R. B. (1999). Effects of divided attention on temporal processing in patients with lesions of the cerebellum or frontal lobe. Neuropsycholog. 13: 10–21CrossRefGoogle ScholarPubMed
Caston, J., Vasseur, F., Stelz, T., Chianale, C., Delhaye-Bouchaud, N., and Mariani, J. (1995). Differential roles of cerebellar cortex and deep cerebellar nuclei in the learning of the equilibrium behavior: studies in intact and cerebellectomized lurcher mutant mice. Brain Res. Dev. Brain Re. 86: 311–316CrossRefGoogle ScholarPubMed
Catalan, M. J., Honda, M., Weeks, R. A., Cohen, L. G., and Hallett, M. (1998). The functional neuroanatomy of simple and complex sequential finger movements: a PET study. Brai. 121: 253–264CrossRefGoogle ScholarPubMed
Chan-Palay (1982). Discussion of Tolbert, D. L. (1982). The cerebellar nucleocortical pathway. In S. L. Palay and V. Chan-Palay (eds.), The Cerebellum – New Vistas. Berlin: Springer Verlag, pp. 296–319
Chan-Palay, V. (1977). Cerebellar Dentate Nucleus. New York: Springer-Verlag
Chapeau-Blondeau, F., and Chauvet, G. (1991). A neural network model of the cerebellar cortex performing dynamic associations. Biol. Cyber. 65: 267–279CrossRefGoogle ScholarPubMed
Chen, C., Kano, M., Abeliovich, A., Chen, L., Bao, S., Kim, J. J., Hashimoto, K., Thompson, R. F., and Tonegawa, S. (1995). Impaired motor coordination correlates with persistent multiple climbing fiber innervation in PKCgamma mutant mice. Cel. 83: 1233–1242CrossRefGoogle Scholar
Chen, G., Hanson, C. L., and Ebner, T. J. (1998). Optical responses evoked by cerebellar surface stimulation in vivo using neutral red. Neuroscience. 84: 645–668CrossRefGoogle ScholarPubMed
Clark, H. B., and Orr, H. T. (2000). Spinocerebellar ataxia Type 1 – modeling the pathogenesis of a polyglutamine neurodegenerative disorder in transgenic mice. J. Neuropathol. Exp. Neuro. 59: 265–270CrossRefGoogle ScholarPubMed
Clarke, E., and O'Malley, C. D. (1968). Chapter 11: The cerebellum. In The Human Brain and Spinal Cord: A Historical Study Illustrated by Writings from Antiquity to the Twentieth Century. Berkeley Los Angeles: University of California Press, pp. 628–707
Coenen, O. (1999). Learning to make predictions in the cerebellum may explain the anticipatory modulation of the vestibulo-ocular reflex (VOR) with vergence. In Modeling the Vestibulo-Ocular Reflex and the Cerebellum: Analytical & Computational Approaches. Ph.D. Dissertation, University of California, San Diego, pp. 74–95
Coenen, O., Seijnowski, T. J., and Lisberger, S. G. (1992). Biologically plausible local learning rules for the adaptation of the vestibulo-ocular reflex. In S. J. Hanson, J. D. Cowan, and C. L. Giles (eds.), Advances in Neural Information Processing Systems 5. San Mateo, CA: Morgan Kaufmann Publishers, pp. 961–968
Cohen, B., Reisine, H., Yokota, J.-I., and Raphan, T. (1992). The nucleus of the optic tract: its function in gaze stabilization and control of visual-vestibular interaction. Ann. N. Y. Acad. Sc. 656: 277–296CrossRefGoogle ScholarPubMed
Cohen, D., and Yarom, Y. (2000). Unraveling cerebellar circuitry: an optic imaging study. Progr. Brain Res. 124: 107–114CrossRefGoogle Scholar
Cole, J. D. (1991). Pride and a Daily Marathon. London: Duckworth Reprinted (1995), Cambridge, MA: MIT Press
Contreras-Vidal, J. L., Bloedel, J. R., and Stelmach, G. E. (1995). A network model of the sagittal olivo cerebellar complex. Soc. Neurosci. 21: 216Google Scholar
Contreras-Vidal, J. L., Grossberg, S., and Bullock, D. (1997). A neural model of cerebellar learning for arm movement control: cortico-spino-cerebellar dynamics. Learn. Mem. 3: 475–502CrossRefGoogle ScholarPubMed
Courchesne, E., and Allen, G. (1997). Prediction and preparation, fundamental functions of the cerebellum. Learn. Mem. 4: 1–35CrossRefGoogle ScholarPubMed
Courville, J., de Montigny, C., and Lamarre, Y. (1980). (Eds.) The Inferior Olivary Nucleus: Anatomy and Physiology. New York: Raven Press
Courville, J., and Otabe, S. (1974). The rubro-olivary projection in the macaque: an experimental study with silver impregnation methods. J. Comp. Neuro. 158: 479–494CrossRefGoogle ScholarPubMed
Cowan, J. D., and Sharp, D. H. (1988a). Neural nets. Q. Rev. Biophys. 21: 365–427CrossRefGoogle Scholar
Cowan, J. D., and Sharp, D. H. (1988b). Neural nets and artificial intelligence. Daedalu. 117(1): 85–121Google Scholar
Crépel, F., Audinat, E., Daniel, H., Hemart, N., Jaillard, D., Rossiter, J., and Lambolez, B. (1994). Cellular locus of the nitric oxide-synthase involved in cerebellar long-term depression induced by high external potassium concentration. Neuropharmacolog. 33: 1399–1405CrossRefGoogle ScholarPubMed
Crépel, F., Hemart, N., Jaillard, D., and Daniel, H. (1996). Cellular mechanisms of long-term depression in the cerebellum. Behav. Brain Sci. 19: 347–353CrossRefGoogle Scholar
Crick, F. (1984). Function of the thalamic reticular complex: the searchlight hypothesis. Proc. Natl. Acad. Sci. USA. 81: 4586–4590CrossRefGoogle ScholarPubMed
Crispino, L., and Bullock, T. H. (1984). Cerebellum mediates modality-specific modulation of sensory responses of midbrain and forebrain in rat. Proc. Natl. Acad. Sci. USA. 81: 2917–2920CrossRefGoogle ScholarPubMed
Crosby, E. C. (1969). Comparative aspects of cerebellar morphology. In R. Llinás (ed.), Neurobiology of Cerebellar Evolution and Development. Chicago: American Medical Association Educational and Research Foundation, pp. 19–41
Cummings, C. J., Orr, H. T., and Zoghbi, H. Y. (1999). Progress in pathogenesis studies of spinocerebellar ataxia type 1. Philos. Trans. R. Soc. Lond. B Biol. Sc. 354: 1079–1081CrossRefGoogle ScholarPubMed
D'Angelo, E., Rossi, P., Armano, S., and Taglietti, V. (1999). Evidence for NMDA and mGlu receptor-dependent long-term potentiation of mossy fiber–granule cell transmission in rat cerebellum. J. Neurophysio. 81: 277–287CrossRefGoogle ScholarPubMed
Daniel, H., Levenes, C., and Crépel, F. (1998). Cellular mechanisms of cerebellar LTD. Trends Neurosci. 21: 401–407CrossRefGoogle ScholarPubMed
Davis, K. A., and Young, E. D. (1997). Granule cell activation of complex-spiking neurons in dorsal cochlear nucleus. J. Neurosci. 17: 6798–6806CrossRefGoogle ScholarPubMed
Davis, K. A., Miller, R. L., and Young, E. D. (1996). Effects of somatosensory and parallel-fiber stimulation on neurons in dorsal cochlear nucleus. J. Neurophysiol. 76: 3012–3024CrossRefGoogle ScholarPubMed
Day, B. L., Thompson, P. D., Harding, A. E., and Marsden, C. D. (1998). Influence of vision on upper limb reaching movements in patients with cerebellar ataxia. Brai. 121: 357–372CrossRefGoogle ScholarPubMed
Schutter, E. (1995). Cerebellar long-term depression might normalize excitation of Purkinje cells: a hypothesis. Trends Neurosci. 18: 291–295CrossRefGoogle ScholarPubMed
Schutter, E. (1996). Reply. Trends Neurosci. 19: 12Google Scholar
Schutter, E. (1997). A new functional role for cerebellar long-term depression. Progr. Brain Res. 114: 529–542CrossRefGoogle ScholarPubMed
Schutter, E., and Bower, J. M., (1994a). An active membrane model of the cerebellar Purkinje cell. I. Simulation of current clamps in slice. J. Neurophysio. 71: 375–400CrossRefGoogle Scholar
Schutter, E., and Bower, J. M., (1994b). An active membrane model of the cerebellar Purkinje cell. II. Simulation of synaptic responses. J. Neurophysiol. 71: 401–419CrossRefGoogle Scholar
Schutter, E., Vos, B., and Maex, R. (2000). The function of cerebellar Golgi cells revisited. Progr. Brain Re. 124: 81–93CrossRefGoogle ScholarPubMed
Zeeuw, C., and Ruigrok, T. J. H. (1994). Olivary projecting neurons in the nucleus of Darkschewitsch in the cat receive excitatory monosynaptic input from the cerebellar nuclei. Brain Re. 653: 345–350CrossRefGoogle ScholarPubMed
Zeeuw, C. I., and Berrebi, A. S. (1995). Postsynaptic targets of Purkinje cell terminals in the cerebellar and vestibular nuclei of the rat. Eur. J. Neurosci. 7: 2322–2323CrossRefGoogle ScholarPubMed
Zeeuw, C. I., and Berrebi, A. S. (1996). Individual Purkinje cell axons terminate on both inhibitory and excitatory neurons in the cerebellar and vestibular nuclei. Ann. N. Y. Acad. Sc. 781: 607–610CrossRefGoogle ScholarPubMed
Zeeuw, C. I., and Koekkoek, S. K. E. (1997). Signal processing in the C2 module of the flocculus and its role in head movement control. Progr. Brain Res. 114: 299–320CrossRefGoogle ScholarPubMed
Zeeuw, C. I., Gerrits, N. M., Voogd, J., Leonard, C. S., and Simpson, J. I. (1994). The rostral dorsal cap and ventrolateral outgrowth of the rabbit inferior olive receive a GABAergic input from dorsal group y and the ventral dentate nucleus. J. Comp. Neurol. 341: 420–432CrossRefGoogle Scholar
Zeeuw, C. I., Hansel, C., Bian, F., Koekkoek, S. K. E., Alphen, A. M., Linden, D. J., and Oberdick, J. (1998). Expression of a protein kinase C inhibitor in Purkinje cells blocks cerebellar LTD and adaptation of the vestibulo-ocular reflex. Neuro. 20: 495–508Google ScholarPubMed
Zeeuw, C. I., Hertzberg, E. L., and Mugnaini, E. (1995). The dendritic lamellar body: a new neuronal organelle putatively associated with dendrodendritic gap junctions. J. Neurosc. 15: 1587–1604CrossRefGoogle ScholarPubMed
Zeeuw, C. I., Holstege, J. C., Ruigrok, T. J. H., and Voogd, J. (1989). Ultrastructural study of the GABAergic, cerebellar, and mesodiencephalic innervation of the cat medial accessory olive: anterograde tracing combined with immunocytochemistry. J. Comp. Neuro. 284: 12–35CrossRefGoogle ScholarPubMed
Zeeuw, C. I., Holstege, J. C., Ruigrok, T. J. H., and Voogd, J. (1990). Mesodiencephalic and cerebellar terminals terminate upon the same dendritic spines in the glomeruli of the cat and rat inferior olive: an ultrastructural study using a combination of [H]leucine and wheat germ agglutinin coupled horseradish peroxidase anterograde tracing. Neuroscienc. 34: 645–655CrossRefGoogle ScholarPubMed
Zeeuw, C. I., Koekkoek, S. K. E., Wylie, D. R. W., and Simpson, J. I. (1997). Association between dendritic lamellar bodies and complex spike synchrony in the olivocerebellar system. J. Neurophysio. 77: 1747–1758CrossRefGoogle ScholarPubMed
Zeeuw, C. I., Ruigrok, T. J. H., Holstege, J. C., Jansen, H. G., and Voogd, J. (1990). Intracellular labeling of neurons in the medial accessory olive of the cat: II. Ultrastructure of dendritic spines and their GABAergic innervation. J. Comp. Neuro. 300: 478–494CrossRefGoogle ScholarPubMed
Zeeuw, C. I., Ruigrok, T. J. H., Holstege, J. C., Schalekamp, M. P. A., and Voogd, J. (1990). Intracellular labeling of neurons in the medial accessory olive of the cat: III. Ultrastructure of axon hillock and initial segment and their GABAergic innervation. J. Comp. Neuro. 300: 495–510CrossRefGoogle ScholarPubMed
Zeeuw, C. I., Simpson, J. I., Hoogenraad, C. C., Galjart, N., Koekkoek, S. K. E., and Ruigrok, T. J. H. (1998). Microcircuitry and function of the inferior olive. Trends Neurosci. 21: 391–400CrossRefGoogle ScholarPubMed
Zeeuw, C. I., Alphen, A. M., Hawkins, R. K., and Ruigrok, T. J. H. (1997). Climbing fibre collaterals contact neurons in the cerebellar nuclei that provide a GABAergic feedback to the inferior olive. Neuroscienc. 80: 981–986Google ScholarPubMed
Zeeuw, C. I., Wentzel, O. P., and Mugnaini, E. (1993). Fine structure of the dorsal cap of the inferior olive and its GABAergic and non-GABAergic input from the nucleus prepositus hypoglossi in rat and rabbit. J. Comp. Neurol. 327: 62–82CrossRefGoogle ScholarPubMed
Zeeuw, C. I., Wylie, D. R., DiGiorgi, P. L., and Simpson, J. I. (1994). Projections of individual Purkinje cells of identified zones in the flocculus to the vestibular and cerebellar nuclei in the rabbit. J. Comp. Neurol. 349: 428–447CrossRefGoogle ScholarPubMed
Dean, P. (1995). Modelling the role of the cerebellar fastigial nuclei in producing accurate saccades: the importance of burst timing. Neuroscience. 68: 1059–1077CrossRefGoogle ScholarPubMed
Dean, P., Mayhew, J. E., and Langdon, P. (1994). Learning and maintaining saccadic accuracy: a model of brainstem-cerebellar interactions. J. Cogn. Neurosc. 6: 117–138CrossRefGoogle ScholarPubMed
Decety, J., Sjöholm, H., Ryding, E., Stenberg, G., and Ingvar, D. H. (1990). The cerebellum participates in mental activity: tomographic measurements of regional cerebral blood flow. Brain Re. 535: 313–317CrossRefGoogle ScholarPubMed
Denk, W., Sugimori, M., and Llinás, R. (1995). Two types of calcium response limited to single spines in cerebellar Purkinje cells. Proc. Natl. Acad. Sci. USA. 92: 8279–8282CrossRefGoogle ScholarPubMed
Desmond, J. E., and Fiez, J. A. (1998). Neuroimaging studies of the cerebellum: language, learning and memory. Trends Cogn. Sci. 2: 355–362CrossRefGoogle ScholarPubMed
Desmurget, M., Pélisson, D., Urquizar, C., Prablanc, C., Alexander, G. E., and Grafton, S. T. (1998). Functional anatomy of saccadic adaptation in humans. Nat. Neurosci. 1: 524–528CrossRefGoogle ScholarPubMed
de'Sperati, C., Montarolo, P. G., and Strata, P. (1993). Effects of inferior olive inactivation and lesion on the activity of medial vestibular neurons in the rat. Neuroscienc. 53: 139–147CrossRefGoogle ScholarPubMed
Diener, H. C., Dichgans, J., Guschlbauer, B., Bacher, M., and Langenbach, P. (1989). Disturbances of motor preparation in basal ganglia and cerebellar disorders. Progr. Brain Re. 880: 481–488CrossRefGoogle Scholar
Dietrichs, E., and Walberg, F. (1979). The cerebellar corticonuclear and nucleocortical projections in the cat as studied with anterograde and retrograde transport of horseradish peroxide. Anat. Embryo. 158: 13–39CrossRefGoogle Scholar
Dietrichs, E., and Walberg, F. (1989). Direct bidirectional connections between the inferior olive and the cerebellar nuclei. In P. Strata (ed.), The Olivocerebellar System in Motor Control (Exp. Brain Res. Ser. 17), pp. 61–81CrossRef
Diño, M. R., Nunzi, M. G., Anelli, R., and Mugnaini, E. (2000). Unipolar brush cells of the vestibulocerebellum: afferents and targets. Progr. Brain Res. 124: 123–137CrossRefGoogle ScholarPubMed
Donoghue, J. P., Hess, G., and Sanes, J. N. (1996). Substrates and mechanisms for learning in motor cortex. In J. R. Bloedel, T. J. Ebner, and S. P. Wise (eds.), The Acquisition of Motor Behavior in Vertebrates. Cambridge, MA: MIT Press, pp. 363–386
Dow, R. S. (1949). Action potentials of cerebellar cortex in response to local electrical stimulation. J. Neurophysiol. 12: 245–256CrossRefGoogle ScholarPubMed
Dow, R. S., and Moruzzi, G. (1958). The Physiology and Pathology of the Cerebellum. Minneapolis: University of Minnesota Press
Doya, K., (1999). What are the computations of the cerebellum, the basal ganglia and the cerebral cortex. Neural Netw. 12: 961–974CrossRefGoogle ScholarPubMed
Droulez, J., and Cornilleau-Pérès, V. (1993). Application of the coherence scheme to the multisensory fusion problem. In: A. Berthoz (ed.), Multisensory Control of Movement. Oxford, England: Oxford University Press, pp. 485–501CrossRef
du Lac, S., Raymond, J. L., Seijnowski, T. J., and Lisberger, S. G. (1995). Learning and memory in the vestibulo-ocular reflex. Annu. Rev. Neurosc. 18: 409–441CrossRefGoogle ScholarPubMed
Dunin-Barkowski, W. L., and Larionova, N. P. (1985a). Computer simulation of a cerebellar compartment. I. General principles and properties of a neural net. Biol. Cyber. 51, 399–406CrossRefGoogle Scholar
Dunin-Barkowski, W. L., and Larionova, N. P. (1985b). Computer simulation of a cerebellar cortex compartment. II. An information learning and its recall in the Marr's Memory Unit. Biol. Cybern. 51: 407–415CrossRefGoogle Scholar
