Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-n9wrp Total loading time: 0 Render date: 2024-07-16T19:51:00.281Z Has data issue: false hasContentIssue false

13 - LDPC Codes for Binary Erasure Channels

Published online by Cambridge University Press:  05 June 2012

William Ryan
Affiliation:
Zeta Associates Inc.
Shu Lin
Affiliation:
University of California, Davis
Get access

Summary

Many channels, such as wireless, magnetic recording, and jammed channels, tend to suffer from time intervals during which their reliability deteriorates significantly, to a degree that compromises data integrity. In some scenarios, receivers are able to detect the presence of these time intervals and may choose, accordingly, to “erase” some (or all of the) symbols received during such intervals. This technique causes symbol losses at known locations. This chapter is devoted to LDPC codes for correcting (or recovering) transmitted symbols that have been erased, called erasures. The simplest channel model with erasures is the binary erasure channel over which a transmitted bit is either correctly received or erased. There are two basic types of binary erasure channel, random and burst. Over a random binary erasure channel (BEC), erasures occur at random locations, each with the same probability of occurrence, whereas over a binary burst erasure channel (BBEC), erasures cluster into bursts. In this chapter, we first show that the LDPC codes constructed in Chapters 10–12, besides performing well over the AWGN channel, also perform well over the BEC. Then, we construct LDPC codes for correcting bursts of erasures. A list of references on LDPC codes for the binary erasure channels is given at the end of this chapter.

Iterative Decoding of LDPC Codes for the BEC

For transmission over the BEC, a transmitted symbol, 0 or 1, is either correctly received with probability 1 – p or erased with probability p, called the erasure probability, as shown in Figure 13.1.

Type
Chapter
Information
Channel Codes
Classical and Modern
, pp. 561 - 591
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×