Dunn, M. E., Vetter, D. E., Berrebi, A. S., Krider, H. M., and Mugnaini, E. (1996). The mossy fiber–granule cell–cartwheel cell system in the mammalian cochlear nuclear complex. In W. A. Ainsworth, E. F. Evans, and C. M. Hackney (eds.), Advances in Speech, Hearing and Language Processing, Vol. 3, Part A. London: JAI Press, pp. 63–87
Ebner, T. J. (1998). A role for the cerebellum in the control of limb movement velocity. Curr. Opin. Neurobio. 8: 762–769CrossRefGoogle ScholarPubMed
Ebner, T. J., and Chen, G. (1995). Use of voltage-sensitive dyes and optical recordings in the central nervous system. Progr. Neurobiol. 46: 463–506CrossRefGoogle ScholarPubMed
Ebner, T. J., Flament, D., and Shanbhag, S. J. (1996). In J. R. Bloedel, T. J. Ebner, and S. P. Wise (eds.), The Acquisition of Motor Behavior in Vertebrates. Cambridge, MA: MIT Press, pp. 235–260
Eccles, J. C. (1966). Functional organization of the cerebellum in relation to its role in motor control. In: R. Granit (ed.), Muscular Afferents and Motor Control (Proceedings of the First Nobel Symposium, 1965). Stockholm: Almqvist and Wiksell; New York: John Wiley. pp. 19–36
Eccles, J. C. (1967). Circuits in the cerebellar control of movement. Proc. Natl. Acad. Sci. USA. 58: 336–343CrossRefGoogle ScholarPubMed
Eccles, J. C. (1973). The cerebellum as a computer: patterns in space and time. J. Physio. 229: 1–32CrossRefGoogle ScholarPubMed
Eccles, J. C. (1977a). An instruction-selection theory of learning in the cerebellar cortex. Brain Res. 127: 327–352CrossRefGoogle Scholar
Eccles, J. C. (1977b). Cerebellar functions in the control of movement (with special reference to the pioneer work of Sir Gordon Holmes). In F. C. Rose (ed.), Physiological Aspects of Clinical Neurology. Oxford, England: Blackwell, pp. 157–178
Eccles, J. C. (1982). The future of studies on the cerebellum. In: S. L. Palay and V. Chan-Palay (eds.), The Cerebellum – New Vistas. New York: Springer, pp. 607–620CrossRef
Eccles, J. C., Ito, M., and Szentágothai, J. (1967). The Cerebellum as a Neuronal Machine. New York: Springer-Verlag
Eccles, J. C., Llinás, R., and Sasaki, K. (1966). The excitatory synapse action of climbing fibres on the Purkinje cells of the cerebellum. J. Physiol. (Lond. 182: 268–296CrossRefGoogle ScholarPubMed
Eccles, J. C., Sabah, N. H., Schmidt, R. F., and Táboríková, H. (1972). Mode of operation of the cerebellum in the dynamic loop control of movement. Brain Re. 40: 73–80CrossRefGoogle ScholarPubMed
Eisenman, L. M. (2000). Antero-posterior boundaries and compartments in the cerebellum: evidence from selected neurological mutants. Progr. Brain Re. 124: 81–93Google ScholarPubMed
Ekerot, C.-F. (1999). Climbing fibers – a key to cerebellar function. J. Physiol. 516. 3: 629CrossRefGoogle ScholarPubMed
Ekerot, C.-F., and Oscarsson, O. (1981). Prolonged depolarization elicited in Purkinje cell dendrites by climbing fiber impulses in the cat. J. Physio. 318: 207–221CrossRefGoogle Scholar
Ekerot, C.-F., Garwicz, M., and Jörntell, H. (1997). The control of forelimb movements by intermediate cerebellum. Progr. Brain Res. 114: 423–429CrossRefGoogle ScholarPubMed
Ekerot, C.-F., Larson, B., and Oscarsson, O. (1979). Information carried by the spinocerebellar paths. Progr. Brain Re. 50: 79–90CrossRefGoogle ScholarPubMed
Elias, S. A., Yae, H., and Ebner, T. J. (1993). Optical imaging of parallel fiber activation in the rat cerebellar cortex: spatial effects of excitatory amino acids. Neuroscienc. 52: 771–786CrossRefGoogle ScholarPubMed
Eskandar, E. N., and Assad, J. A. (1999). Dissociation of visual, motor and predictive signals in parietal cortex during visual guidance. Nat. Neurosc. 2: 88–93CrossRefGoogle ScholarPubMed
Fahle, M., and Braitenberg, V. (1985). Some quantitative aspects of cerebellar anatomy as a guide to speculation on cerebellar functions. In J. R. Bloedel, J. Dichgangs, and W. Precht (eds.), Cerebellar Functions. Berlin: Springer, pp. 186–200
Fetz, E. E. (1993). Dynamic neural network models of sensorimotor behavior. In: D. Gardner (ed.), The Neurobiology of Neural Networks. Cambridge, MA: MIT Press, pp. 164–190
Fetz, E. E., and Shupe, L. E. (1990). Neural network models of the primate motor system. In: R. Eckmiller (ed.), Advanced Neural Computers. Amsterdam: North Holland, pp. 43–50CrossRef
Fiala, J. C., Grossberg, S., and Bullock, D. (1996). Metabotropic glutamate receptor activation in cerebellar Purkinje cells as substrate for adaptive timing of the classically conditioned eye-blink response. J. Neurosci. 16: 3760–3774CrossRefGoogle ScholarPubMed
Fiez, J. A., Petersen, S. E., Cheney, M. K., and Raichle, M. E. (1992). Impaired non-motor learning and error detection associated with cerebellar damage (a single case study). Brai. 115: 155–178CrossRefGoogle Scholar
Finger, T. E., Bell, C. C., and Russell, C. J. (1981). Electrosensory pathways to the valvula cerebelli in mormyrid fish. Exp. Brain Re. 42: 23–33Google ScholarPubMed
Flanagan, J. R., Nakano, E., Imamizu, H., Osu, R., Yoshioka, T., and Kawato, M. (1999). Composition and decomposition of internal models in motor learning under altered kinematic and dynamic environments. J. Neurosci. 19: RC34CrossRefGoogle ScholarPubMed
Flourens, P. (1824, 1842). Recherches experimentales sur less propriétés nerveux dans les animaux vertébrés. (Ed. 1), Paris; Crevot, 1824; ed. 2, Paris: Bailliere, 1842, pp. 4, 5, 12, 13, 14, 23
Freeman, J. A. (1969). The cerebellum as a timing device: an experimental study in the frog. In R. Llinás (ed.), Neurobiology of Cerebellar Evolution and Development. Chicago: American Medical Association Educational and Research Foundation, pp. 397–413
Freeman, J. A. (1970). Space-time transformation in the frog cerebellum through an intrinsic tapped delay line. Nature (Lond.) 226: 640–642CrossRefGoogle ScholarPubMed
Freeman, W. J. (1983). Dynamics of information formation by nerve cell assemblies. In E. Basar, H. Flohr, H. Haken, and A. J. Mandell (eds.), Synergetics of the Brain. New York: Springer-Verlag, pp. 102–121
Frens, M. A., Mathoera, A. L., and Steen, J. (2000). On the nature of gain changes of the optokinetic reflex. Progr. Brain Re. 124: 247–255CrossRefGoogle ScholarPubMed
Friston, K. J., Frith, C. D., Passingham, R. E., Liddle, P. F. and Frackowiak, R. S. J. (1992). Motor practice and neurophysiological adaptation in the cerebellum: a positron tomography study. Proc. R. Soc. Lond. B. Biol. Sci. 248: 223–228CrossRefGoogle ScholarPubMed
Fu, Q-G., Flament, D., Coltz, J. D., and Ebner, T. J. (1997). Relationship of cerebellar Purkinje cell simple spike discharge to movement kinematics in the monkey. J. Neurophysiol. 78: 478–491CrossRefGoogle ScholarPubMed
Fu, Q-G., Mason, C. R., Flament, D., Coltz, J. D., and Ebner, T. J. (1997). Movement kinematics encoded in complex discharge of primate cerebellar Purkinje cells. Neurorepor. 8: 523–529CrossRefGoogle ScholarPubMed
Fuchs, A. F., Mustari, M. J., Robinson, F. R., and Kaneko, C. R. S. (1992). Visual signals in the nucleus of the optic tract and their brain stem destinations. Ann. N. Y. Acad. Sc. 656: 266–276CrossRefGoogle ScholarPubMed
Fuchs, A. F., Robinson, F. R., and Straube, A. (1994). Participation of the caudal fastigial nucleus in smooth-pursuit eye movements. I. Neuronal activity. J. Neurophysio. 72: 2714–2728CrossRefGoogle ScholarPubMed
Fuhrman, Y., Piat, G., Thomson, M. A., Mariani, J., Delhaye-Bouchaud, N. (1995). Abnormal ipsilateral functional vibrissae projection onto Purkinje cells multiply innervated by climbing fibers in the rat. Devel. Brain Re. 87: 172–178CrossRefGoogle ScholarPubMed
Fujita, M. (1982a). Adaptive filter model of the cerebellum. Biol. Cyber. 45: 195–206CrossRefGoogle Scholar
Fujita, M. (1982b). Simulation of adaptive modification of the vestibulo-ocular reflex with an adaptive filter model of the cerebellum. Biol. Cyber. 45: 207–214CrossRefGoogle Scholar
Funabiki, K., Mishina, M., and Hirano, T. (1995). Retarded vestibular compensation in mutant mice deficient in δ2 glutamate receptor subunit. Neurorepor. 7: 189–192Google Scholar
Gabor, D. (1954). Communication theory and cybernetics. IRE Trans. Circuit Theory CT-. 1(4): 19–31CrossRefGoogle Scholar
Gabor, D., Wilby, W. P. L., and Woodcock, R. (1961). A universal non-linear filter, predictor and simulator which optimizes itself by a learning process. Proc. I.E.E. (London) B. 108: 422–438Google Scholar
Gao, J.-H., Parsons, L. M., Bower, J. M., Xiong, J-h., Li, J-Q. and Fox, P. T. (1996). Cerebellum implicated in sensory acquisition and discrimination rather than motor control. Scienc. 272: 545–547CrossRefGoogle ScholarPubMed
Garwicz, M. (2000). Micro-organisation of cerebellar modules controlling forelimb movements. Progr. Brain Re. 124: 187–199CrossRefGoogle ScholarPubMed
Garwicz, M., and Andersson, G. (1992). Spread of synaptic activity along parallel fibres in cat cerebellar anterior lobe. Exp. Brain Res. 88: 615–622CrossRefGoogle ScholarPubMed
Gellman, R., Gibson, A. R., and Houk, J. C. (1985). Inferior olivary neurons in the awake cat: detection of contact and passive body displacement. J. Neurophysio. 54: 40–60CrossRefGoogle ScholarPubMed
Gell-Mann, M. (1995). Complex adaptive systems. In H. Morowitz and J. L. Singer (eds.), The Mind, The Brain, and Complex Adaptive Systems. Reading, MA.: Addison-Wesley, pp. 11–23
Ghez, C. (1991). The cerebellum. In E. R. Kandel, J. H. Schwartz, and T. M. Jessell (Eds.), Principles of Neural Science (3rd ed.). New York: Elsevier, pp. 627–646
Ghez, C., Gordon, J., Ghilardi, M. F., Cristakos, C. N., and Cooper, S. E. (1990). Role of proprioceptive input in the programming of arm trajectories. Cold Spring Harb. Symp. Quant. Biol. 55: 837–847CrossRefGoogle Scholar
Ghez, C., and Thach, W. T. (2000). The cerebellum. In: E. R. Kandel, J. H. Schwartz, and T. M. Jessell (eds.), Principals of Neural Science (4th ed.). New York: McGraw-Hill, pp. 832–852
Gibson, J. E. (1963). Nonlinear Automatic Control. New York: McGraw-Hill, pp. 491–547
Gilbert, P. F. C. (1974). A theory of memory that explains the function and structure of the cerebellum. Brain Res. 709: 1–18CrossRefGoogle Scholar
Gilbert, P. F. C., and Thach, W. T. (1977). Purkinje cell activity during motor learning. Brain Res. 128: 309–328CrossRefGoogle ScholarPubMed
Gilbert, P. F. C., and Yeo, C. H. (1992). Cerebellar function: on-line control and learning. Behav. Brain Sci. 15: 743–744Google Scholar
Gilman, S., Bloedel, J. R., and Lechtenberg, R. (1981). Disorders of the Cerebellum. Philadelphia: F. A. Davis
Glickstein, M. (1993). Motor skills but not cognitive tasks. Trends Neurosci. 16: 450–451CrossRefGoogle Scholar
Glickstein, M. (1997). Mossy-fibre sensory input to the cerebellum. Progr. Brain Res. 114: 251–259CrossRefGoogle ScholarPubMed
Gluck, M. A., Reifsnider, E. S., and Thompson, R. F. (1990). Adaptive signal processing and the Cb: models of classical conditioning and VOR adaptation. In M. A. Gluck and D. E. Rumelhart (eds.), Neuroscience and Connectionist Theory. Hillsdale, NJ: Lawrence Erlbaum Associates, pp. 131–185
Goldberg, M. E., Musil, S. Y., Fitzgibbon, E. J., Smith, M., and Olson, C. R. (1993). The role of the cerebellum in the control of saccadic eye movements. In N. Mano, I. Hamada, and M. R. DeLong (eds.), Role of the Cerebellum and Basal Ganglia in Voluntary Movement. Amsterdam: Elsevier Science Publishers, pp. 203–211
Goldman-Rakic, P. S. (1995). Neurobiology of mental representation. In H. Morowitz and J. L. Singer (eds.), The Mind, The Brain, and Complex Adaptive Systems. Reading, MA: Addison-Wesley, pp. 51–63
Goldowitz, D., and Hamre, K. (1998). The cells and molecules that make a cerebellum. Trends Neurosci. 21: 375–382CrossRefGoogle ScholarPubMed
Gomi, H., and Kawato, M. (1992). Adaptive feedback control models of the vestibulocerebellum and spinocerebellum. Biol. Cybern. 68: 105–114CrossRefGoogle ScholarPubMed
Gomi, H., Shidara, M., Takemura, A., Inoue, Y., Kawano, K., and Kawato, M. (1998). Temporal firing patterns of Purkinje cells in the cerebellar ventral paraflocculus during ocular following responses in monkeys I. Simple spikes. J. Neurophysio. 80: 818–831CrossRefGoogle ScholarPubMed
Gould, B. B. (1979). The organization of afferents to the cerebellar cortex in the cat: projections from the deep cerebellar nuclei. J. Comp. Neurol. 184: 27–42CrossRefGoogle ScholarPubMed
Gould, B. B., and Graybiel, A. M. (1976). Afferents to the cerebellar cortex in the cat: evidence for an intrinsic pathway leading from the deep nuclei to the cortex. Brain Re. 110: 601–611CrossRefGoogle ScholarPubMed
Graf, W., Simpson, J. I., and Leonard, C. S. (1989). A synthesis of input–output relationships of the rabbit flocculus. In: P. Strata (ed.), The Olivocerebellar System in Motor Control. New York: Springer-Verlag, pp. 338–344CrossRef
Gravel, C., Leclerc, N., Rafrafi, J., Sasseville, R., Thivierge, L., and Hawkes, R. (1987). Monoclonal antibodies reveal the global organization of the cerebellar cortex. J. Neurosci. Method. 2l: 145–157CrossRefGoogle Scholar
Gray, C., Perciavalle, V., and Poppele, R. (1993). Sensory responses to passive hindlimb joint rotation in the cerebellar cortex of the cat. Brain Res. 622: 280–284CrossRefGoogle ScholarPubMed
Graybiel, A. M., Nauta, H. J. W., Lasek, R. J., and Nauta, W. J. H. (1973). A cerebello-olivary pathway in the cat: an experimental study using autoradiographic tracing techniques. Brain Re. 58: 205–211CrossRefGoogle Scholar
Green, J. T., and Woodruff-Pak, D. S. (2000). Eyeblink classical conditioning: hippocampal formation is for neutral stimulus associations as cerebellum is for association-response. Psychol. Bul. 126: 138–158CrossRefGoogle ScholarPubMed
Grinvald, A., Frostig, R. D., Lieke, E., and Hildesheim, R. (1988). Optical imaging of neuronal activity. Physiol. Rev. 68: 1285–1366CrossRefGoogle ScholarPubMed
Groenewegen, H. J., and Voogd, J. (1977). The parasagittal zonation within the olivocerebellar projection. I. Climbing fiber distribution in the vermis of cat cerebellum. J. Comp. Neurol. 174: 417–488CrossRefGoogle ScholarPubMed
Groenewegen, H. J., Voogd, J., and Freedman, S. L. (1979). The parasagittal zonation within the olivo-cerebellar projection. II. Climbing fiber distribution in the intermediate and hemispheric parts of cat cerebellum. J. Comp. Neuro. 183: 551–602CrossRefGoogle Scholar
Grossberg, S. (1969). On learning of spatiotemporal patterns by networks with ordered sensory and motor components 1. Excitatory components of the cerebellum. Stud. Appl. Mat. 48: 123–132Google Scholar
Gupta, M. M., and Rao, D. H. (1994). Neuro-Control Systems: Theory and Applications. New York: The Institute of Electrical and Electronics Engineers, pp. 1–43
Haines, D. E. (1989). HRP study of cerebellar corticonuclear-nucleocortical topography of the dorsal culminate lobule – lobule V – in a prosimian primate (Galago): with comments on nucleocortical cell types. J. Comp. Neuro. 282: 274–292CrossRefGoogle Scholar
Haines, D. E., and Pearson, J. C. (1979). Cerebellar corticonuclear-nucleocortical topography: study of the tree shrew (Tupaia) paraflocculus. J. Comp. Neurol. 187: 745–758CrossRefGoogle ScholarPubMed
Hallett, M., Berardelli, A., Matheson, J., Rothwell, J., and Marsden, C. D. (1991). Physiological analysis of simple rapid movements in patients with cerebellar deficits. J. Neurol. Neurosurg. Psychiatr. 53: 124–133CrossRefGoogle Scholar
Hallett, M., Pascual-Leone, A., and Topka, H. (1996). Adaptation and skill learning: evidence for different neural substrates. In: J. R. Bloedel, T. J. Ebner, and S. P. Wise (eds.), The Acquisition of Motor Behavior in Vertebrates. Cambridge, MA: MIT Press, pp. 289–301
Hallett, M., Shahani, B. T., and Young, R. R. (1975a). EMG analysis of stereotyped voluntary movements. J. Neurol. Neurosurg. Psychiatr. 38: 1154–1162CrossRefGoogle Scholar
Hallett, M., Shahani, B. T., and Young, R. R. (1975b). EMG analysis of patients with cerebellar deficits. J. Neurol. Neurosurg. Psychiatr. 38: 1163–1169CrossRefGoogle Scholar
Hamori, J., and Szentágothai, J. (1966). Identification under the electron microscope of climbing fibers and their synaptic contacts. Exp. Brain Re. 1: 65–81Google ScholarPubMed
Hámori, J., and Takács, J. (1989). Two types of GABA-containing axon terminals in cerebellar glomeruli of cat: an immunogold-EM study. Exp. Brain Res. 74: 471–479CrossRefGoogle ScholarPubMed
Hámori, J., Takács, J., and Petrusz, P. (1996). Immunogold electron microscopic demonstration of glutamate and GABA in normal and deafferented cerebellar cortex: correlation between transmitter content and synaptic vesicle size. J. Histochem. Cytoche. 38: 1767–1777CrossRefGoogle Scholar
Hansel, C., and Linden, D. J. (2000). Long-term depression of the cerebellar climbing fiber–Purkinje neuron synapse. Neuro. 26: 475–482Google ScholarPubMed
Hanson, C. L., Chen, G., and Ebner, T. J. (2000). Role of climbing fibers in determining the spatial patterns of activation in the cerebellar cortex to peripheral stimulation: an optical imaging study. Neuroscienc. 96: 317–331CrossRefGoogle ScholarPubMed
Harrington, D. L., and Haaland, K. Y. (1999). Neural underpinnings of temporal processing: a review of focal lesion, pharmacological, and functional imaging research. Rev. Neurosc. 10: 91–116CrossRefGoogle ScholarPubMed
Hartel, N. A. (1994). Induction of cerebellar long-term depression requires activation of glutamate metabotropic receptors. Neurorepor. 5: 913–916CrossRefGoogle Scholar
Haruno, M., Wolpert, D. M., and Kawato, M. (1999). Multiple paired forward-inverse models for human motor learning and control. Adv. Neural. Inf. Proc. Sy. 11: 31–37Google Scholar
Harvey, R. J., and Napper, R. M. A. (1988). Quantitative study of granular and Purkinje cells in the cerebellar cortex of the rat. J. Comp. Neuro. 274: 151–157CrossRefGoogle ScholarPubMed
Hashimoto, K., Watanabe, M., Kurihara, H., Offermanns, S., Jiang, H., Wu, Y., Jun, K., Shin, H.-S., Inoue, Y., Wu, D., Simon, M. I., and Kan, M. (2000). Climbing fiber synapse elimination during postnatal cerebellar development requires signal transduction involving Gαq and phospholipase Cβ4. Progr. Brain Re. 124: 31–48CrossRefGoogle Scholar
Hassul, M., and Daniels, P. D. (1977). Cerebellar dynamics: the mossy fiber input. IEEE Trans. Biomed. Eng. BME-. 24: 449–456CrossRefGoogle ScholarPubMed
Hawkes, R. (1997). An anatomical model of cerebellar modules. Progr. Brain Res. 114: 39–52CrossRefGoogle ScholarPubMed
Hawkes, R., and Eisenman, L. M. (1997). Stripes and zones: the origins of regionalization of the adult cerebellum. . Perspect. Dev. Neurobio. 5: 95–105Google ScholarPubMed
Haykin, S. (1994). Neural Networks: A Comprehensive Foundation (2nd ed.). New York: Macmillan
Haykin, S. (1995). Adaptive signal processing. In: M. A. Arbib (ed.), The Handbook of Brain Theory and Neural Networks. Cambridge, MA: MIT Press, pp. 82–85
Haykin, S. (1996). Adaptive Filter Theory (3rd ed.). Upper Saddle River, NJ: Prentice Hall
Hebb, D. O. (1949). The Organization of Behaviour. New York: John Wiley
Heidary, H., and Tomasch, J., (1969). Neuron numbers and perikaryon areas in the human cerebellar nuclei. Acta Ana. 74: 290–296CrossRefGoogle ScholarPubMed
Helmuth, L. I., Ivry, R. B., and Shimizu, N. (1997). Preserved performance by cerebellar patients on tests of word generation, discrimination learning, and attention. Learn. Mem. 3: 456–474CrossRefGoogle ScholarPubMed
Hémart, N., Daniel, H., Jaillard, D., and Crépel, F. (1994). Properties of glutamate receptors are modified during long-term depression in rat cerebellar Purkinje cells. Neurosci. Res. 19: 213–221CrossRefGoogle ScholarPubMed
Hémart, N., Daniel, H., Jaillard, D., and Crépel, F. (1995). Receptors and second messengers involved in long-term depression in rat cerebellar slices in vitro: a reappraisal. Eur. J. Neurosc. 7: 45–53CrossRefGoogle ScholarPubMed
Herndon, R. H. (1963). The fine structure of the Purkinje cell. J. Cell. Bio. 18: 167–180CrossRefGoogle ScholarPubMed
Herrick, C. J. (1924a). Neurological Foundations of Animal Behavior. New York: Henry Holt
Herrick, C. J. (1924b). Origin and evolution of the cerebellum. Arch. Neurol. Psychiatr. 11: 621–652CrossRefGoogle Scholar
Hirano, T. (1990a). Depression and potentiation of the synaptic transmission between a granule cell and a Purkinje cell in rat cerebellar tissue. Neurosci. Lett. 119: 141–144CrossRefGoogle Scholar
Hirano, T. (1990b). Effects of postsynaptic depolarization in the induction of synaptic depression between a granule cell and a Purkinje cell in rat cerebellar culture. Neurosci. Lett. 119: 145–147CrossRefGoogle Scholar
Holdefer, R. N., Miller, L. E., Chen, L. L., and Houk, J. C. (2000). Functional connectivity between cerebellum and primary motor cortex in the awake monkey. J. Neurophysio. 84: 585–590CrossRefGoogle ScholarPubMed
Holland, J. H. (1995). Can there be a unified theory of complex adaptive systems? In: H. Morowitz and J. L. Singer (eds.), The Mind, The Brain, and Complex Adaptive Systems. Reading, MA: Addison-Wesley, pp. 45–50
Holmes, G. (1939). The cerebellum of man. Brai. 62: 1–30CrossRefGoogle Scholar
Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. USA. 79: 2554–2558CrossRefGoogle ScholarPubMed
Hore, J., Wild, B., and Diener, H.-C. (1991). Cerebellar dysmetria at the elbow, wrist, and fingers. J. Neurophysiol. 65: 563–571CrossRefGoogle ScholarPubMed
Horn, K. M., Kan, P. L. E., and Ruigrok, T. J. H. (1996). Inferior olive sensitivity is reduced by increased cerebellar output. Soc. Neurosci. Abst. 22: 1092Google Scholar
Horne, M. K., and Butler, E. G. (1995). The role of the cerebello-thalamo-cortical pathway in skilled movement. Progr. Neurobio. 46: 199–213CrossRefGoogle ScholarPubMed
Houk, J. C. (1987). Model of the cerebellum as an array of adjustable pattern generators. In: M. Glickstein, C. Yeo, and J. Stein (eds.), Cerebellum and Neuronal Plasticity. New York: Plenum, pp. 249–260CrossRef
Houk, J. C., and Wise, S. P., (1995). Distributed modular architectures linking basal ganglia, cerebellum, and cerebral cortex: their role in planning and controlling action. Cereb. Corte. 5: 95–110CrossRefGoogle ScholarPubMed
Houk, J. C., Buckingham, J. T., and Barto, A. G. (1996). Models of the cerebellum and motor learning. Behav. Brain Sc. 19: 368–383CrossRefGoogle Scholar
Houk, J. C., Keifer, J., and Barto, A. G. (1993). Distributed motor commands in the limb premotor network. Trends Neurosc. 16: 27–33CrossRefGoogle ScholarPubMed
Houk, J. C., Singh, S. P., Fisher, C., and Barto, A. G. (1990). An adaptive sensorimotor network inspired by the anatomy and physiology of the cerebellum. In: W. T. Miller, R. S. Sutton, and P. J. Werbos (eds.), Neural Networks for Control. Cambridge, MA: MIT Press, pp. 301–348
Imamizu, H., Miyauchi, S., Tamada, T., Sasaki, Y., Takino, R., Pütz, B., Yoshioka, T., and Kawato, M. (2000). Human cerebellar activity reflecting an acquired internal model of a new tool. Natur. 403: 192–195CrossRefGoogle ScholarPubMed
Ioannou, P. A., and Sun, J. (1996). Robust Adaptive Control. Upper Saddle River, NJ: Prentice-Hall, p. 27
Isermann, R., Lachmann, K.-H., and Matko, D. (1992). Adaptive Control Systems. New York: Prentice Hall
Ito, M. (1970). Neurophysiological aspects of the cerebellar motor control system. Int. J. Neurol. (Montevideo. 7: 162–176Google ScholarPubMed
Ito, M. (1972). Neural design of the cerebellar motor control system. Brain Re. 40: 81–84CrossRefGoogle ScholarPubMed
Ito, M. (1976a). Adaptive control of reflexes by the cerebellum. Progr. Brain Res. 44: 436–444Google Scholar
Ito, M. (1976b). Cerebellar learning control of vestibulo-ocular mechanisms. In T. Desiraju (Ed.), Mechanisms in Transmission of Signals for Conscious Behavior. Amsterdam: Elsevier, pp. 1–22
Ito, M. (1979). Is the cerebellum really a computer?Trends Neurosc. 2: 122–126CrossRefGoogle Scholar
Ito, M. (1982a). Cerebellar control of the vestibulo-ocular reflex – around the flocculus hypothesis. Annu. Rev. Neurosc. 5: 275–296CrossRefGoogle Scholar
Ito, M. (1982b). Questions in modeling the cerebellum. J. Theoret. Bio. 99: 81–86CrossRefGoogle Scholar
Ito, M. (1984). The Cerebellum and Neural Control. New York: Raven
Ito, M. (1989). Long-term depression. Annu. Rev. Neurosc. 12: 85–102CrossRefGoogle ScholarPubMed
Ito, M. (1990). A new physiological concept on cerebellum. Rev. Neurol. (Pari.) 146: 564–569Google ScholarPubMed
Ito, M. (1993a). Cerebellar flocculus hypothesis (letter). Natur. 363: 24–25CrossRefGoogle Scholar
Ito, M. (1993b). Neurophysiology of the nodulofloccular system. Rev. Neurol. (Paris. 149: 692–697Google Scholar
Ito, M. (1993c). Movement and thought: identical control mechanisms by the cerebellum. Trends Neurosci. 16:448–450CrossRefGoogle Scholar
Ito, M. (1993d). Synaptic plasticity in the cerebellar cortex and its role in motor learning. Can. J. Neurol. Sci. 20 (suppl. 3): S70–S74Google Scholar
Ito, M. (1996). Letter to the editor. Trends Neurosci. 19: 11–12Google Scholar
Ito, M. (1998). Cerebellar learning in the vestibulo-ocular reflex. Trends Cogn. Sci. 2: 313–321CrossRefGoogle ScholarPubMed
Ito, M. (1999). The cerebellum, a gateway to modern neuroscience. Brain Res. Bul. 30: 33Google Scholar
Ito, M. (2000). Neurobiology: internal model visualized. Natur. 403: 153–154CrossRefGoogle ScholarPubMed
Ito, M., and Kano, M. (1982). Long-lasting depression of parallel fiber–Purkinje cell transmission induced by conjunctive stimulation of parallel fibers and climbing fibers in the cerebellar cortex. Neurosci. Lett. 33: 253–258CrossRefGoogle ScholarPubMed
Ito, M., Sakurai, M. and Tongroach, P. (1982). Climbing fibre induced depression of both mossy fibre responsiveness and glutamate sensitivity of cerebellar Purkinje cells. J. Physiol. (Lond. 324: 113–134CrossRefGoogle ScholarPubMed
Ivry, R. (1993). Cerebellar involvement in the explicit representation of temporal information. Ann. N. Y. Acad. Sci. 682: 214–230CrossRefGoogle ScholarPubMed
Ivry, R. B. (1996). The representation of temporal information in perception and motor control. Curr. Opin. Neurobio. 6: 851–857CrossRefGoogle ScholarPubMed
Ivry, R. B., and Diener, H. C. (1991). Impaired velocity perception in patients with lesions of the cerebellum. J. Cogn. Neurosci. 3: 355–366CrossRefGoogle ScholarPubMed
Ivry, R. B., and Fiez, J. A. (2000). Cerebellar contributions to cognition and imagery. In: M. S. Gazzaniga (ed.), The New Cognitive Neurosciences. Cambridge, MA: MIT Press, pp. 999–1011
Ivry, R. B., and Keele, S. W. (1989). Timing functions of the cerebellum. J. Cogn. Neurosci. 1: 136–152CrossRefGoogle ScholarPubMed
Jeannerod, M., Arbib, M. A., Rizzolatti, G., and Sakata, H. (1995). Grasping objects: the cortical mechanisms of visuomotor transformation. Trends Neurosci. 18: 314–320CrossRefGoogle ScholarPubMed
Jenkins, I. H., Brooks, D. J., Nixon, P. D., Frackowiak, R. S. J., and Passingham, R. E. (1994). Motor sequence learning: a study with positron emission tomography. J. Neurosci. 14: 3775–3790CrossRefGoogle ScholarPubMed
Ji, Z., Jin, Q., and Vogel, M. W., (1997). Evidence of spinocerebellar mossy fiber segregation in the juvenile staggerer cerebellum. J. Comp. Neuro. 378: 354–3623.0.CO;2-2>CrossRefGoogle ScholarPubMed
Jones, A., Paterlini, M., Wisden, W., and Merlo, D. (2000). Transgenic methods for directing gene expression to specific neuronal types: cerebellar granule cells. Progr. Brain Res. 124: 69–80CrossRefGoogle ScholarPubMed
Jordan, M. I., and Wolpert, D. M. (2000). Computational motor control. In M. S. Gazzaniga (ed.), The New Cognitive Neurosciences. Cambridge, MA: MIT Press, pp. 601–618
Jueptner, M., and Weiller, C. (1998). A review of differences between basal ganglia and cerebellar control of movements as revealed by functional imaging studies. Brai. 121:1437–1449Google ScholarPubMed
Jueptner, M., Ottinger, S., Fellows, S. J., Adamschewski, J., Flerich, L., Müller, S. P., Diener, H. C., Thilmann, A. F., and Weiller, C. (1997). The relevance of sensory input for the cerebellar control of movements. Neuroimag. 5: 41–48CrossRefGoogle ScholarPubMed
Jueptner, M. R., Rijntjes, M., Weiller, C., Faiss, J. H., Timmann, D., Mueller, S. P., and Diener, H. C. (1995). Localization of a cerebellar timing process using PET. Neurolog. 45: 1540–1545CrossRefGoogle ScholarPubMed
Kaiserman-Abramof, I. R., and Palay, S. L. (1969). Fine structural studies of the cerebellar cortex in a mormyrid fish. In: R. Llinás (ed.), Neurobiology of Cerebellar Evolution and Development. Chicago: American Medical Association Educational and Research Foundation, pp. 171–205
Kalil, K. (1979). Projections of the cerebellar and dorsal column nuclei upon the inferior olive of the rhesus monkey: an autoradiographic study. J. Comp. Neuro. 188: 43–62CrossRefGoogle Scholar
Kalman, R. E. (1960). A new approach to linear filtering and prediction problems. J. Basic Eng. (ASME Trans. Ser. D. 82: 35–45CrossRefGoogle Scholar
Kalman, R. E., and Bucy, R. S. (1961). New results in linear filtering and prediction theory. J. Basic Eng. (ASME Trans. Ser. D. 83: 95–108CrossRefGoogle Scholar
Kandel, E. R., Schwartz, J. H., and Jessell, T. M. (1991). Principles of Neural Science (3rd ed.). New York: Elsevier
Kano, M. (1996). Long-lasting potentiation of GABAergic inhibitory synaptic transmission in cerebellar Purkinje cells: its properties and possible mechanisms. Behav. Brain Sci. 19: 354–361CrossRefGoogle Scholar
Kano, M., Hashimoto, K., Chen, C., Abeliovich, A., Aiba, A., Kurihara, H., Watanabe, M., Inoue, Y., and Tonegawa, S., (1995). Impaired synapse elimination during cerebellar development in PKCgamma mutant mice. Cel. 83: 1223–1231CrossRefGoogle Scholar
Kano, M., Hashimoto, K., Kurihara, H., Watanabe, M., Inoue, Y., Aiba, A., and Tonegawa, S. (1997). Persistent multiple climbing fiber innervation of cerebellar Purkinje cells in mice lacking mGluRl. Neuro. 18: 71–79Google Scholar
Kano, M., Rexhausen, U., Dreessen, J., and Konnerth, A. (1992). Synaptic excitation produces a long-lasting rebound potentiation of inhibitory synaptic signals in cerebellar cells. Natur. 356: 601–604CrossRefGoogle Scholar
Kashiwabuchi, N., Ikeda, K., Araki, K., Hirano, T., Shibuki, K., Takayama, C., Inoue, Y., Kutsuwada, T., Yasgi, T., Kang, Y., Aizawa, S., and Mishina, M. (1995). Impairment of motor coordination, Purkinje cell synapse formation, and long-term-depression in GluRα2 mutant mice. Cel. 81: 245–252CrossRefGoogle Scholar
Katz, D. B., and Steinmetz, J. E. (1997). Single-unit evidence for eye-blink conditioning in cerebellar cortex is altered, but not eliminated, by interpositus nucleus lesions. Learn. Mem. 3: 88–104CrossRefGoogle Scholar
Kaufman, G. D., Mustarl, M. J., Miselis, R. R., and Perachio, A. A. (1996). Transneuronal pathways to the vestibulocerebellum. J. Comp. Neuro. 370: 501–5233.0.CO;2-8>CrossRefGoogle ScholarPubMed
Kawano, K., and Shidara, M. (1993). The role of the ventral paraflocculus in ocular following in the monkey. In: N. Mano, I. Hamada, and M. R. DeLong (eds.), Role of the Cerebellum and Basal Ganglia in Voluntary Movement. Amsterdam: Elsevier, pp. 195–202
Kawano, K., Shidara, M., Takemura, A., Inoue, Y., Gomi, H., and Kawato, M. (1996). Inverse-dynamics representation of eye movements by cerebellar Purkinje cell activity during short-latency ocular-following responses. Ann. N. Y. Acad. Sci. 781: 314–319CrossRefGoogle ScholarPubMed
Kawano, K., Takemura, A., Inoue, Y., Kitama, T., Kobayashi, Y., and Mustari, M. J. (1996). Visual inputs to cerebellar ventral paraflocculus during ocular following responses. Progr. Brain Re. 112: 415–422CrossRefGoogle ScholarPubMed
Kawato, M. (1990a). Computational schemes and neural network models for formation and control of multijoint arm trajectory. In W. T. Miller III, R. S. Sutton, and P. J. Werbos (eds.), Neural Networks for Control. Cambridge, MA: MIT Press, pp. 197–228
Kawato, M. (1990b). Feedback-error-learning neural network for supervised motor learning. In R. Eckmiller (ed.), Advanced Neural Computers. Amsterdam: Elsevier, pp. 365–372
Kawato, M. (1993). Optimization and learning in neural networks for formation and control of coordinated movement. In D. E. Meyer and S. Kornblum (eds.), Attention and Performance XIV. Synergies in Experimental Psychology, Artificial Intelligence, and Cognitive Neuroscience, Cambridge, MA: MIT Press, pp. 821–849
Kawato, M. (1995). Cerebellum and motor control. In M. A. Arbib (ed.), The Handbook of Brain Theory and Neural Networks. Cambridge, MA: MIT Press, pp. 172–178
Kawato, M. (1996a). Learning internal models of the motor apparatus. In J. R. Bloedel, T. J. Ebner, and S. P. Wise (eds.), The Acquisition of Motor Behavior in Vertebrates. Cambridge, MA: MIT Press, pp. 409–430
Kawato, M. (1996b). The common inverse-dynamics motor command coordinates for complex and simple spikes. Behav. Brain Sc. 19: 462–464CrossRefGoogle Scholar
Kawato, M. (1997). Bidirectional theory approach to consciousness. In M. Ito, Y. Miyashita, and E. T. Rolls (eds.), Cognition, Computation, and Consciousness. Oxford, England: Oxford University Press, pp. 233–248CrossRef
Kawato, M. (1999). Internal models for motor control and trajectory planning. Curr. Opin. Neurobio. 9: 718–727CrossRefGoogle ScholarPubMed
Kawato, M., and Gomi, H. (1992a). A computational model of four regions of the cerebellum based on feedback-error learning. Biol. Cybern. 68: 95–103CrossRefGoogle Scholar
Kawato, M., and Gomi, H. (1992b). The cerebellum and VOR/OKR learning models. Trends Neurosci. 15: 445–453CrossRefGoogle Scholar
Kawato, M., and Gomi, H. (1993). Feedback-error-learning model of cerebellar motor control. In: Mano, N., Hamada, I., and DeLong, M. R. (eds.), Role of the Cerebellum and Basal Ganglia in Voluntary Movement. Amsterdam: Elsevier, pp. 51–61
Kawato, M., and Wolpert, D. (1998). Internal models for motor control. Novartis Found. Sym. 218: 291–307Google ScholarPubMed
Kawato, M., Furukawa, K., and Suzuki, R. (1987). A hierarchical neural-network model for control and learning of voluntary movement. Biol. Cybern. 57: 169–185CrossRefGoogle ScholarPubMed
Keating, J. G., and Thach, W. T. (1995). Nonclock behavior of inferior olive neurons: interspike interval of Purkinje cell complex spike discharge in the awake behaving monkey is random. J. Neurophysiol. 75: 1329–1340CrossRefGoogle Scholar
Keating, J. G., and Thach, W. T. (1996). Non-clock-like discharge of cells in the deep cerebellar nuclei of the awake behaving monkey. Soc. Neurosci. Abst. 22: 1092Google Scholar
Keele, S. W., and Ivry, R. (1990). Does the cerebellum provide a common computation for diverse tasks? A timing hypothesis. Ann. N. Y. Acad. Sci. 608: 179–211CrossRefGoogle ScholarPubMed
Keifer, J., and Houk, J. (1994). Motor functions of the cerebellorubrospinal system. Physiol. Re. 74: 509–542CrossRefGoogle Scholar
Kenyon, G. T. (1997). A model of long-term memory storage in the cerebellar cortex: a possible role for plasticity at parallel fiber synapses onto stellate/basket interneurons. Proc. Natl. Acad. Sci. USA. 94: 14200–14205CrossRefGoogle ScholarPubMed
Kenyon, G. T., Medina, J. F., and Mauk, M. D. (1998a). A mathematical model of the cerebellar-olivary system I: self-regulating equilibrium of climbing fiber activity. J. Comput. Neurosci. 5: 17–33CrossRefGoogle Scholar
Kenyon, G. T., Medina, J. F., and Mauk, M. D. (1998b). A mathematical model of the cerebellar-olivary system II: adaptation through systematic disruption of climbing fiber equilibrium. J. Comput. Neurosci. 5: 71–90CrossRefGoogle Scholar
Kettner, R. E., Mahamud, S., Leung, H.-C., Sitkoff, N., Houk, J. C., Peterson, B. W., and Barto, A. G., (1997). Prediction of complex two-dimensional trajectories by a cerebellar model of smooth pursuit eye movement. J. Neurophysio. 77: 2115–2130CrossRefGoogle ScholarPubMed
Kim, J. J., and Thompson, R. F. (1997). Cerebellar circuits and synaptic mechanisms involved in classical eyeblink conditioning. Trends. Neurosci. 20: 177–181CrossRefGoogle ScholarPubMed
Kim, S.-G., Ugurbil, K., and Strick, P. L. (1994). Activation of a cerebellar output nucleus during cognitive processing. Scienc. 265: 949–951CrossRefGoogle ScholarPubMed
King, J. S. (1980). Synaptic organization of the inferior olivary complex. In J. Courville, C. de Montigny and Y. Lamarre (eds.), The Inferior Olivary Nucleus: Anatomy and Physiology. New York: Raven Press, pp. 1–32
Kistler, W. M., and Hemmen, J. L. (2000). Modeling synaptic plasticity in conjunction with the timing of pre- and postsynaptic action potentials. Neural Compu. 12: 385–405CrossRefGoogle Scholar
Kitazawa, S., Kimura, T., and Yin, P-B. (1998). Cerebellar complex spikes encode both destinations and error in arm movements. Natur. 392: 494–497CrossRefGoogle Scholar
Kitzman, P. H., and Bishop, G. A. (1997). The physiological effects of serotonin on spontaneous and amino acid-induced activation of cerebellar nuclear cells: an in vivo study in the cat. Progr. Brain Res. 114: 209–223CrossRefGoogle Scholar
Kobayashi, Y., Kawano, K., Takemura, A., Inoue, Y., Kitama, T., Gomi, H., and Kawato, M. (1998). Temporal firing patterns of Purkinje cells in the cerebellar ventral paraflocculus during ocular following responses in monkeys II. Complex spikes. J. Neurophysio. 80: 832–848CrossRefGoogle ScholarPubMed
Kolb, F. P., Irwin, K. B., Bloedel, J. R., and Bracha, V. (1997). Conditioned and unconditioned forelimb reflex systems in the cat: involvement of the intermediate cerebellum. Exp. Brain Res. 114: 255–270CrossRefGoogle ScholarPubMed
Kolston, J., Apps, R., and Trott, J. R. (1995). A combined retrograde tracer and GABA-immunocytochemical study of the projection from nucleus interpositus posterior to the posterior lobe c2 zone of the cat cerebellum. Eur. J. Neurosci. 7: 926–933CrossRefGoogle ScholarPubMed
Konnerth, A., Dreessen, J., and Augustine, G. J. (1992). Brief dendritic calcium signals initiate long-lasting synaptic depression in cerebellar Purkinje cells. Proc. Natl. Acad. Sci. USA. 89: 7051–7055CrossRefGoogle ScholarPubMed
Kornhuber, H. H. (1971). Motor functions of cerebellum and basal ganglia: the cerebellocortical saccadic (ballistic) clock, the cerebellonuclear hold regulator, and the basal ganglia ramp (voluntary speed smooth movement) generator. Biol. Cyber. 8: 157–162Google ScholarPubMed
Kornhuber, H. H. (1974). Cerebral cortex, cerebellum, and basal ganglia: an introduction to their motor functions. In F. O. Schmitt and F. G. Worden (eds.), The Neurosciences: Third Study Program. Cambridge, MA: MIT Press, pp. 267–280
Krupa, D. J., and Thompson, R. F. (1997). Reversible inactivation of the cerebellar interpositus nucleus completely prevents acquisition of the classically conditioned eye-blink response. Learn. Mem. 3: 545–556CrossRefGoogle ScholarPubMed
Kurihara, H., Hashimoto, K., Kano, M., Takayama, C., Sakimura, K., Mishina, M., Inoue, Y., and Watanabe, M. (1997). Impaired parallel fiber–Purkinje cell synapse stabilization during cerebellar development of mutant mice lacking the glutamate receptor δ2 subunit. J. Neurosc. 17: 9613–9623CrossRefGoogle ScholarPubMed
Lalonde, R. (1994). Cerebellar contributions to instrumental learning. Neurosci. Biobehav. Rev. 18: 161–170CrossRefGoogle ScholarPubMed
Lalonde, R., and Botez-Marquard, T. (1997). The neurobiological basis of movement initiation. Rev. Neurosc. 8: 35–54CrossRefGoogle ScholarPubMed
Lalonde, R., and Hannequin, D. (1999). The neurobiological basis of time estimation and temporal order. Rev. Neurosc. 10: 151–173CrossRefGoogle ScholarPubMed
Landau, I. D., Lozano, R., and M'Saad, M. (1998). Adaptive Control. Berlin: Springer
Lang, E. J., Sugihara, I., and Llinás, R. (1996). GABAergic modulation of complex spike activity by the cerebellar nucleoolivary pathway in rat. J. Neurophysio. 76: 255–275CrossRefGoogle ScholarPubMed
Lansner, A., and Ekeberg, Ö. (1994). Neuronal network models of motor generation and control. Curr. Opin. Neurobio. 4: 903–908CrossRefGoogle ScholarPubMed
Larsell, O. (1967). The Comparative Anatomy and Histology of the Cerebellum (2 vols.) Minneapolis: University of Minnesota Press
Larsell, O., and Jansen, J. (1972). The Comparative Anatomy and Histology of the Cerebellum: The Human Cerebellum, Cerebellar Connections, and Cerebellar Cortex. Minneapolis: University of Minnesota Press
Lasser-Ross, N., and Ross, W. N. (1992). Imaging voltage and synaptically activated sodium transients in cerebellar Purkinje cells. Proc. Roy. Soc. Lond. 247: 35–39CrossRefGoogle ScholarPubMed
Lee, M., and Bower, J. M. (1990). A computer modeling approach to understanding the inferior olive and its relationship to the cerebellar cortex in rats. In: D. S. Touretsky (ed.), Advances in Neural Information Processing Systems 2. San Mateo, CA: Morgan Kaufmann Publishers, pp. 117–124
Marec, N., and Lalonde, R. (2000). Treadmill performance of mice with cerebellar lesions 2: lurcher mutants. Neurobiol. Learn. Me. 75: 195–206CrossRefGoogle Scholar
Legendre, A., and Courville, J. (1987). Origin and trajectory of the cerebello-olivary projection: an experimental study with radioactive and fluorescent tracers in the cat. Neuroscienc. 21: 877–891CrossRefGoogle ScholarPubMed
Leiner, H. C., and Leiner, A. L. (1997). How fibers subserve computing capabilities: similarities between brains and machines. Int. Rev. Neurobiol. 41: 535–553CrossRefGoogle ScholarPubMed
Leiner, H. C., Leiner, A. L. and Dow, R. S. (1986). Does the cerebellum contribute to mental skills?Behav. Neurosc. 100: 443–454CrossRefGoogle ScholarPubMed
Leiner, H. C., Leiner, A. L., and Dow, R. S. (1987). Cerebro-cerebellar learning loops in apes and humans. Ital. J. Neurol. Sc. 8: 425–436Google ScholarPubMed
Leiner, H. C., Leiner, A. L., and Dow, R. S. (1991). The human cerebro-cerebellar system: its computing, cognitive, and language skills. Behav. Brain Res. 44: 113–128CrossRefGoogle ScholarPubMed
Leiner, H. C., Leiner, A. L., and Dow, R. S. (1993a). Cognitive and language functions of the human cerebrum. Trends Neurosci. 16: 444–447CrossRefGoogle Scholar
Leiner, H. C., Leiner, A. L., and Dow, R. S. (1993b). The role of the cerebellum in the human brain (reply). Trends Neurosci. 16: 453–454CrossRefGoogle Scholar
Lev-Ram, Jiang, T., Wood, J., Lawrence, D. S., and Tsien, R. Y. (1997). Synergies and coincidence requirements between NO, cGMP, and CA2+ in the induction of cerebellar long-term depression. Neuro. 18: 1025–1038Google ScholarPubMed
Lev-Ram, V., Nebyelul, Z., Ellisman, M. H., Huang, P. L., and Tsien, R. Y. (1997). Absence of cerebellar long-term depression in mice lacking neuronal nitric oxide synthase. Learn. Mem. 3: 169–177CrossRefGoogle Scholar
Linden, D. J. (1996a). A protein synthesis-dependent late phase of cerebellar long-term depression. Neuro. 17: 483–490Google Scholar
Linden, D. J. (1996b). Cerebellar long-term depression as investigated in a cell culture preparation. Behav. Brain Sci. 19: 339–346CrossRefGoogle Scholar
Linden, D. J. (1998). Synaptically evoked glutamate transport currents may be used to detect the expression of long-term potentiation in cerebellar culture. J. Neurophysiol. 79: 3151–3156CrossRefGoogle ScholarPubMed
Linden, D. J., and Connor, J. A. (1993). Cellular mechanisms of long-term depression in the cerebellum. Curr. Opin. Neurobiol. 3: 401–406CrossRefGoogle ScholarPubMed
Linden, D. J., and Connor, J. A. (1995). Long-term synaptic depression. Annu. Rev. Neurosc. 18: 319–357CrossRefGoogle ScholarPubMed
Linden, D. J., Dawson, T. M., and Dawson, V. L. (1995). An evaluation of the nitric oxide/cGMP/cGMP-dependent protein kinase cascade in the induction of cerebellar long-term depression in culture. J. Neurosc. 15: 5098–5105CrossRefGoogle ScholarPubMed
Linden, D. J., Smeyne, M., and Connor, J. A. (1993). Induction of cerebellar long-term depression in culture requires postsynaptic action of sodium ions. Neuro. 11: 1093–1100Google ScholarPubMed
Lisberger, S. G. (1994). Neural basis for motor learning in the vestibulo-ocular reflex of primates. III. Computational and behavioral analysis of the sites of learning. J. Neurophysiol. 72: 974–998CrossRefGoogle Scholar
Lisberger, S. G. (1996). Motor learning and memory in the vestibulo-ocular reflex: the dark side. Ann. N. Y. Acad. Sci. 781: 525–531CrossRefGoogle ScholarPubMed
Lisberger, S. G. (1995). A mechanism of learning found?Curr. Biol. 5: 221–224CrossRefGoogle Scholar
Lisberger, S. G., and Fuchs, A. F. (1978a). Role of primate flocculus during rapid behavioral modification of vestibuloocular reflex. I. Purkinje cell activity during visually guided horizontal smooth-pursuit eye movements and passive head rotation. J. Neurophysio. 41: 733–763CrossRefGoogle Scholar
Lisberger, S. G., and Fuchs, A. F. (1978b). Role of primate flocculus during rapid behavioral modification of vestibuloocular reflex. II. Mossy fiber firing patterns during horizontal head rotation and eye movement. J. Neurophysio. 41: 764–777CrossRefGoogle Scholar
Lisberger, S. G., and Seijnowski, T. J. (1992). Motor learning in a recurrent network model based on the vestibulo-ocular reflex. Natur. 360: 159–161CrossRefGoogle Scholar
Lisberger, S. G., and Seijnowski, T. J. (1993). Cerebellar flocculus hypothesis (letter). Natur. 363: 24–25CrossRefGoogle Scholar
Lisberger, S. G., Pavelko, T. A., and Broussard, D. M. (1994). Neural basis for motor learning in the vestibuloocular reflex of primates. I. Changes in the responses of brain stem neurons. J. Neurophysiol. 72: 928–953CrossRefGoogle ScholarPubMed
Lisberger, S. G., Pavelko, T. A., Bronte-Stewart, H. M., and Stone, L. S. (1994). Neural basis for motor learning in the vestibulo-ocular reflex of primates. II. Changes in the responses of horizontal gaze velocity Purkinje cells in the cerebellar flocculus and ventral paraflocculus. J. Neurophysiol. 72: 954–973CrossRefGoogle ScholarPubMed
Llinás, R. (1969). (ed.). Neurobiology of Cerebellar Evolution and Development. Chicago: American Medical Association Educational and Research Foundation
Llinás, R. (1981a). Cerebellar modelling. Natur. 291: 279–280CrossRefGoogle Scholar
Llinás, R. (1981b). Electrophysiology of the cerebellar networks. In V. B. Brooks (ed.), Handbook of Physiology, Vol. II, Motor Control, Part 2. Bethesda: American Physiological Society, pp. 831–876
Llinás, R. (1982). Discussion of Tolbert, D. L. (1982). The cerebellar nucleocortical pathway. In S. L. Palay and V. Chan-Palay (eds.), The Cerebellum, New Vistas. Berlin: Springer-Verlag, pp. 296–319
Llinás, R. (1995). Thorny issues in neurons. Natur. 373: 107–108CrossRefGoogle ScholarPubMed
Llinás, R., and Hillman, D. E. (1969). Physiological and morphological organization of the cerebellar circuits in various vertebrates. In R. Llinás (ed.), Neurobiology of Cerebellar Evolution and Development. Chicago: American Medical Association Educational and Research Foundation, pp. 43–73
Llinás, R., and Mühlethaler, M. (1988). Electrophysiology of guinea-pig cerebellar nuclear cells in the in vitro brain stem-cerebellar preparation. J. Physiol. (Lond. 404: 241–258CrossRefGoogle ScholarPubMed
Llinás, R., and Sugimori, M. (1980a). Electrophysiological properties of in vitro Purkinje cell somata in mammalian cerebellar slices. J. Physiol. 305: 171–195CrossRefGoogle Scholar
Llinás, R., and Sugimori, M. (1980b). Electrophysiological properties of in vitro Purkinje cell dendrites in mammalian cerebellar slices. J. Physiol. 305: 197–213CrossRefGoogle Scholar
Llinás, R., and Sugimori, M. (1992). The electrophysiology of the cerebellar Purkinje cell revisited. In R. Llinás and C. Sotelo (eds.), The Cerebellum Revisited. New York: Springer, pp. 167–181CrossRef
Llinás, R., Baker, R., and Sotelo, C. (1974). Electrotonic coupling between neurons in cat inferior olive. J. Neurophysiol. 37: 560–571CrossRefGoogle ScholarPubMed
Llinás, R., Lang, E. J., and Welsh, J. P. (1997). The cerebellum, LTD, and memory: alternative views. Learn. Mem. 3: 445–455CrossRefGoogle ScholarPubMed
Lockery, S. R. (1992). Realistic neural network models using backpropagation: panacea or oxymoron?Semin. Neurosc. 4: 47–59CrossRefGoogle Scholar
Lorente de Nó, R. (1981). The Primary Acoustic Nuclei. New York: Raven Press, p. 24
Luebke, A. E., and Robinson, D. A. (1992). Climbing fiber intervention blocks plasticity of the vestibulo-ocular reflex. Ann. N. Y. Acad. Sci. 656 (B. Cohen, D. L. Tomko, and F. Guedry [eds.]) Sensing and Controlling Motion – Vestibular and Sensorimotor Function, pp. 428–430
Luebke, A. E., and Robinson, D. A. (1994). Gain changes of the cat's vestibulo-ocular reflex after flocculus deactivation. Exp. Brain Res. 98: 379–390CrossRefGoogle ScholarPubMed
Lukashin, A. V., Amirikian, B. B., Mozhaev, V. L., and Georgopoulos, A. P. (1995). Neural network modeling of motor cortical operations during mental rotation and memory scanning tasks. Soc. Neurosci. Abstr. 21: 2078Google Scholar
Macchi, G., and Jones, E. G. (1997). Toward an agreement on terminology of nuclear and subnuclear divisions of the motor thalamus. J. Neurosurg. 86:670–685CrossRefGoogle ScholarPubMed
Maekawa, K., and Simpson, J. I. (1973). Climbing fiber responses evoked in vestibulocerebellum of rabbit from visual system. J. Neurophysio. 36: 649–666CrossRefGoogle ScholarPubMed
Maekawa, K., and Takeda, T. (1975). Mossy fiber responses evoked in the cerebellar flocculus of rabbits by stimulation of the optic pathway. Brain Re. 98: 590–595CrossRefGoogle Scholar
Makhoul, J. (1975). Linear prediction: a tutorial review. Proc. IEEE. 63: 561–580CrossRefGoogle Scholar
Maler, L., and Mugnaini, E. (1993). Organization and function of feedback to the electrosensory lateral line lobe of gymnotiform fish, with emphasis on a searchlight mechanism. J. Comp. Physiol. A. 173: 667–670Google Scholar
Maler, L., and Mugnaini, E. (1994). Correlating gamma-aminobutyric acidergic circuits and sensory function in the electrosensory lateral line lobe of a gymnotiform fish. J. Comp. Neurol. 345: 224–252CrossRefGoogle ScholarPubMed
Mann-Metzer, P., and Yarom, Y. (2000). Electrotonic coupling synchronized interneuron activity in the cerebellar cortex. Progr. Brain Res. 124: 107–114Google Scholar
Mano, N., Kanazawa, I., and Yamamoto, K., (1986). Complex-spike activity of cerebellar P-cells related to wrist tracking movement in monkey. J. Neurophysiol. 56: 137–158CrossRefGoogle ScholarPubMed
Mano, N., Kanazawa, I., and Yamamoto, K. (1989). Voluntary movements and complex-spike discharges of cerebellar Purkinje cells. In P. Strata (ed.), The Olivocerebellar System in Motor Control. Berlin/Heidelberg: Springer-Verlag, pp. 265–280CrossRef
Markram, H., Lübke, J., Frotscher, M., and Sakmann, B., (1997). Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Scienc. 275: 213–215CrossRefGoogle ScholarPubMed
Marr, D. (1969). A theory of cerebellar cortex. J. Physiol. (Lond. 202: 437–470CrossRefGoogle ScholarPubMed
Marr, D. (1970). A theory for cerebral neocortex. Proc. Roy. Soc. Lond. B. 176: 161–234CrossRefGoogle ScholarPubMed
Marsden, C. D., Merton, P. A., Morton, H. B., Hallett, M., Adam, J., and Rushton, D. N. (1977). Disorders of movement in cerebellar disease in man. In: F. C. Rose (ed.), Physiological Aspects of Clinical Neurology. Oxford, England: Blackwell, pp. 179–199
Martin, J. H., Cooper, S. C., Hacking, A., and Ghez, C. (2000). Differential effects of deep cerebellar nuclei inactivation on reaching and adaptive control. J. Neurophysio. 83: 1886–1899CrossRefGoogle ScholarPubMed
Mason, C. R., Miller, L. E., Baker, J. F., and Houk, J. C. (1998). Organization of reaching and grasping movements in the primate cerebellar nuclei as revealed by focal muscimol inactivations. J. Neurophysiol. 79: 537–554CrossRefGoogle ScholarPubMed
Mauk, M. D. (1997). Roles of cerebellar cortex and nuclei in motor learning: contradictions or clues?Neuro. 18: 343–346Google ScholarPubMed
Mauk, M. D., and Donegan, N. H. (1997). A model of Pavlovian eyelid conditioning based on the synaptic organization of the cerebellum. Learn. Mem. 3: 130–158CrossRefGoogle Scholar
Mauk, M. D., Medina, J. F., Nores, W. L., and Ohyama, T. (2000). Cerebellar function: coordination, learning, or timing?Curr. Bio. 10: R522–R525CrossRefGoogle ScholarPubMed
Mauk, M. D., Steinmetz, J. E., and Thompson, R. F. (1986). Classical conditioning using stimulation of the inferior olive as the unconditional stimulus. Proc. Natl. Acad. Sci. USA. 83: 5349–5353CrossRefGoogle Scholar
McCrea, R. A., Bishop, G. A., and Kitai, S. T. (1978). Morphological and electrophysiological characteristics of projection neurons in the nucleus interpositus of the cat cerebellum. J. Comp. Neuro. 181: 397–420CrossRefGoogle ScholarPubMed
McCulloch, W. S., and Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophy. 5: 115–125CrossRefGoogle Scholar
McCurdy, M. L., Gibson, A. R., and Houk, J. C. (1992). Neuroimage 1: 23–41CrossRef
McCurdy, M. L., Houk, J. C., and Gibson, A. R. (1998). Organization of ascending pathways to the forelimb area of the dorsal accessory olive in the cat. J. Comp. Neurol. 392: 115–1333.0.CO;2-5>CrossRefGoogle ScholarPubMed
McIntyre, J., and Bizzi, E. (1993). Servo hypotheses for the biological control of movement. J. Mot. Behav. 25: 193–202CrossRef
Medina, J. F., and Mauk, M. D. (1999). Simulations of cerebellar motor learning: computational analysis of plasticity at the mossy fiber to deep nucleus synapse. J. Neurosc. 19: 7140–7151CrossRefGoogle ScholarPubMed
Medina, J. F., Garcia, K. S., Nores, W. L., Taylor, N. M., and Mauk, M. D. (2000). Timing mechanisms in the cerebellum: testing predictions of a large-scale computer simulation. J. Neurosci. 20: 5516–5525CrossRefGoogle ScholarPubMed
Meek, J. (1992a). Comparative aspects of cerebellar organization: from mormyrids to mammalsEur. J. Morpho. 30: 37–51Google Scholar
Meek, J. (1992b). Why run parallel fibers parallel? Teleostean Purkinje cells as possible coincidence detectors, in a timing device subserving spatial coding of temporal differences. Neuroscienc. 48: 249–283CrossRefGoogle Scholar
Meek, J., and Nieuwenhuys, R. (1991). Palisade pattern of mormyrid Purkinje cells: a correlated light and electron microscopic study. J. Comp. Neurol. 306: 156–192CrossRefGoogle ScholarPubMed
Melkonian, D. S., Mkrtchian, H. H., and Fanardjian, V. V. (1982). Simulation of learning processes in neuronal networks of the cerebellum. Biol. Cyber. 45: 79–88CrossRefGoogle ScholarPubMed
Miall, R. C. (1997). Sequences of sensory predictions. Behav. Brain Sc. 20: 258–259Google Scholar
Miall, R. C. (1998). The cerebellum, predictive control and motor coordination. Novartis Found. Sym. 218: 272–290, (discussion) 284–290Google ScholarPubMed
Miall, R. C., and Wolpert, D. M. (1995). The cerebellum as a predictive model of the motor system: a Smith predictor hypothesis. In W. R. Ferrell and U. Proske (eds.), Neural Control of Movement. New York: Plenum Press, pp. 215–223CrossRef
Miall, R. C., and Wolpert, D. M. (1996). Forward models for physiological motor control. Neural Netw. 9: 1265–1279CrossRefGoogle Scholar
Miall, R. C., Keating, J. G., Malkmus, M., and Thach, W. T. (1998). Simple spike activity predicts occurrence of complex spikes in cerebellar Purkinje cells. Nature Neurosc. 1: 13–15CrossRefGoogle ScholarPubMed
Miall, R. C., Malkmus, M., and Robertson, E. M. (1996). Sensory prediction as a role for the cerebellum. Behav. Brain Sc. 19: 466–467CrossRefGoogle Scholar
Miall, R. C., Weir, D. J., Wolpert, D. M., and Stein, J. F. (1993). Is the cerebellum a Smith predictor?J. Mot. Beha. 25: 203–216CrossRefGoogle ScholarPubMed
Middleton, F. A., and Strick, P. L. (1994). Anatomical evidence for cerebellar and basal ganglia involvement in higher cognitive function. Scienc. 266: 458–461CrossRefGoogle ScholarPubMed
Middleton, F. A., and Strick, P. L. (1997). Dentate output channels: motor and cognitive components. Progr. Brain Res. 114: 553–556CrossRefGoogle ScholarPubMed
Middleton, F. A., and Strick, P. L. (1998). Cerebellar output: motor and cognitive channels. Trends Cogn. Sci. 2: 348–354CrossRefGoogle ScholarPubMed
Middleton, F. A., and Strick, P. (2000). Basal ganglia and cerebellar loops: motor and cognitive circuits. Brain Res. Re. 31: 236–250CrossRefGoogle ScholarPubMed
Milaihoff, G. A., Kosinski, R. J., Azizi, S. A., Lee, H. S., and Border, B. G. (1992). The expanding role of the basilar pontine nuclei as a source of cerebellar affferents. In R. Llinás and C. Sotelo (eds.), The Cerebellum Revisited. New York: Springer, pp. 136–164CrossRef
Milak, M. S., Bracha, V., and Bloedel, J. R. (1995). Relationship of simultaneously recorded cerebellar nuclear neuron discharge to the acquisition of a complex, operantly conditioned forelimb movement in cats. Exp. Brain Res. 105: 325–330CrossRefGoogle ScholarPubMed
Milak, M. S., Shimansky, Y., Bracha, V., and Bloedel, J. R. (1997). Effects of inactivating individual cerebellar nuclei on the performance and retention of an operantly conditioned forelimb movement. J. Neurophysiol. 78: 939–959CrossRefGoogle ScholarPubMed
Miles, F. A., and Lisberger, S. G. (1981). Plasticity in the vestibulo-ocular reflex: a new hypothesis. Annu. Rev. Neurosc. 4: 273–299CrossRefGoogle ScholarPubMed
Miles, F. A., Fuller, J. H., Braitman, D. J., and Dow, B. M. (1980). Long-term adaptive changes in primate vestibuloocular reflex. III. Electrophysiological observations in flocculus of normal monkeys. J. Neurophysio. 41: 1437–1476CrossRefGoogle Scholar
Miller, L. E., and Houk, J. C. (1995). Motor co-ordinates in primate red nucleus: preferential relation to muscle activation versus kinematic variables. J. Physiol. (Lond. 488.2: 533–548CrossRefGoogle Scholar
Miller, W. T. III, Glanz, F. H., and Kraft, L. G. III. (1987). Application of a general learning algorithm to the control of robotic manipulators. Int. J. Robotics Re. 6(2): 84–98CrossRefGoogle Scholar
Montgomery, J. C., and Bodznick, D. (1994). An adaptive filter that cancels self-induced noise in the electrosensory and lateral line mechanosensory systems of fish. Neurosci. Let. 174: 145–148CrossRefGoogle ScholarPubMed
Moore, J. K., and Osen, K. K. (1979). The cochlear nuclei in man. Am. J. Anat. 154: 393–418CrossRefGoogle ScholarPubMed
Moore, J. W., Desmond, J. E., and Berthier, N. E. (1989). Adaptively timed conditioned responses and the cerebellum: a neural network approach. Biol. Cybern. 62: 17–28CrossRefGoogle ScholarPubMed
Morgan, J. I., and Smeyne, R. J. (1997). Transgenic approaches to cerebellar development. Perspect. Devel. Neurobio. 5: 33–41Google ScholarPubMed
Mugnaini, E. (1983). The length of cerebellar parallel fibers in chicken and rhesus monkey. J. Comp. Neurol. 220: 7–15CrossRefGoogle ScholarPubMed
Mugnaini, E. (1985). GABA neurons in the superficial layers of the rat dorsal cochlear nucleus: light and electron microscopic immunocytochemistry. J. Comp. Neurol. 235: 61–81CrossRefGoogle ScholarPubMed
Mugnaini, E., and Maler, L. (1993). Comparison between the fish electrosensory lateral line lobe and the mammalian dorsal cochlear nucleus. J. Comp. Physiol. A. 173: 683–685Google Scholar
Mugnaini, E., and Morgan, J. I. (1987). The neuropeptide cerebellin is a marker for two similar neuronal circuits in rat brain. Proc. Natl. Acad. Sci. USA. 84: 8692–8696CrossRefGoogle ScholarPubMed
Mugnaini, E., Berrebi, A. S., Dahl, A.-L., and Morgan, J. I. (1987). The polypeptide PEP-19 is a marker for Purkinje neurons in cerebellar cortex and cartwheel neurons in the dorsal cochlear nucleus. Arch. Ital. Biol. 126: 41–67Google ScholarPubMed
Mugnaini, E., Diño, M. R., and Jaarsma, D. (1997). The unipolar brush cells of the mammalian cerebellum and cochlear nucleus: cytology and microcircuitry. Progr. Brain Res. 114: 131–150CrossRefGoogle ScholarPubMed
Mugnaini, E., Osen, K. K., Dahl, A.-L., Friedrich, V. L. Jr., and Korte, G. (1980). Fine structure of granule cells and related interneurons (termed Golgi cells) in the cochlear nuclear complex of cat, rat and mouse. J. Neurocytol. 9: 537–570CrossRefGoogle Scholar
Mugnaini, E., Warr, W. B., and Osen, K. K. (1980). Distribution and light microscopic features of granule cells in the cochlear nuclei of cat, rat, and mouse. J. Comp. Neurol. 191: 581–606CrossRefGoogle Scholar
Nagao, S., Kitamura, T., Nakamura, N., Hiramatsu, T., and Yamada, J. (1997). Differences of the primate flocculus and ventral paraflocculus in the mossy and climbing fiber input organization. J. Comp. Anat. 382: 480–498Google ScholarPubMed
Narendra, K. S. (1995). Adaptive control: neural network applications. In M. A. Arbib (ed.), The Handbook of Brain Theory and Neural Networks. Cambridge, MA: MIT Press, pp. 69–73
Nelken, I., and Young, E. D. (1996). Why do cats need a dorsal cochlear nucleus?J. Basic Clin. Physiol. Pharmaco. 7: 199–220Google Scholar
Nelson, B. J., and Mugnaini, E. (1989). Origins of GABAergic inputs to the inferior olive. In: P. Strata (ed.), The Olivocerebellar System in Motor Control. Berlin: Springer-Verlag, (Experimental Brain Research Series 17), pp. 86–107CrossRef
Nieuwenhuys, R. (1967). Comparative anatomy of the cerebellum. Progr. Brain Res. 25: 1–93CrossRefGoogle ScholarPubMed
Nieuwenhuys, R., and Nicholson, C. (1969a). A survey of the general morphology, the fiber connections and the possible functional significance of the gigantocerebellum of mormyrid fishes. In: R. Llinás (ed.), Neurobiology of Cerebellar Evolution and Development. Chicago: American Medical Association Educational and Research Foundation, pp. 107–134
Nieuwenhuys, R., and Nicholson, C. (1969b). Aspects of the histology of the cerebellum of mormyrid fishes. In: R. Llinás (ed.), Neurobiology of Cerebellar Evolution and Development. Chicago: American Medical Association, pp. 135–169
Nieuwenhuys, R., ten Donkelaar, H. J., and Nicholson, C. (1998). The Central Nervous System of Vertebrates, Vol. 2. Berlin: SpringerCrossRef
Nieuwenhuys, R., Voogd, J., and van Huijzen, C. (1988). The Human Central Nervous System: A Synopsis and Atlas (3rd ed.). Heidelberg: Springer-VerlagCrossRef
Nixon, P. D., and Passingham, R. E. (1999). The cerebellum and cognition: cerebellar lesions do not impair spatial working memory or visual associative learning in monkeys. Eur. J. Neurosc. 11: 4070–4080CrossRefGoogle ScholarPubMed
Nunzi, M.-G., and Mugnaini, E. (2000). Unipolar brush cell axons form a large system of intrinsic mossy fibers in the postnatal vestibulocerebellum. J. Comp. Neurol. 422: 55–653.0.CO;2-9>CrossRefGoogle Scholar
Oberdick, J., Baader, S. L., and Schilling, K. (1998). From zebra stripes to postal zones: deciphering patterns of gene expression in the cerebellum. Trends Neurosci. 21: 383–390CrossRefGoogle ScholarPubMed
Olivier, J., Coenen, M. D., and Seijnowski, T. J. (1995). A model for how the cerebellum anticipates sensory inputs and modulates the vestibulo-ocular reflex (VOR). Soc. Neurosci. 21: 915Google Scholar
Optican, L. M., and Robinson, D. A. (1980). Cerebellar-dependent adaptive control of the primate saccadic system. J. Neurophysio. 44: 1058–1076CrossRefGoogle ScholarPubMed
Osborn, C. E., and Poppele, R. E. (1992). Parallel distributed network characteristics of the DSCT. J. Neurophysiol. 68: 1100–1112CrossRefGoogle ScholarPubMed
Oscarsson, O. (1969). The sagittal organization of the cerebellar anterior lobe as revealed by the projection patterns of the climbing fiber system. In: R. Llinás (ed.), Neurobiology of Cerebellar Evolution and Development. Chicago: American Medical Association Educational and Research Foundation, pp. 525–537
Oscarsson, O. (1979). Functional units of the cerebellum – sagittal zones and microzones. Trends Neurosci. 2: 143–145CrossRefGoogle Scholar
Oscarsson, O. (1980). Functional organization of olivary projection to the cerebellar anterior lobe. In: J. Courville, C. de Montigny, and Y. Lamarre (eds.), The Inferior Olivary Nucleus: Anatomy and Physiology. New York: Raven Press, pp. 279–289
Ozol, K. L., and Hawkes, R. (1997). Compartmentation of the granular layer of the cerebellum. Histol. Histopatho. 112: 171–184Google Scholar
Palay, S. L., and Chan-Palay, V. (1974). Cerebellar Cortex. New York: Springer-Verlag
Palkovits, M., Magyar, P., and Szentágothai, J. (1972). Quantitative histological analysis of the cerebellar cortex in the cat. IV. Mossy fiber–Purkinje cell numerical transfer. Brain Re. 45: 15–29CrossRefGoogle ScholarPubMed
Parent, A. (1996). Carpenter's Human Neuroanatomy (9th ed.). Baltimore: Williams & Wilkins
Parkins, E. J. (1997). Cerebellum and cerebrum in adaptive control and cognition: a review. Biol. Cyber. 77: 79–87CrossRefGoogle ScholarPubMed
Parsons, L. M., Bower, J. M., Gao, J.-H., Xiong, J.-H., Li, J.-Q., and Fox, P. T. (1997). Lateral cerebellar hemispheres actively support sensory acquisition and discrimination rather than motor control. Learn. Mem. 4: 49–62CrossRefGoogle ScholarPubMed
Pastor, A. M., Cruz, R. R., and Baker, R. (1997). Characterization of Purkinje cells in the goldfish cerebellum during eye movement and adaptive modification of the vestibulo-ocular reflex. Progr. Brain Res. 114: 359–381CrossRefGoogle ScholarPubMed
Paulin, M. (1989). A Kalman filter theory of the cerebellum. In: M. A. Arbib and S.-I. Amari (eds.), Dynamic Interactions in Neural Networks: Models and Data. New York: Springer, pp. 239–259CrossRef
Paulin, M. (1996). Cerebellar theory out of control. Behav. Brain Sci. 19: 470–471CrossRefGoogle Scholar
Paulin, M. (1997). Neural representations of moving systems. In J. D. Schmahmann (ed.), The Cerebellum and Cognition. San Diego: Academic Press, pp. 515–533CrossRef
Paulin, M. G. (1993). The role of the cerebellum in motor control and perception. Brain Behav. Evol. 41: 39–50CrossRefGoogle ScholarPubMed
Paulin, M. G., Nelson, M. E., and Bower, J. M. (1989). Neural control of sensory acquisition: the vestibulo-ocular reflex. In D. S. Touretsky (ed.), Advances in Neural Information Processing Systems I. San Mateo, CA: Morgan Kaufmann Publishers, pp. 410–418
Pellegrini, J. J., and Evinger, C. (1997). Role of cerebellum in adaptive modification of reflex blinks. Learn. Mem. 3: 77–87CrossRefGoogle Scholar
Pellionisz, A. (1970). Computer simulation of the pattern transfer of large cerebellar neuronal fields. Acta Biochim. Biophys. Acad. Sci. Hun. 5: 71–79Google ScholarPubMed
Pellionisz, A., (1984). Coordination: a vector-matrix description of transformations of overcomplete CNS coordinates and a tensorial solution using the Moore–Penrose generalized inverse. J. Theoret. Bio. 110: 353–375CrossRefGoogle Scholar
Pellionisz, A., and Graf, W. (1987). Tensor network model of the “three-neuron” vestibulo-ocular reflex-arc in cat. J. Theoret. Neurobio. 5: 127–151Google Scholar
Pellionisz, A. and Llinás, R. (1979). Brain modeling by tensor network theory and computer simulation. The cerebellum: distributed processor for predictive coordination. Neuroscienc. 4: 323–348CrossRefGoogle ScholarPubMed
Pellionisz, A., and Llinás, R. (1980). Tensorial approach to the geometry of brain function: cerebellar coordination via a metric tensor. Neuroscienc. 5: 1125–1136CrossRefGoogle Scholar
Pellionisz, A., and Llinás, R. (1982). Space-time representation in the brain. The cerebellum as a predictive space-time metric tensor. Neuroscienc. 7: 2949–2970CrossRefGoogle ScholarPubMed
Pellionisz, A., and Szentágothai, J. (1973). Dynamic single unit simulation of a realistic cerebellar network model. Brain Res. 49: 83–99CrossRefGoogle ScholarPubMed
Pellionisz, A., and Szentágothai, J. (1974). Dynamic single unit simulation of a realistic cerebellar network model. II. Purkinje cell activity within the basic circuit and modified by inhibitory systems. Brain Res. 68: 19–40CrossRefGoogle ScholarPubMed
Pellionisz, A., Peterson, B. W., and Tomko, D. L. (1990). Vestibular head-eye coordination: a geometrical sensorimotor neurocomputer paradigm. In R. Eckmiller, (ed.), Advanced Neural Computers. Amsterdam: Elsevier/North Holland, pp. 61–68
Pennacchio, L. A., Boulev, D. M., Higgins, K. M., Scott, M. P., and Noebels, J. L. (1998). Progressive ataxia, myoclonic epilepsy and cerebellar apopotosis in cystatin B-deficient mice. Nat. Gene. 20: 251–258CrossRefGoogle Scholar
Peterson, B. W., and Houk, J. C. (1991). A model of cerebellar-brainstem interaction in the adaptive control of the vestibuloocular reflex. Acta Otolaryngol. (Stockh). Suppl. 481: 428–432CrossRefGoogle ScholarPubMed
Peterson, S. E., Fox, P. T., Posner, M. I., Mintun, M., and Raichle, M. E. (1989). Positron emission tomographic studies of the processing of single words. J. Cogn. Neurosci. 1: 133–170Google Scholar
Pichitpornchai, C., Rawson, J. A., and Rees, S. (1994). Morphology of parallel fibers in the cerebellar cortex of the rat: an experimental light and electron microscopic study with biocytin. J. Comp. Neuro. 342: 206–220CrossRefGoogle ScholarPubMed
Pitts, W., and McCulloch, W. S. (1947). How we know universals: the perception of auditory and visual forms. Bull. Math. Biophy. 9: 127–147CrossRefGoogle ScholarPubMed
Poldrack, R. A., and Gabrieli, J. E. (1997). Functional anatomy of long-term memory. J. Clin. Neurophysiol. 14: 294–310CrossRefGoogle ScholarPubMed
Precht, W., and Llinás, R. (1969). Comparative aspects of the vestibular input to the cerebellum. In R. Llinás, (ed.), Neurobiology of Cerebellar Evolution and Development, Chicago: American Medical Association, pp. 677–702
Qian, N. (1995). Generalization and analysis of the Lisberger-Seijnowski VOR model. Neural Compu. 7: 735–752CrossRefGoogle ScholarPubMed
Ramón y Cajal, S. (1995). Histology of the Nervous System, 2 Vols. (trans. from the 1909–1911 French edition by N. Swanson and L. W. Swanson). New York/Oxford: Oxford University Press
Raphan, T., Dai, M. J., and Cohen, B. (1992). Spatial orientation of the vestibular system. Ann. N. Y. Acad. Sci. 656: 140–157CrossRefGoogle ScholarPubMed
Raymond, J. L., and Lisberger, S. G. (1997). Multiple subclasses of Purkinje cells in the primate floccular complex provide similar signals to guide learning in the vestibulo-ocular reflex. Learn. Mem. 3: 503–518CrossRefGoogle ScholarPubMed
Raymond, J. L., and Lisberger, S. G. (2000). Hypotheses about the neural trigger for plasticity in the circuit for the vestibulo-ocular reflex. Progr. Brain Re. 124: 235–246CrossRefGoogle ScholarPubMed
Raymond, J. L., Lisberger, S. G., and Mauk, M. D. (1996). The cerebellum: a neuronal learning machine?Scienc. 272: 1126–1131CrossRefGoogle ScholarPubMed
Robinson, D. A. (1976). Adaptive gain control of vestibuloocular reflex by the cerebellum. J. Neurophysio. 39: 954–969CrossRefGoogle ScholarPubMed
Robinson, D. A. (1981). Control of eye movements. In V. B. Brooks (ed.), Handbook of Physiology, Vol, II, Motor Control, Part 2. Bethesda: American Physiological Society, pp. 1275–1320
Robinson, D. A. (1989). Integrating with neurons. Annu. Rev. Neurosci. 12: 33–45CrossRefGoogle ScholarPubMed
Robinson, D. A. (1992a). Implications of neural networks for how we think about brain function. Behav. Brain Sci. 15: 644–655Google Scholar
Robinson, D. A. (1992b). How far into brain function can neural networks take us?Behav. Brain Sc. 15: 823–828Google Scholar
Robinson, F. R., Straube, A., and Fuchs, A. F. (1997). Participation of caudal fastigial nucleus in smooth pursuit eye movements. II. Effects of mucimol inactivation. J. Neurophysio. 78: 848–859CrossRefGoogle Scholar
Rolls, E. T., and Treves, A. (1998). Neural Networks and Brain Function. Oxford, England: Oxford University Press
Rosenblatt, F. (1958). The Perceptron: a probabilistic model for information storage and organization in the brain. Psychol. Rev. 65: 386–408CrossRefGoogle Scholar
Rosenblatt, F. (1961). Principles of Neurodynamical Perceptrons and the Theory of Brain Mechanisms. Buffalo, NY: Cornell Aeronautical Laboratory (1962). Washington, DC: Spartan Books
Ross, C. A. (1997). Intranuclear neuronal inclusions: a common pathogenic mechanism for glutamine-repeat neurodegenerative diseases?Neuro. 19: 1147–1150Google ScholarPubMed
Rossi, F., and Strata, P. (1995). Reciprocal trophic interactions in the adult climbing fibre–Purkinje cell system. Progr. Neurobio. 47: 341–369Google ScholarPubMed
Rothwell, J. (1994). Control of Human Voluntary Movement (2nd ed.). London: Chapman & Hall
Rubia, F. J. (1992). A possible connection between the mossy and climbing fiber systems at precerebellar level. In: R. Llinás and C. Sotelo (eds.), The Cerebellum Revisited. New York: Springer, pp. 226–254CrossRef
Ruigrok, T. J. H. (1997). Cerebellar nuclei: the olivary connection. Progr. Brain Res. 114: 168–192Google ScholarPubMed
Ruigrok, T. J. H., and Voogd, J. (1995). Cerebellar influence on olivary excitability in the cat. Eur. J. Neurosc. 7: 679–693CrossRefGoogle ScholarPubMed
Ruigrok, T. J. H., and Voogd, J. (2000). Organization of projections from the inferior olive to the cerebellar nuclei in the rat. J. Comp. Neurol. 426: 209–2283.0.CO;2-0>CrossRefGoogle ScholarPubMed
Ruigrok, T. J. H., Zeeuw, C. I., Burg, J., and Voogd, J. (1990). Intracellular labeling of neurons in the medial accessory olive of the cat: I. Physiology and light microscopy. J. Comp. Neurol. 300: 462–477CrossRefGoogle ScholarPubMed
Ruigrok, T. J. H., Osse, R.-J., and Voogd, J. (1992). Organization of inferior olivary projections to the flocculus and ventral paraflocculus of the rat cerebellum. J. Comp. Neuro. 316: 129–150CrossRefGoogle ScholarPubMed
Rumelhart, D. E. (1990). Series foreword. in: M. A. Gluck and D. E. Rumelhart (eds.), Neuroscience and Connectionist Theory. Hillsdale, NJ: Lawrence Erlbaum Associates, pp. ⅸ–ⅹ
Rumelhart D. E., Hinton, G. E., and Williams, R. J. (1986a). Learning internal representations by error propagation. In D. E. Rumelhart and J. L. McClelland (eds.), Parallel Distributed Processing: Explorations in the Microstructure of Cognition, Vol. 1. Cambridge, MA: MIT Press
Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986b). Learning representations by back-propagating errors. Natur. 323: 225–228CrossRefGoogle Scholar
Russell, C. J., and Bell, C. C. (1978). Neuronal responses to electrosensory input in momyrid valvula cerebelli. J. Neurophysiol. 41: 1495–1510CrossRefGoogle ScholarPubMed
Rutherford, J. G., and Gwyn, D. G. (1980). A light and electron microscopic study of the inferior olivary nucleus of the squirrel monkey, Saimiri sciureus. J. Comp. Neuro. 189: 127–155CrossRefGoogle ScholarPubMed
Sadato, N., Ibañez, V., Deiber, M.-P., Campbell, G., Leonardo, M., and Hallett, M. (1996). Frequency-dependent changes of regional cerebral blood flow during finger movements. J. Cereb. Blood Flow Metab. 16: 23–33CrossRefGoogle ScholarPubMed
Saint-Cyr, J. A. (1983). The projection from the motor cortex to the inferior olive in the cat. Neuroscienc. 10: 667–684CrossRefGoogle ScholarPubMed
Sakurai, M. (1987). Synaptic modification of parallel fibre–Purkinje cell transmission in in-vitro guinea-pig cerebellar slices. J. Physiol. 394: 463–480CrossRefGoogle ScholarPubMed
Sakurai, M. (1989). Depression and potentiation of parallel fiber–Purkinje cell transmission in in vitro cerebellar slices. In P. Strata (ed.), The Olivocerebellar System in Motor Control. Berlin: Springer, pp. 221–230CrossRef
Salin, P. A., Malenka, R. C., and Nicoll, R. A. (1996). Cyclic AMP mediates a presynaptic form of LTP at cerebellar parallel fiber synapses. Neuro. 16: 797–803Google ScholarPubMed
Sanner, R. M., and Slotine, J.-J. E. (1993). Stable adaptive control of root manipulators using “neural” networks. Neural Comput. 7: 753–790CrossRefGoogle Scholar
Sasaki, K., Bower, J. M., and Llinás, R. (1989). Multiple Purkinje cell recording in rodent cerebellar cortex. Eur. J. Neurosc. 1: 572–586CrossRefGoogle ScholarPubMed
Scheibel, M. E., and Scheibel, A. B. (1955). The inferior olive: a Golgi study. J. Comp. Neuro. 102: 77–132CrossRefGoogle ScholarPubMed
Scheibel, M., Scheibel, A., Walberg, W., and Brodal, A. (1956). Areal distribution of axonal and dendritic patterns in inferior olive. J. Comp. Neurol. 106: 21–49CrossRefGoogle Scholar
Schild, R. F. (1980). Length of the parallel fibers in rat cerebellar cortex. J. Physiol. (Lond. 303: 25PGoogle Scholar
Schilling, K. (2000). Lineage, development and morphogenesis of cerebellar interneurons. Progr. Brain Res. 124: 51–68CrossRefGoogle ScholarPubMed
Schlösser, R., Hutchinson, M., Joseffer, S., Rusinek, H., Saarimaki, A., Stevenson, J., Dewey, S. L., and Brodie, J. D. (1998). Functional magnetic resonance imaging of human brain activity in a verbal fluency task. J. Neurol. Neurosurg. Psychiatr. 64: 492–498CrossRefGoogle Scholar
Schmahmann, J. D. (1991). An emerging concept. The cerebellar contribution to higher function. Arch. Neurol. 48: 1178–1187CrossRefGoogle ScholarPubMed
Schmahmann, J. D. (1992). In reply (letter to the editor). Arch. Neuro. 49: 1230CrossRefGoogle Scholar
Schmahmann, J. D. (1996). Dysmetria of thought: correlations and conundrums in the relationship between the cerebellum, learning, and cognitive processing. Behav. Brain Sci. 19: 472–473CrossRefGoogle Scholar
Schmahmann, J. D., (1997). (ed.). The Cerebellum and Cognition(Int. Rev. Neurobiol. 41). San Diego: Academic Press
Schmahmann, J. D. (1998). Dysmetria of thought: clinical consequences of cerebellar dysfunction on cognition and affect. Trends Cogn. Sci. 2: 362–371CrossRefGoogle ScholarPubMed
Schmahmann, J. D., and Pandya, D. N. (1989). Anatomical investigation of projections to the basis pontis from posterior parietal association cortices in rhesus monkey. J. Comp. Neurol. 289: 53–73CrossRefGoogle ScholarPubMed
Schmahmann, J. D., and Pandya, D. N. (1991). Projections to the basis pontis from the superior temporal sulcus and superior temporal region in the rhesus monkey. J. Comp. Neurol. 308: 224–248CrossRefGoogle ScholarPubMed
Schmahmann, J. D., and Pandya, D. N. (1997a). Anatomic organization of the basilar pontine projections from prefrontal cortices in rhesus monkey. J. Neurosci. 17: 438–458CrossRefGoogle Scholar
Schmahmann, J., and Pandya, D. K. (1997b). The cerebrocerebellar system. In: J. Schmahmann (ed.), The Cerebellum and Cognition. San Diego: Academic Press (Int. Rev. Neurobiol. 41): 31–60
Schmahmann, J. D., and Sherman, J. C. (1998). The cerebellar cognitive affective syndrome. Brai. 121: 561–579CrossRefGoogle ScholarPubMed
Schmahmann, J. D., Doyon, J., Toga, A. W., Petrides, M., and Evans, A. C. (2000). MRI Atlas of the Human Cerebellum. San Diego: Academic Press
Schnitzlein, B. N., and Faucette, J. R. (1969). General morphology of the fish cerebellum. In: R. Llinás (ed.), Neurobiology of Cerebellar Evolution and Development, Chicago: American Medical Association, pp. 77–106
Schöner, G., and Kelso, J. A. S. (1988). Dynamic pattern generation in behavioral and neural systems. Scienc. 239: 1513–1520CrossRefGoogle ScholarPubMed
Schreurs, B. G., and Alkon, D. L. (1993). Rabbit cerebellar slice analysis of long-term depression and its role in classical conditioning. Brain Res. 631: 235–240CrossRefGoogle ScholarPubMed
Schreurs, B. G., Oh, M. M., and Alkon, D. L. (1996). Pairing-specific long-term depression of Purkinje cell excitatory postsynaptic potentials results from a classical conditioning procedure in the rabbit cerebellar slice. J. Neurophysio. 75: 1051–1060CrossRefGoogle ScholarPubMed
Schreurs, B. G., Tomsic, D., Gusev, P. A., and Alkon, D. L. (1997). Dendritic excitability microzones and occluded long-term depression after classical conditioning of the rabbit's nictitating membrane response. J. Neurophysio. 77: 86–92CrossRefGoogle ScholarPubMed
Schweighofer, N., and Arbib, M. A. (1998). A model of cerebellar metaplasticity. Learn. Mem. 4: 421–428CrossRefGoogle ScholarPubMed
Schweighofer, N., Arbib, M. A., and Dominey, P. F. (1996a). A model of the cerebellum in adaptive control of saccadic gain. I. The model and its biological substrate. Biol. Cybern. 75: 19–28CrossRefGoogle Scholar
Schweighofer, N., Arbib, M. A., and Dominey, P. F. (1996b). A model of the cerebellum in adaptive control of saccadic gain. II. Simulation results. Biol. Cybern. 75: 29–36CrossRefGoogle Scholar
Schweighofer, N., Doya, K., and Kawato, M. (1999). Electrophysiological properties of inferior olive neurons: a compartmental model. J. Neurophysio. 82: 804–817CrossRefGoogle ScholarPubMed
Schweighofer, N., Spoelstra, J., Arbib, M. A., and Kawato, M. (1998a). Role of the cerebellum in reaching movements in humans. I. Distributed inverse dynamics control. Eur. J. Neurosci. 10: 86–94CrossRefGoogle Scholar
Schweighofer, N., Spoelstra, J., Arbib, M. A., and Kawato, M. (1998b). Role of the cerebellum in reaching movements in humans. II. A neural model of the intermediate cerebellum. Eur. J. Neurosci. 10: 95–105CrossRefGoogle Scholar
Seeds, N. W., Williams, B. L., and Bickford, P. C. (1995). Tissue plasminogen activator induction in Purkinje neurons after cerebellar motor learning. Scienc. 270: 1992–1994CrossRefGoogle ScholarPubMed
Seijnowski, T. J. (1977). Storing covariance with nonlinearly interacting neurons. J. Math. Biol. 4: 303–321CrossRefGoogle Scholar
Seitz, R. J., Canavan, A. G. M., Yagüez, L., Herzog, H., Tellmann, L., Knorr, U., Huang, Y.-X., and Hömberg, V., (1994). Successive roles of the cerebellum and premotor cortices in trajectorial learning. Neurorepor. 5: 2541–2544CrossRefGoogle ScholarPubMed
Shambes, G. M., Gibson, J. M., and Welker, W. (1978). Fractured somatotopy in granule cell tactile areas of rat cerebellar hemispheres revealed by micromapping. Brain Behav. Evol. 15: 94–140CrossRefGoogle ScholarPubMed
Shibuki, C. A., and Okada, D., (1992). Cerebellar long-term potentiation under suppressed postsynaptic Ca2+activity. Neurorepor. 3: 231–234CrossRefGoogle ScholarPubMed
Shidara, M., Kawano, K., Gomi, H., and Kawato, M. (1993). Inverse-dynamics model eye movement control by Purkinje cells in the cerebellum. Natur. 365: 50–52CrossRefGoogle ScholarPubMed
Shimansky, Y., Saling, M., Wunderlich, D. A., Bracha, V., Stelmach, G. F., and Bloedel, J. R. (1997). Impaired capacity of cerebellar patients to perceive and learn two-dimensional shapes based on kinesthetic cues. Learn. Mem. 4: 36–48CrossRefGoogle ScholarPubMed
Shinoda, Y., Futami, T., Sugiuchi, Y., Kakei, S., and Izawa, Y. (1993). Input–output organization of the cerebellar nuclei. In: N. Mano, I. Hamada, and M. R. DeLong (eds.), Role of the Cerebellum and Basal Ganglia in Voluntary Movement. Amsterdam: Elsevier, pp. 133–145
Shinoda, Y., Izawa, Y., Sugiuchi, Y., and Futami, T. (1997). Functional significance of excitatory projections from the precerebellar nuclei to interpositus and dentate nucleus neurons for mediating motor, premotor and parietal cortical inputs. Progr. Brain Re. 114: 193–207CrossRefGoogle ScholarPubMed
Shinoda, Y., Sugihara, E., Wu, H.-S., and Sugiuchi, Y. (2000). The entire trajectory of single climbing and mossy fibers in the cerebellar nuclei and cortex. Progr. Brain Res. 124: 173–186CrossRefGoogle ScholarPubMed
Shmerling, D., Hegyi, I., Fischer, M., Blätter, T., Brandner, S., Götz, J., Rülicke, T., Flechsig, E., Cozzio, A., Mering, C., Hangartner, C., Aguzzi, A., and Weissmann, C., (1998). Expression of amino-terminally truncated PrP [prion protein] in the mouse leading to ataxia and specific cerebellar lesions. Cel. 93: 203–214CrossRefGoogle ScholarPubMed
Shynk, J. J. (1995). Adaptive filtering. In: M. A. Arbib (ed.), The Handbook of Brain Theory and Neural Networks. Cambridge, MA: MIT Press, pp. 74–78
Silkis, I. (2000). Interrelated modification of excitatory and inhibitory synapses in three-layer olivary-cerebellar neural network. Biosystem. 54: 141–149CrossRefGoogle ScholarPubMed
Silveri, M. C., Leggio, M. G., and Molinari, M. (1994). The cerebellum contributes to linguistic production: a case of agrammatic speech following a right cerebellar lesion. Neurolog. 44: 2047–2050CrossRefGoogle ScholarPubMed
Simpson, J. I., and Alley, K. E. (1974). Visual climbing fiber input to rabbit vestibulo-cerebellum: a source of direction-specific information. Brain Re. 82: 302–308CrossRefGoogle ScholarPubMed
Simpson, J. I., Graf, W., and Leonard, C. S. (1989). Three-dimensional representation of retinal image movement by climbing fiber activity. In P. Strata (ed.), The Olivocerebellar System in Motor Control. New York: Springer-Verlag, pp. 323–337CrossRef
Simpson, J. I., Van der Steen, J., and Tan, J. (1992). Eye movements and the zonal structure of the rabbit flocculus. In R. Llinás and C. Sotelo (eds.), The Cerebellum Revisited. New York: Springer Verlag, pp. 255–266CrossRef
Simpson, J. I., Wylie, D. R., and Zeeuw, C. I. (1996). On climbing fiber signals and their consequence(s). Behav. Brain Sc. 19: 384–398CrossRefGoogle Scholar
Singer, J. L. (1995). Mental processes and brain architecture: confronting the complex adaptive systems of human thought (an overview). In: H. Morowitz and J. L. Singer (eds.), The Mind, The Brain, and Complex Adaptive Systems. Reading, MA: Addison-Wesley, pp. 1–9
Sinkjær, T., Miller, L., Andersen, T., and Houk, J. C. (1995). Synaptic linkages between red nucleus cells and limb muscles during a multi-joint motor task. Exp. Brain. Re. 102: 546–550Google ScholarPubMed
Siouris, G. M. (1993). Aerospace Avionics Systems. New York: Academic Press
Slater, N. T., Rossi, D. J., and Kinney, G. A. (1997). Physiology of transmission at a giant glutamatergic synapse in cerebellum. Progr. Brain Res. 114: 150–163Google Scholar
Smith, A. M. (1996). Does the cerebellum learn strategies for the optimal time-varying control of joint stiffness?Behav. Brain Sci. 19: 399–410CrossRefGoogle Scholar
Smolyaninov, V. V. (1971). Some special features of organization of the cerebellar cortex. In: I. M. Gelfand, V. S. Gurfinkel, S. V. Fomin, and M. L. Tsetlin (eds.), Models of the Structural-Functional Organization of Certain Biological Systems (translated from the Russian by C. R. Beard, translation reviewed by J. S. Barlow). Cambridge, MA: MIT Press, pp. 251–325
Soechting, J. F., and Flanders, M. (1992). Moving in three-dimensional space: frames of reference, vectors, and coordinate systems. Annu. Rev. Neurosc. 15: 167–191CrossRefGoogle ScholarPubMed
Sotelo, C., and Chédotal, A. (1997). Development of the olivocerebellar projection. Perspect. Devel. Neurobio. 5: 57–67Google ScholarPubMed
Sotelo, C., Gotow, T., and Wassef, M. (1986). Localization of glutamic-acid-decarbolyxase-immunoreactive axon terminals in the inferior olive of the rat, with special emphasis on anatomical relations between GABAergic synapses and dendrodendritic gap junctions. J. Comp. Neuro. 252: 32–50CrossRefGoogle ScholarPubMed
Sotelo, C., Llinás, R., and Baker, R. (1974). Structural study of inferior olivary nucleus of the cat: morphological correlates of electrotonic coupling. J. Neurophysiol. 37: 541–559CrossRefGoogle ScholarPubMed
Stein, J. F. (1992). The representation of egocentric space in the posterior parietal cortex. Behav. Brain Sci. 15: 691–700CrossRefGoogle ScholarPubMed
Stein, J. F., and Glickstein, J. F. (1992). The role of the cerebellum in visual guidance of movement. Physiol. Rev. 72: 967–1017CrossRefGoogle Scholar
Stone, L. S., and Lisberger, S. G. (1989). Synergistic action of complex and simple spikes in the monkey flocculus in the control of smooth-pursuit eye movement. In P. Strata (ed.), The Olivocerebellar System in Motor Control. New York: Springer-Verlag, pp. 299–312CrossRef
Stone, L. S., and Lisberger, S. G. (1990). Visual responses of Purkinje cells in the cerebellar flocculus during smooth-pursuit eye movements in monkeys. I. Simple spikes. J. Neurophysio. 63: 1241–1261CrossRefGoogle ScholarPubMed
Strata, P., and Rossi, F. (1998). Plasticity of the olivocerebellar pathway. Trends Neurosci. 21: 407–413CrossRefGoogle ScholarPubMed
Strata, P., Rossi, F., and Tempia, F. (1995). Inferior olive and the saccadic neural integrator. In W. R. Ferrell and U. Proskeu (eds.), Neural Control of Movement. New York: Plenum Press, pp. 241–249CrossRef
Strata, P., Tempia, F., Zagrebelsky, M., and Rossi, F. (1997). Reciprocal trophic interactions between climbing fibres and Purkinje cells in the rat cerebellum. Progr. Brain Re. 114: 263–282CrossRefGoogle ScholarPubMed
Sugawara, Y., Grant, K., Han, V., and Bell, C. C. (1999). Physiology of electrosensory lateral line lobe neurons in Gnathonemus petersii. J. Exp. Bio. 202: 1301–1309Google ScholarPubMed
Sugihara, I., Lang, E. J., and Llinás, R. (1993). Uniform olivocerebellar conduction time underlies Purkinje cell complex spike synchronicity in the rat cerebellum. J. Physio. 470: 243–271CrossRefGoogle ScholarPubMed
Sugihara, I., Lang, E. J., and Llinás, R. (1995). Serotonin modulation of inferior olivary oscillations and synchronicity: a multiple-electrode study in the rat cerebellum. Eur. J. Neurosc. 7: 521–534CrossRefGoogle ScholarPubMed
Sugihara, I., Wu, H.-S., and Shinoda, Y. (1999). Morphology of single olivocerebellar axons labeled with biotinylated dextran. J. Comp. Neuro. 414: 131–1483.0.CO;2-F>CrossRefGoogle ScholarPubMed
Sutton, R. S., and Barto, A. G. (1981). Toward a modern theory of adaptive networks: expectation and prediction. Psychol. Revie. 88: 135–170CrossRefGoogle Scholar
Svensson, P., Ivarsson, M., and Hesslow, G. (1997). Effect of varying the intensity and train frequency of forelimb and cerebellar mossy fiber conditioned stimuli on the latency of conditioned eye-blink responses in decerebrate ferrets. Learn. Mem. 3: 105–115CrossRefGoogle Scholar
Svensson, P., Ivarsson, M., and Hesslow, G. (2000). Involvement of the cerebellum in a new temporal property of the conditioned eyeblink response. Progr. Brain Re. 124: 317–323CrossRefGoogle Scholar
Swenson, R. S., and Castro, A. J. (1983). The afferent connections of the inferior olivary complex in rats. An anterograde study using autoradiographic and axonal degeneration techniques. Neuroscienc. 8: 259–275CrossRefGoogle ScholarPubMed
Szentágothai, J. (1965). The use of degeneration methods in the investigation of short neuronal connexions. Progr. Brain Re. 14: 1–32CrossRefGoogle ScholarPubMed
Szentágothai, J. (1968). Structuro-functional considerations of the cerebellar network. Proc. IEEE. 56: 960–968CrossRefGoogle Scholar
Takács, J., Gombos, G., Görcs, T., Becker, T., Barry, J., and Hámori, J. (1997). Distribution of metabotropic glutamate receptor type 1a in Purkinje cell dendritic spines is independent of the presence of presynaptic parallel fibers. J. Neurosci. Res. 50: 433–4423.0.CO;2-J>CrossRefGoogle ScholarPubMed
Tan, J., Epema, A. H., and Voogd, J. (1995). Zonal organization of the flocculovestibular nucleus projection in the rabbit: a combined axonal tracing and acetylcholinesterase histochemical study. J. Comp. Neuro. 356: 51–71CrossRefGoogle ScholarPubMed
Tan, J., Gerrits, N. M., Nanhoe, R., Simpson, J. I., and Voogd, J. (1995). Zonal organization of the climbing fiber projection to the flocculus and nodulus of the rabbit: a combined axonal tracing and acetylcholinesterase histochemical study. J. Comp. Neuro. 356: 23–50CrossRefGoogle ScholarPubMed
Tan, J., Simpson, J. I., and Voogd, J. (1995). Anatomical compartments in the white matter of the rabbit flocculus. J. Comp. Neuro. 356: 1–22CrossRefGoogle ScholarPubMed
Tauer, U., Volk, B., and Heimrich, B. (1996). Differentiation of Purkinje cells in cerebellar slice cultures: an immunochemical and Golgi EM study. Neuropathol. Appl. Neurobio. 22: 361–369CrossRefGoogle Scholar
Teune, T. M., Burg, J., Zeeuw, C. I., Voogd, J., and Ruigrok, T. J. H. (1998). Single Purkinje cell can innervate multiple classes of projection neurons in the cerebellar nuclei of the rat: a light microscopic and ultrastructural triple-tracer study in the rat. J. Comp. Neuro. 392: 164–1783.0.CO;2-0>CrossRefGoogle ScholarPubMed
Teune, T. M., Burg, J., and Ruigrok, T. J. H. (1995). Cerebellar projections to the red nucleus and inferior olive originate from separate populations of neurons in the rat: a non-fluorescent double labeling study. Brain Re. 673: 313–319CrossRefGoogle ScholarPubMed
Thach, W. T. (1967). Somatosensory receptive fields of single units in cat cerebellar cortex. J. Neurophysio. 30: 675–696CrossRefGoogle ScholarPubMed
Thach, W. T. (1972). Cerebellar output: properties, synthesis and uses. Brain Res. 40: 89–97CrossRefGoogle ScholarPubMed
Thach, W. T. (1980). Complex spikes, the inferior olive, and natural behavior. In: J. Courville, C. de Montigny, and Y. Lamarre (eds.), The Inferior Olivary Nucleus: Anatomy and Physiology. New York: Raven Press, pp. 349–360
Thach, W. T. (1996a). A cerebellar role in acquisition of novel static and dynamic muscle activities in holding, pointing, throwing, and reaching. In: J. R. Bloedel, T. J. Ebner, and S. P. Wise (eds.), The Acquisition of Motor Behavior in Vertebrates. Cambridge, MA: MIT Press, pp. 223–234
Thach, W. T. (1996b). On the specific role of the cerebellum in motor learning and cognition: clues from PET activation and lesion studies in man. Behav. Brain Sci. 19: 411–431CrossRefGoogle Scholar
Thach, W. T. (1996c). Q. Is the cerebellum an adaptive combiner of motor and mental/motor activities? A. Yes, maybe, certainly not, who can say?Behav. Brain Sci. 19: 501–503CrossRefGoogle Scholar
Thach, W. T. (1997). Context–response linkage. In: J. Schmahmann (ed.), The Cerebellum and Cognition. (Int. Rev. Neurobiol. 41: 599–611) San Diego: Academic PressCrossRef
Thach, W. T. (1998a). Combination, complementarity and automatic control: a role for the cerebellum in learning movement coordination. Novartis Found. Sym. 218: 219–232Google Scholar
Thach, W. T. (1998b). A role for the cerebellum in learning movement coordination. Neurobiol. Learn. Me. 70: 177–188CrossRefGoogle Scholar
Thach, W. T. (1998c). What is the role of the cerebellum in motor learning and cognition?Trends Cogn. Sci. 2: 331–337CrossRefGoogle Scholar
Thach, W. T., Goodkin, H. P., and Keating, J. G. (1992). The cerebellum and the adaptive coordination of movement. Annu. Rev. Neurosci. 15: 403–442CrossRefGoogle Scholar
Thach, W. T., Kane, S. A., Mink, J. W., and Goodkin H. P. (1992). Cerebellar output: multiple maps and modes of control in movement coordination. In: R. Llinás and C. Sotelo (eds.), The Cerebellum Revisited. New York: Springer, pp. 283–300CrossRef
Thach, W. T., Mink, J. W., Goodkin, H. P., and Keating, J. G. (1993). Combining versus gating motor programs: differential roles for cerebellum and basal ganglia? In N. Mano, I. Hamada, and M. R. DeLong (eds.), Role of the Cerebellum and Basal Ganglia in Voluntary Movement. Amsterdam: Elsevier, pp. 235–245
Thach, W. T., Perry, J. G., Kane, S. A., and Goodkin, H. P. (1993). Cerebellar nuclei: rapid alternating movement, motor somatotopy, and a mechanism for the control of muscle synergy. Rev. Neurol. (Paris. 149: 607–628Google Scholar
Their, P., Dicke, P. W., Haas, R., and Barash, S. (2000). Encoding of movement time by populations of cerebellar Purkinje cells. Natur. 405: 72–76CrossRefGoogle Scholar
Thompson, R. F., Thompson, J. K., Kim, J. J., Krupa, D. J., and Shinkman, P. G. (1998). The nature of reinforcement in cerebellar learning. Neurobiol. Learn. Me. 70: 150–176CrossRefGoogle ScholarPubMed
Timmann, D., Shimansky, Y., Larson, P. S., Wunderlich, D. A., Stelmach, G. E., and Bloedel, J. R. (1996). Visuomotor learning in cerebellar patients. Behav. Brain Re. 81: 99–113CrossRefGoogle ScholarPubMed
Tolbert, D. L., (1982). The cerebellar nucleocortical pathway. In S. L. Palay and V. Chan-Palay (eds.), The Cerebellum – New Vistas. Heidelberg: Springer, pp. 296–319CrossRef
Tolbert, D. L., and Bantli, H. (1979). An HRP and autoradiographic study of cerebellar corticonuclear-nucleocortical reciprocity in the monkey. Exp. Brain Re. 36: 563–571Google ScholarPubMed
Tolbert, D. L., Bantli, H., and Bloedel, J. R. (1976). Anatomical and physiological evidence for a cerebellar nucleo-cortical projection in the cat. Neuroscienc. 1: 205–217CrossRefGoogle ScholarPubMed
Tolbert, D. L., Bantli, H., and Bloedel, J. R. (1977). The intracerebellar nucleocortical projection in a primate. Exp. Brain Res. 30: 425–434Google ScholarPubMed
Tolbert, D. L., Bantli, H., and Bloedel, J. R. (1978). Organizational features of the cat and monkey cerebellar nucleocortical projection. J. Comp. Neuro. 182: 39–56CrossRefGoogle ScholarPubMed
Tolbert, D. L., Kultas-Ilinsky, K., and Ilinsky, I. (1980). EM-autoradiography of cerebellar nucleocortical terminals in the cat. Anat. Embryol. 161: 215–223CrossRefGoogle ScholarPubMed
Topka, H., Konczak, J., Schneider, K., Boose, A., and Dichgans, J. (1998). Multijoint arm movements in cerebellar ataxia: abnormal control of movement dynamics. Exp. Brain Re. 119: 493–503CrossRefGoogle ScholarPubMed
Topka, H., Konczak, J., and Dichgans, J. (1998). Coordination of multi-joint arm movements in cerebellar ataxia: analysis of hand and angular kinematics. Exp. Brain Re. 119: 483–492CrossRefGoogle ScholarPubMed
Trott, J. R., Apps, R., and Armstrong, D. M. (1990). Topographical organisation within the cerebellar nucleocortical projection to the paravermal cortex of lobule Vb/c in the cat. Exp. Brain Res. 80: 415–428CrossRefGoogle ScholarPubMed
Umetani, T. (1990). Topographic organization of the cerebellar nucleocortical projection in the albino rat: an autographic orthograde study. Brain Res. 507: 216–224CrossRefGoogle Scholar
Neut, R. (1997). Targeted gene disruption: applications in neurobiology. J. Neurosci. Method. 71: 19–27CrossRefGoogle ScholarPubMed
Kan, P. L. E., Gibson, A. R., and Houk, J. C. (1993). Movement-related inputs to intermediate cerebellum of the monkey. J. Neurophysio. 69: 74–94CrossRefGoogle ScholarPubMed
Vemuri, V. R. (1992). Artifical Neural Networks: Concepts and Control Applications. Los Alamitos, CA: IEEE Computer Society Press
Verhaagen, J., and Schrama, L. H. (1997). The application of gene transfer technology in neurobiology. J. Neurosci. Method. 71: ⅶCrossRefGoogle Scholar
Vetter, P., and Wolpert, D. M. (2000). Context estimation for sensorimotor control. J. Neurophysio. 84: 1026–1034CrossRefGoogle ScholarPubMed
Victor, M., and Ropper, A. H. (2001). Adams and Victor's Principles of Neurology (7th ed.). New York: McGraw-Hill
Viets, H. R., and Garrison, F. H. (1940). Purkinje's original description of the pear-shaped cells in the cerebellum. Bull. Hist. Med. 8: 1397–1398Google Scholar
Vilis, T., and Hore, J. (1980). Central neural mechanisms contributing to cerebellar tremor produced by limb perturbations. J. Neurophysiol. 43: 279–291CrossRefGoogle ScholarPubMed
Vincent, P., and Marty, A. (1996). Fluctuations of inhibitory postsynaptic currents in Purkinje cells from rat cerebellar slices. J. Physiol. 494: 183–199CrossRefGoogle ScholarPubMed
von der Malsburg, C. (1997). The coherence definition of consciousness. In M. Ito, Y. Miyashita and E. T. Rolls (eds.), Cognition, Computation, and Consciousness. Oxford, England: Oxford University Press, pp. 193–204CrossRef
Voogd, J., and Bigaré, F. (1980). Topographical distribution of olivary and cortico nuclear fibers in the cerebellum: a review. In J. Courville, C. de Montigny and Y. Lamarre (eds.), The Inferior Olivary Nucleus: Anatomy and Physiology. New York: Raven Press, pp. 207–234
Voogd, J., Gerrits, N. M., and Ruigrok, T. J. (1996). Organization of the vestibulocerebellum. Ann. N. Y. Acad. Sci. 781: 553–579CrossRefGoogle ScholarPubMed
Voogd, J., and Glickstein, M. (1998). The anatomy of the cerebellum. Trends Neurosci. 21: 370–375CrossRefGoogle ScholarPubMed
Voogd, J., and Ruigrok, T. J. H. (1997). Transverse and longitudinal patterns in the mammalian cerebellum. Progr. Brain Res. 114: 21–37CrossRefGoogle ScholarPubMed
Vos, B. P., Volny-Luraghi, A., Maex, R., and Schutter, E. (2000). Precise spike timing of tactile-evoked cerebellar Golgi cell responses: a reflection of combined mossy fiber and parallel fiber activation?Progr. Brain Re. 124: 96–106Google ScholarPubMed
Waespe, W., Cohen, B., and Raphan, T. (1985). Dynamic modification of the vestibulo-ocular reflex by the nodulus and uvula. Scienc. 228: 199–202CrossRefGoogle ScholarPubMed
Wang, J., Zhou, T., Qiu, M., Du, A., Cai, K., Wang, Z., Zhou, C., Meng, M., Zhuo, Y., Fan, S., and Chen, L. (1999). Relationship between ventral stream for object vision and dorsal stream for spatial vision: an fMRI + ERP study. Hum. Brain Map. 8: 170–1813.0.CO;2-W>CrossRefGoogle ScholarPubMed
Wang, J.-J., Shimansky, Y., Bracha, V., and Bloedel, J. R. (1998). Effects of cerebellar nuclear inactivation on the learning of a complex forelimb movement in cats. J. Neurophysio. 79: 2447–2459CrossRefGoogle ScholarPubMed
Warr, W. B. (1982). Parallel ascending pathways from the cochlear nucleus: Neuroanatomical evidence of functional specialization. In W. D. Neff (ed.), Contributions to Sensory Physiology, Vol. 7. New York: Academic Press, pp. 1–38
Webster, D. B. (1992). An overview of mammalian auditory pathways with an emphasis on humans. In D. B. Webster, A. N. Popper, and R. R. Fay (eds.), The Mammalian Auditory Pathway: Neuroanatomy. New York: Springer, pp. 1–22CrossRef
Weiss, C., Houk, J. C., and Gibson, A. R. (1990). Inhibition of sensory responses of cat inferior olive neurons produced by stimulation of red nucleus. J. Neurophysio. 64: 1170–1185CrossRefGoogle ScholarPubMed
Welsh, J. P., and Harvey, J. A. (1989). Cerebellar lesions and the nictitating membrane reflex: performance deficits of the conditioned and unconditioned response. J. Neurosci. 9: 299–311CrossRefGoogle ScholarPubMed
Welsh, J. P., and Llinás, R. (1997). Some organizing principles for the control of movement based on olivocerebellar physiology. Progr. Brain Res. 114: 449–461CrossRefGoogle ScholarPubMed
Welsh, J. P., Lang, E. J., Sugihara, I., and Llinás, R. (1995). Dynamic organization of motor control within the olivocerebellar system. Natur. 374: 453–457CrossRefGoogle ScholarPubMed
Werbos, P. J. (1975). Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences. Ph.D. Dissertation, Harvard University, Boston, MA
Werbos, P. J. (1990). Backpropagation through time: what it does and how to do it. Proc. IEEE. 78: 1550–1560CrossRefGoogle Scholar
White, S. A. (1975). An adaptive recursive digital filter. In S.-P. Chen (ed.), Conference Record: Ninth Annual Asilomar Conference on Circuits, Systems, and Computers (Nov. 3–5 1975), North Hollywood, CA: Western Periodicals Co. pp. 21–25
Widrow, B. (1963). A statistical theory of adaptation. In: F. P. Caruthers and H. Levenstein (eds.), Adaptive Control Systems. New York: Macmillan, pp. 97–121
Widrow, B., and Hoff, M. E. Jr. (1960). Adaptive switching circuits. IRE WESCON Convention Recor., 96–104Google Scholar
Widrow, B., and Lehr, M. A. (1990). Thirty years of adaptive neural networks: perceptron, madaline, and backpropagation. Proc. IEEE. 78: 1415–1442CrossRefGoogle Scholar
Widrow, B., and Stearns, S. D. (1985). Adaptive Signal Processing. Englewood Cliffs, NJ: Prentice-Hall
Widrow, B., and Stearns, S. D. (1985). Introduction to adaptive arrays and adaptive beamforming. In: Adaptive Signal Processing. Englewood Cliffs, NJ: Prentice-Hall, pp. 368–408
Widrow, B., Glover, J. R., McCool, J. M., Kaunitz, J., Williams, C. S., Hearn, R. H., Zeidler, J. R., Dong, E., and Goodlin, R. C. (1975). Adaptive noise cancelling: principles and applications. Proc. IEEE. 63: 1692–1716CrossRefGoogle Scholar
Widrow, B., Mantey, P. E., Griffiths, L. J., and Goode, B. B. (1967). Adaptive antenna systems. Proc. IEEE. 55: 2143–2159CrossRefGoogle Scholar
Wiener, N. (1948). Cybernetics or Control and Communication in the Animal and the Machine. Cambridge, MA: MIT Press
Wiener, N. (1950). Extrapolation, Interpolation and Smoothing of Stationary Time Series. Cambridge, MA: MIT Press/New York: John Wiley
Wiener, N. (1961). Cybernetics or Control and Communication in the Animal and the Machine (2nd ed.) Cambridge, MA: MIT Press
Wiener, S., and Berthoz, A. (1993). Forebrain structures mediating the vestibular contribution during navigation. In A. Berthoz (ed.), Multisensory Control of Movement. Oxford, England: Oxford University Press, pp. 427–456CrossRef
Williams, R. J., and Zipser, D. (1989). A learning algorithm for continually running fully recurrent neural networks. Neural Comput. 1: 270–280CrossRefGoogle Scholar
Wittmann, M. (1999). Time perception and temporal processing levels of the brain. Chronobiol. Int. 16: 17–32CrossRefGoogle Scholar
Wolpert, D. M., and Kawato, M. (1998). Multiple paired forward and inverse models for motor control. Neural Net. 11: 1317–1329CrossRefGoogle ScholarPubMed
Wolpert, D. M., Goodbody, S. J., and Husain, M. (1998). Maintaining internal representations: the role of the human superior parietal lobe. Nat. Neurosci. 1: 529–533CrossRefGoogle ScholarPubMed
Wolpert, D. M., Miall, R. C., and Kawato, M. (1998). Internal models in the cerebellum. Trends Cogn. Sc. 2: 338–347CrossRefGoogle ScholarPubMed
Wolpert, M., and Kawato, M. (1998). Multiple paired forward and inverse models for motor control. Neural Netw. 11: 1317–1329CrossRefGoogle ScholarPubMed
Wouterlood, F. G., and Mugnaini, E. (1984). Cartwheel neurons of the dorsal cochlear nucleus: a Golgi-electron microscope study in rat. J. Comp. Neurol. 227: 136–157CrossRefGoogle Scholar
Wouterlood, F. G., Mugnaini, E., Osen, K. K., and Dahl, A. L. (1984). Stellate neurons in rat dorsal cochlear nucleus studies with combined Golgi impregnation and electron microscopy: synaptic connections and mutual coupling by gap junctions. J. Neurocyto. 13: 634–664CrossRefGoogle ScholarPubMed
Wullimann, M. F., and Northcutt, R. G. (1990). Visual and electrosensory circuits of the diencephalon in mormyrids: an evolutionary perspective. J. Comp. Neurol. 297: 537–552CrossRefGoogle Scholar
Wylie, D. R., Zeeuw, C. I., and Simpson, J. L. (1995). Temporal relations of the complex spike activity of Purkinje cell pairs in the vestibulocerebellum of rabbits. J. Neurosci. 15: 2875–2887CrossRefGoogle ScholarPubMed
Yamamoto, K., Kobayashi, Y., Takemura, A., Kawano, K., and Kawato, M. (1997). A mathematical model that reproduces vertical ocular following responses from visual stimuli by reproducing the simple spike firing frequency of Purkinje cells in the cerebellum. Neurosci. Res. 29: 161–169CrossRefGoogle ScholarPubMed
Yanagihara, D., and Kondo, I. (1996). Nitric oxide plays a key role in adaptive control of locomotion in cat. Proc. Natl. Acad. Sci. USA. 93: 13292–13297CrossRefGoogle Scholar
Yeo, C. H., and Hardiman, M. J. (1992). Cerebellar cortex and eyeblink conditioning. Exp. Brain Res. 88: 623–638Google Scholar
Yeo, C. H., and Hesslow, G. (1998). Cerebellum and conditioned reflexes. Trends Cogn. Sci. 2: 322–330CrossRefGoogle ScholarPubMed
Young, E. D., Nelken, I., and Conley, R. A. (1995). Somatosensory effects on neurons in the dorsal cochlear nucleus. J. Neurophysio. 73: 743–765CrossRefGoogle ScholarPubMed
Young, E. D., Spirou, G. A., Rice, J. J., and Voigt, H. F. (1992). Neural organization and responses to complex stimuli in the dorsal cochlear nucleus. Philos. Trans. R. Soc. Lond. B Biol. Sci. 336: 407–413CrossRefGoogle ScholarPubMed
Yuen, G. L., Hockberger, J. C., and Houk, J. C. (1995). Bistability in cerebellar Purkinje cell dendrites modelled with high-threshold calcium and delayed-rectified potassium channels. Biol. Cybern. 73: 375–388CrossRefGoogle Scholar
Zagrebelsky, M., Rossi, F., Hawkes, R., and Strata, P. (1996). Topographically organized climbing fibre sprouting in the adult rat cerebellum. Eur. J. Neurosc. 8: 1051–1054CrossRefGoogle ScholarPubMed
Zipser, D., and Andersen, R. A. (1988). A back-propagation programmed network that simulates response properties of a subset of posterior parietal neurons. Natur. 331: 679–684CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Bibliography
  • John S. Barlow, Massachusetts General Hospital and Harvard Medical School
  • Book: The Cerebellum and Adaptive Control
  • Online publication: 28 October 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511529771.021
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Bibliography
  • John S. Barlow, Massachusetts General Hospital and Harvard Medical School
  • Book: The Cerebellum and Adaptive Control
  • Online publication: 28 October 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511529771.021
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Bibliography
  • John S. Barlow, Massachusetts General Hospital and Harvard Medical School
  • Book: The Cerebellum and Adaptive Control
  • Online publication: 28 October 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511529771.021
Available formats
×